B93高强铝合金热处理及疲劳断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合高强B93铝合金的国产化研制,利用室温拉伸、金相(OM)、扫描电镜(SEM)、透射电子显微镜(TEM)、差热分析和X射线衍射(XRD)等分析手段,研究了不同状态下高强B93合金性能和组织的变化规律,优化了热处理制度。重点研究了B93合金棒材的疲劳性能及断裂行为,采用背散射电子衍射(EBSD)技术研究合金疲劳裂纹扩展过程的晶体学机制。结合工业化生产条件,采用热模拟技术研究了合金的热加工工艺,采用ANSYS有限元模拟与实验的方法研究了合金淬火工艺,制订的热加工与固溶、时效热处理已用于工厂指导该合金的批量生产。论文研究获得以下主要结论:
     (1)通过对B93合金棒材进行热模拟研究,建立了该合金高温塑性变形流变应力本构方程,确定了合金加工图中不稳定性流变区域,优化了可加工温度和应变速率,获得的最佳工艺参数能为合金棒材大批量工业化生产提供了支持。
     (2)对大规格B93合金棒材的淬火温度场进行了有限元模拟,确定棒材的淬透层深度和临界淬火冷却速度,评定了合金棒材的淬火敏感性,建立了大规格B93合金棒材淬火冷却速率-性能-微结构之间关系。
     (3)对B93合金棒材的大量疲劳试验数据进行统计分析,计算了B93合金棒材的中值S-N曲线和存活率为99.9%的p-S-N曲线方程,全面了解该合金棒材的综合疲劳性能。
     (4)通过疲劳断口形貌观察及疲劳裂纹扩展的EBSD分析,研究了B93合金棒材疲劳裂纹的萌生、扩展以及断裂机制,并从晶体学角度提出了新的疲劳裂纹扩展晶体学模型。
     (5)利用ANSYS有限元模拟技术,分析含裂纹的B93合金棒材中的应力分布情况,计算出应力强度因子,结合K判据初步揭示裂纹的运动状态,从而评定B93合金棒材的服役安全可靠性。
Based on production researches on high strength B93 aluminum alloy, the properties and evoloution of microstructures of B93 alloy under various conditions were studied by using tensile testing, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and X-ray diffraction, and the technology for heat treatment was optimized. Intensive studies were made on the fatigue property and fracture behaviours of B93 alloy bars, and the crystallographic mechanism of fatigue crack propagation were investigated by using electron back-scattered diffraction (EBSD) techniques. Besides, considering industrial production, the hot working process of this kind of alloy was studied by using thermal simulation techniques and the quenching process was investigated by combining ANSYS finite element modelling and experiments. Technics of hot working and solution, aging treatment obtained from these have already been applied to give directions in factory production. The research have come to the conclusion that:
     (1) The flow stress constitutive equation of alloy during pyroplastic deformation was established by carrying on thermal simulation researches of B93 alloy bars. Hence unstable flow areas in processing map have been determined and processing temperature and strain rate were optimized. The optimal processing parameter provide support for mass commercial production of alloy bars.
     (2) Finite element modelling of quenching temperature field of large scale B93 alloy bars contributes to determine the depth of quenching layer and critical cooling rate, and evaluate the quench sensitivity of alloy bars. Thereby the relationship among cooling rate, property and microstructure of large scale B93 alloy bars was established.
     (3) The S-N curve and equation of p-S-N curve (with a survivability of 99.99%) of B93 alloy bars were obtained from statistical analysis of mass fatigue tests data.
     (4) Mechanisms of fatigue crack initiation, propagation, and fracture were investigated by using fracture morphology observation and EBSD analysis of fatigue crack, and a new crystallographic model of fatigue crack propagation was given.
     (5) Stress distribution condition of B93 alloy bars with cracks was analyzed by ANSYS finite element modelling techniques and the stress intensity factor was figured out. Combining the stress intensity factor and K criterion, the motion state of crack could be revealed, which helps evaluate safe reliability of B93 alloy bars.
引文
[1]王洪斌,黄进峰,杨滨等.Al-Zn-Mg-Cu系合金.材料科学导报,2003,17(9):1-4
    [2]Wei Qiang, Xiong Baiqing, Zhang Yong an, et al. Production of high strength Al-Zn-Mg-Cu alloys by spray forming process. Trans Nonfrrous Met Soc China, 2001,11(2):258
    [3]Xiong Baiqing. Present Situation and Development of Spray Forming Technology. Chinese J Rare Mater,1999,11(6):427
    [4]张永安.国家高新技术研究发展计划(863计划).超高强度高韧性铝合金的研究开发与产业化,2001,9:5
    [5]陈昌麟.超高强度铝合金的发展.中国有色金属学报,2001,3:2.
    [6]周鸿章,李念奎.超高强铝合金的发展历程及趋势.《铝—21 世纪基础研究和技术研究论文集》[C],张家界.2003,56-57
    [7]Tsuguo IMAMURA. Toward actual application of Al-Li alloy to aircraft.轻金 属,1986,36(11):705-711
    [8]陈亚莉.波音777及其侯选动力装置的选材(一).航空制造工程,1995,25(1):32-34
    [9]李成功,巫世杰.先进铝合金在航空航天工业中的应用与发展.中国有色金属学报,2002,12(3):16-21
    [10]曾渝,尹志民.超高强铝合金的研究现状及发展趋势.中南工业大学学报,2002,33(6):592-596
    [11]Heinz A, Haszler A. Recent development in Aluminum alloys for aerospace applications. Mater. Sci. Eng.,2000, A280:102
    [12]Lukasak D A. Strong aluminum alloy shaves airframe weight. Advanced Materials & Processes,1991, (10):46-49
    [13]James T Staley, et al. Aluminum alloys for aerostructures. Advance Materials & Processes,1991, (10):17-20
    [14]Sander W, Meissner K L. Aluminum industry developments. Metallkunde,1923, 15:180-183
    [15]弗得良捷尔,吴学,译.高强度变形铝合金.上海:上海科技出版社,1963,6-9
    [16]Dix E H. Develop of cross-wind undercarriages for airplanes Trans ASM,1950, 42:1057-1062
    [17]Juarez-Islas J A,Perez R. Microstructctural and mechanical evaluations of sray-deposited 7000 Al-alloys after conventional consolidation. Mater Sci Eng A,1994,179/180:614
    [18]郑子樵,李红英,莫志民等.一种7055型铝合金的RRA处理.中国有色金属学报,2001,11(5):771
    [19]Soeidel M O, History and performance of the structural material for airplanes[A]. Proc of the 6th Inter Cpnf on Light Metals, London,1981,67
    [20]Michael V H. Method of numerical analysis of plastic flow in plane strain and its application to the compression of a ductile material between rough plates.Metal Progress,1977,(3):56
    [21]Lucasak D A, Hart R M. Aluminum alloy development efforts for compression dominated structure of aircraft. Light Metal Age,1991,2(9):11-15
    [22]李海.Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究:[博士学位论文],中南大学,2005
    [23]D. S. Thompson. Metallurgical factors affecting high strength aluminum alloy production. Metallurgical Transactions A.1975,6A(4):671-683
    [24]Gao X, Nie J F, Muddle B C, Proc.6th Int Conf. Aluminum Alloys, eds. T Satoh et al, The Japan Inst. Light Metal, Tokyo, Japan,2,651-656,1998
    [25]Itoh G, Kanno M, Hagiwara T et al. Embrittlement in an age-hardened 2091 aluminum alloy by exposure at elevated temperature below the ageing temperature. Acta Mater,47,3799-3809,1999
    [26]Starink M J, Hobson A J, Sinclair I, et al. Embrittlement of Al-Li-Cu-Mg alloys at slightly elevated temperatures:Microstructure mechanisms of hardening. Mater. Sci. Eng, A289,130-142,2000
    [27]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响.中南工业大学学报,2000,31(6):528-531
    [28]刘红卫,陈康华,刘允中,王林山.强化固溶对2014铝合金组织与性能的影响.湖南有色金属,2000,16(4):28-30
    [29]陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响.金属学报,2001,37(1):29-33
    [30]林高用,彭大暑,魏圣明,韩红阳,张辉.强化固溶处理对7075铝合金组织的影响.金属热处理,,2002,27(11):30-33
    [31]王林山,陈康华,刘红卫,熊翔,刘允中.强化处理和快速再结晶对 2014 铝合金组织与性能的影响.有色金属,2001,53(1):52-55
    [32]Lorimer G W, Nicholson R B.The mechanism of phase transformations in crysta lline solids.Inst. Metals, London.1968:36.
    [33]Polmear I J. A trace element effect in alloys based on the aluminum-zinc-magnesium system. Nature,1960,186:303-304
    [34]Lumley R N, Polmear I J, Morton A J. Interrupted aging and secondary precipitation in aluminum alloys. Mat Sci Tech.19,11,1483-1490,2003
    [35]Lumley R N, Polmear I J, Morton A J. International Patent Application, PCT/AU00/01601,2000
    [36]Lumley R N, Polmear I J, Morton A J. International Patent Application, PCT/AU02/00234,2002
    [37]Lumley R N, Polmear I J, Morton A J. Conf. Proc. Development of properties during secondary ageing of aluminum alloys. Mat Sci Forum,2003, V426-432, 303-308,2003
    [38]Lumley R N, Polmear I J, Morton A J. Temper Developments Using Secondary Ageing. Proceeding of the 9th International Conference on Aluminum Alloys (2004),85-95
    [39]Cina, B, Gan, R. Reducing the susceptibility of alloy, particular aluminum alloys to stress corrosion cracking, Pat.3856584, US patent Office, Washington, DC,24, December,1974
    [40]Cina, B, Ranish, B. Aluminum Industrial Product, Pittsburgh Chapter, American Society for Metals,1974
    [41]Danh, Nguyen C, Rajan Ket al. TEM Study of microstructural changes during retrogression and re-ageing in 7075 aluminum. Metall.1983,14A:1843-1850
    [42]Park J K, Ardell A J. Effect of retrogression and re-ageing treatments on the microstructure of A17075-T651. Metall Trans,1984,15A:1531-1543
    [43]Baldantoni, Antonio. On the microstructures changes during the retrogression and re-ageing of 7075 type aluminum alloys. Mater Sci Eng,1985,72:15-18
    [44]Lorimar G W. Proc. AIME Conf. Precipitation Process in Solids, The Metallurgical Society of AIME, Warrendale, PA,1976,87-92
    [45]Papazian J M. Differential scanning calorimetry evalution of retrogression and re-aged microstructures in aluminum alloy 7075. Meter Sci Eng,1986,79: 97-104
    [46]孟昭富,郑勇,龙厚文等.在时效—回归—再时效处理过程中Al-Zn-Mg系合金硬度的改变.金属学报,1997,33(5):479-484
    [47]曾渝,尹志民,朱远志等.RRA处理对超高强铝合金微观组织和性能的影响.中国有色金属学报,2004,14(7):1188-1194
    [48]Ostermann F.Improved fatigue resistance of Al-Zn-Mg-Cu(7075)alloys through thermomechannical prodessing. Met Trans,1971,2(10):2897
    [49]李松瑞,周善初.金属热处理.长沙:中南大学出版社,2003.56-62
    [50]A. Heinz a, A. Haszler, C. Keidel, et al. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering,2000.2: p.102-107
    [51]J.N. Fridlyander. Russian aluminum alloys for aerospace and transport applicationsMaterials Science Forum 2000.331(337):p.921-926
    [52]J.N.Fridlyander. Development and Application of High-strength Al-Zn-Mg-Cu Alloys. Materials Science Forum,1996.217(222):p.1813-1818
    [53]J. W. Evancho, J.T.Staley. Kinetics of precipitation in aluminum alloys during continuous cooling. Metal Trans,1974(5):p.43-47
    [54]John Liu, Michael Kulak. A new paradigm in the design of aluminum alloys for aerospace application. Materials Science Forum 2000.331(337):p.127-142
    [56]W.L. Fink and L.A. Willey. Quenching of 75S aluminium alloy. Trans. A IME, 1948.175:p.414-427
    [57]宋仁国,张宝金,曾梅光等.7175铝合金时效“双峰”应力腐蚀敏感性的研究.金属热处理学报,1996,17:51
    [58]Gjnnes J, Siemensen C J. Acta Metall,1970,8:881
    [59]Lyman C E, Vander Sande J B. Metall.Trans.,1976,7A:1211
    [60]R.Ferragut, A. Somoza, I. Torriani. Pre-precipitation study in the 7012 AlZnMgCu alloy by electrical resistivity. Materials Science and Engineering, 2002,334:1-5
    [61]Gang Sha, Alfred Cerezo.Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050).Acta Materialia,2004,52:1-14
    [62]Park J K, Ardell A J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metal Trans A,1983,14:1957-1965
    [63]Adler P N, Delasi R. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy. Metallurgical Transactions,1972,3(9):3191-3200
    [64]华明建,李春志,王鸿渐.微观组织对7075铝合金的屈服强度和抗应力腐蚀性能的影响金属学报,1988,24(1):41
    [65]Adler P N, Delasi R, Geschwind G. Metall Trans,1977,8A:1185
    [66]Lendvai J, Honyek G, Kovacs I. Dissolution of second phases in an Al-Zn-Mg alloy investigated by calorimentric method. Scripta Metal,1979,13:593-594
    [67]Lacom W, Desgischer H P, Zahra A et al. Calorimetric investigation of precipitation processes in aluminum alloys. High temperatures-High Pressures, 1980,12:549-554
    [68]Lorimer G W, Nicholson R B. Acta Metal,1966,14:1009
    [69]Speidel M O. The theory of stress corrosion cracking in alloy[M].1971:289-344
    [70]刘永辉,张佩芬.金属腐蚀学原理.北京:航空工业出版社,1993年.
    [71]Seamans G M, Alani R, Swann P R. Pre-exposure embritlement and stress corrosion failure in al-zn-mg-cu alloys. Corrosion Science,1976,16,443-459
    [72]Song R G, Tseng M K, Zhang B J, Investigation of hydrogen induced ductile-brittle transition in 7175 aluminum alloy.etc. Acta Mater,1996,44:3241
    [73]Unwin P N T, Smith G C. Origin of the grain boundary Precipihate freezone.J Inst Metals,1969,97:209
    [74]大西忠一等.降低Al—Zn—Mg—Cu系合金应力腐蚀开裂敏感性的热处理方法.轻金属,1993,6:308
    [75]宁爱林,曾苏民.时效制度对7B04铝合金组织和性能的影响.中国有色金属学报,2004,6(14)
    [76]彭速中.高强铝合金7B04强韧化固溶时效热处理工艺的研究.铝加工,2004,3(156):49-54
    [77]Najjar D, Magnin T, Warner T J. Influence of critical surface defects and locanized competition between dissolution and hydrogen effects during stess corrosion cracking of a 7050 aluminum alloy. Materials science and engineering,1997,A238(2):293-302
    [78]J Goodman. Mechanics applied to engineering[M]. London,1914.231-234
    [79]G.P.Sullivan:WRC Bull. NO.122 May(1967)
    [80]A.S.Tetelmen and A.I.McEvilly:"Fracture of structural materials" John Wiley and Sons, Inc.1967
    [81]Fujita, F. Dislocation theory of fracture of crystals. Nature,1958,6:543-555
    [82]Mott N T. A theory of the origin of fatigue cracks. Acta metallurgica,195-197
    [83]Ramaraju R D. The relationship between surface deformation and grain orientation in fatigued polycrystalline aluminum. Metallography, 1973,3:126-130
    [84]赵振业.高强度合金抗疲劳应用技术研究与发展.中国工程科学,2005,7(3):90-94
    [85]Griffith A A.The phenonmena of rupture and flow in solids. Proc.Roy.Soc, Series A,1921,221:163-198
    [86]S.S.Manson, National Aavisory Committee for Aeronautics, Cleveland:NACA TN-2933,1954.342-347
    [87]Ewing J A, J C W Humphrey. The fracture of metals under repeated alternating stresses.Proc.Roy. Series A,1903,200:241-250
    [88]Irwin. Relation of stresses near a crack in the crack extension force. In Proc.9th Int. Congress Appl. Mech.Brussels,1957a,8:245-251
    [89]Irwin. Analysis of stresses and strains near the end of a crack traversing a plate.J.Appl.Mech.l957b,24:361-364
    [90]Paris P C, M P Gomez, W E Anderson. A rational analytic theory of fatigue. The Trend in Engineering,1961,13:9-14
    [91]Harrison GF, Evans WJ. In FATIGUE 2000-fracture and durability assessment of materials, components and structures. In:Bache MR, Blackmore PA, Draper J, Edwards JH, Roberts P, Yates JR, editors. Proceedings of the 4th international conference of the engineering integrity society, April 10-12,2000, Robinson College, Cambridge. Cradley Heath, West Midlands, UK:EMAS; 2000.15-32
    [92]Wood W A. Systematic microstructural changes peculiar to fatigue deformation. Acta metallurgica,1963,7:643-652
    [93]Wilson D V. Effects of strain ageing on fatigue damage in low-carbon steel. Ibid,1965,9:947-956
    [94]May M J. The effect of temperature on the fatigue behavior of magnesium and some magnesium alloys. Ibid,1963,92:41-49
    [95]Macdonald D E. Slipless fatigue in titanium. Journal of the institute ofmetals,1972,100:73-77
    [96]Lankford J. The growth of small fatigue cracks in 7075-T6 aluminium. Fatigue Fract Eng Mater 1982;5(3):233-48
    [97]lankford J. The influence of microstructure on the growth of small fatigue cracks. Fatigue Eng Mater Struct.1985;8(2):161-75
    [98]Clement P, Angeli JP, Pineau A. Short crack behaviour innodular cast iron. Fatigue Eng Mater Struct.1984;7(4):251-65
    [99]商跃进.有限元原理与ANSYS应用指南.北京:清华大学出版社,2005:11-14
    [100]王伟,朱向哲.不同裂纹构形下挠性轴疲劳寿命可靠性分析.石油化工设备,2007,36(5):30-34
    [101]林晓斌.应用三维有限单元法计算应力强度因子.中国机械工程,1998,9(11):39-44
    [102]陈绍楷,李晴宇,苗壮.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程,2006,35(3):500-504
    [103]黄文长,冯继军. EBSD分析技术及其在材料科学研究中的应用[J].汽车工艺与材料.2004,(1):18-20
    [104]B.r.库德良绍夫.铝合金断裂韧性.北京:冶金工业出版社,1980.77-81
    [105]Mukhopadhyay A K, Yang Q B, Singh S R. The influence of zirconium on the early stages of ageing a ternary Al-Zn-Mg alloy. Acta Mater.1994,42(9): 3083-3091
    [106]郑虹.高强度变形铝合金.鞍山师范学院学报,2001,3(3):72
    [107]汝继刚,伊琳娜.高纯化对Al-Zn-Mg-Cu系高强铝合金性能得影响.航空材料学报,2003,23:6
    [108]M.Puiggali, A.Zielinski. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy. Corrosion Science,1998,40:1-15
    [109]Gang Sha, Alfred Cerezo.Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050).Acta Materialia,2004,52:1-14
    [110]R. G. Song, W. Dietzel, B. J. Zhang, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy. Acta Materialia.2004,52(16): 4727-4743
    [111]In-Bae Kim, Kwang-Nyeon, In-Gon Kim. Effects of silicon and chromium on the SCC properties of Al-Zn-Mg-Cu cast alloy. Materials Science Forum.2004,449-452:585-588
    [112]M. Vratnica, Z. Cvijovic, M. Rakin. Fracture touness modeling in high-strength Al-based alloys. Materials Science Forum.2004,453-454:181-186
    [113]U.Saglam, M.Baydogan, H.Mindivan, et al. Influence of retrogression and re-ageing on the mechanical and corrosion properties of 7039 aluminum alloy.Zeitschrift fuer Metallkundal,2004,95(1):14-17
    [114]O.Alvarez, C.Gonzalez, GAramburo, et al. Characterization and prediction of microstructure in Al-Zn-Mg alloys. Materials Science and Engineering A.2005,402(1-2):320-324
    [115]X. M. Li, M. J. Starink. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 series aluminium. Materials Science and Technology.2001,17:1324-1328
    [116]田荣璋,王祝堂.铝合金及其加工手册(第二版).长沙:中南大学出版社,2000.16-17
    [117]李松瑞,周善初.金属热处理(第一版).长沙:中南大学出版社,2003.22-23.
    [118]Φ.и科瓦索夫.工业铝合金.韩秉诚,蒋香泉,等(译).北京:冶金工业出版社,1981:63
    [119]王祝堂,田荣璋.铝合金及其加工手册(第一版).长沙:中南工业大学出版社,1989:113
    [120]Sellars C M. On the mechanism of hot deformation. Acta Met,1966,14:1136
    [12l]杨立斌,张辉,彭大暑.7075铝合金高温流变行为的研究.热加工工艺,2002,1:1-3
    [122]Prasad Y V R K, Gegel H L, Doraivelu S M, st al. Medeling of dynamic material behavior in hot deformation:forging of Ti-6242. Metallurgical transactions. A, physical metallurgy and materials science,1984,15(10):1883-1892
    [123]Seshacharyulu T, Medeiros S C, Frazier W G, et al. Microstructural mechanisms during hot working of commercial grade Ti-6A1-4V with lamellar starting structre. Mater Sci Eng A,2002,A325(1-2):112-125
    [124]Cerri E, Spigarelli S, Evangelista S E, et al. Hot deformation and processing maps of a particulate-rein-forced 6061+20% Al2O3 composite. Mater Sci Eng A,2002,A324(1-2):157-161
    [125]PRASAD. Processing maps:A status report. Journal of Engineering and Performance,2003,12:638-645
    [126]A. Heinz, A. Haszler, C. Keidel, et al. Recent development in aluminium alloys for aerospace applications.Mater.Sci.Eng.2(2000)102-107
    [127]黄继武,尹志民,聂波,方家芳,陈继强.双级时效对7A52铝合金组织与性能的影响.中南大学学报(自然科学版),2007.38(6):1045-1049
    [128]科瓦索夫,弗里德良捷尔.工业铝合金,北京:冶金工业出版社,1981.140-143
    [129]Olafsson P, Sandstrom R. Calculations of electrical resistivity for Al-Cu and Al-Mg-Si alloys. Materials Science and Technology,2001,17(6):655
    [130]Frost HJ, Ashby M F. Deformation mechanism maps. Oxford:Pergamon,1982: 341-347
    [131]McQueen H J, Jonas J J. Recovery and recrystallization in the hot-working of aluminum alloys. Treatise on Materials Science and Technology, Plastic Deformation of Materials. New York:Academic Press,1975.393-493
    [132]W. Ludwig, J.Y. Buffiere, S. Savelli, P. Cloetens. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Materialia.2003;51:585-598
    [133]Ravichandran KS, Li X-D. Fracture mechanical character of small cracks in polycrystalline materials:Concept and numerical k calculations. Acta Materialia. 2000;48:525-40
    [134]雷家峰,刘羽寅,杨锐.一种亚稳 β 钛合金中疲劳短裂纹穿晶扩展晶体学特征的EBSD研究.金属学报,2002,38:272-276
    [135]T. Zhai, X.P. Jiang, J.X. Li. The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys. International Journal of Fatigue.2005;27:1202-1209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700