化学镀法制备用于有机废气催化燃烧处理的整体式催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在众多有机废气处理技术中,催化燃烧法是消除挥发性有机化合物(VOCs)污染最有效方法之一,具有设备简单,能耗低,消除效果好等特点,而催化剂是催化燃烧法消除VOCs的关键。本文用堇青石蜂窝陶瓷做第一载体,以贵金属Pd为活性组分,用化学镀法制备了一系列Pd负载型整体式催化剂。以甲苯和甲醛的催化燃烧作为作为考察催化剂的探针反应,考察了催化剂的催化活性和耐高温性,并采用多种方法对催化剂进行表征,将催化燃烧性能与催化剂表面性质进行了关联以及进行了催化机理的探讨。本文的主要研究内容和结果如下:
     催化剂的制备。采用化学镀法制备Pd/堇青石陶瓷整体式催化剂,通过实验确定了化学镀的最佳反应条件:PdCl_2:0.05-0.5g/L, NH_3·H_2O (25%):40-120g/L, NH4Cl: 5-20g/L, NaH_2PO_2·H_2O:1-10g/L, HCl(36-38%):1-4mL/L, pH:9-10,温度:25℃-60℃。研究表明,采用化学镀制备技术可在堇青石陶瓷载体直接负载Pd颗粒,有利于提高钯的利用率,工艺简单,制备周期短。
     催化剂的表征及活性评价。采用SEM、XRD、UV、EDX、BET、XPS、H_2-TPR、O_2-TPD等手段对整体式催化剂的表面形貌、结构和性能进行表征。通过SEM和EDX的测定,可知Pd晶粒均匀地负载在堇青石陶瓷载体。以甲苯和甲醛作为VOCs的代表污染物,进行催化燃烧处理,对催化剂进行活性评价,研究表明,当活性组分Pd负载量在0.36wt%以上时具有较高的催化活性,对于不同焙烧温度下制备的Pd/堇青石陶瓷整体式催化剂,500℃焙烧下的具有相对较高的催化活性,Pd晶粒在载体表面上均匀负载,晶粒大小均一,范围在100nm左右。之后随着焙烧温度(高于500℃)的升高,催化活性逐渐降低,主要与活性物种PdO颗粒的长大、烧结、晶格氧的减少和比表面积的减小有关。
     研究了空速、有机废气中甲苯和甲醛的浓度和稳定性等因素对Pd/堇青石陶瓷整体式催化剂催化燃烧性能的影响。实验表明,随着空速的增大,催化剂对甲苯和甲醛的催化处理效率都逐渐降低。催化剂在空速20000h-1以内时,具有较高的甲苯催化处理效率;在3000h-1空速内时,对甲醛具有较高的催化处理效率;对于甲苯,甲苯浓度对催化燃烧处理效率影响较小,在6.0g/m3以内都具有较高的催化处理效率;对于甲醛,甲醛浓度在2.0mg/m3范围内时,催化剂才对其具有较高的处理效率,说明甲醛浓度对催化燃烧处理效率的影响较大,表明有机污染物的种类和浓度对催化处理效率有较明显影响,这也说明催化剂具有选择性。在甲苯催化燃烧的寿命实验中发现,在10h之内,Pd/堇青石陶瓷整体式催化剂的甲苯催化处理效率一直保持在99%左右,之后催化处理效率随着反应时间逐渐下降。重新焙烧再生的催化剂,在9h内甲苯催化处理效率可保持在99%,说明催化剂可多次再生循环使用。
     研究还探讨了采用浸渍法在堇青石载体上负载一层CeO_2-ZrO_2复合物后,再采用化学镀负载上活性组分Pd,制备Pd/Ceo.gZro.202/堇青石陶瓷整体式催化剂,并采用SEM、EDX、UV漫反射对其进行表征。研究表明,该类催化剂具有良好的催化活性和耐高温性。相对于Pd/堇青石整体式催化剂,与500℃焙烧的催化剂相比,800℃焙烧的Pd/堇青石整体式催化剂,T99%为255℃,提高了25℃。800℃焙烧的0.36wt%Pd/Ce0.8Zr0.202/堇青石陶瓷整体式催化剂,T99%为250℃,与500℃焙烧的催化剂相比,只提高了15℃,主要可能是CeO_2-ZrO_2复合氧化物具有贮氧池的作用,可以向Pd提供品格氧,抑制了PdO晶粒的烧结,该催化剂是具有较好的催化活性的。
Among the technologies developed for the treatment of VOCs, catalytic combustion is considered to be one of the most effective measures to destroy VOCs due to its simple equipment and eliminating VOCs at relatively low temperatures. The catalyst is the key of catalytic combustion. Cordierite honeycomb ceamics was the carrier, precous metal palladium was the active componet, the Pd-based monolithic catalyst was prapared by electroless plating. The catalytic activity behavior and thermal stability of the monolithic catalysts for toluene were investigated. In addition, the Pd-based monolithic catalysts were charactrized by various techniques, and the mechanism of catalytic oxidation was also studied. The main contents and results in the thesis could be summarized as follows:
     Preparation of the catalysts. Pd/cordierite monolithic catalysts were prepared by electroless plating. The experiment showed that the most optimum conditions of electroless plationg were:concentration of PdCl_2 was form 0.05g/L to 0.5g/L, concentration of NH_3·H_2O (25%) was form 40g/L to 120g/L, concentration of NH4C1 was form 5g/L to 20g/L, concentration of NaH_2PO_2·H_2O was form 1g/L to 10g/L, concentration of HC1 (36-38%) was form 1g/L to 4mL/L, pH was 9 to 10, reaction temperature was form 25℃to 60℃. The results showed that palladium nanoparticles were dispersed symmetrically over cordierite, by using this technology, it had the advantages of simple equipment, easy process of manufacture, high utilization of palladium, short period of preparation, low cost, etc.
     Characterization and catalytic activity evaluation. The surface morphology, structure and performancethe of the Pd-based monolithic catalysts were charactrized by SEM, XRD, UV, EDX, BET, XPS, H_2-TPR and O_2-TPD techniques. The palladium grains were load evenly on the cordierite ceramic substrate. Toluene and formaldehyde were instead of VOCs in the experiment of catalytic activity evaluation. The experiment showed that the catalysts showed more activity when the loading of active component palladium loading over 0.36wt%. The Pd-based monolithic catalysts were prepared under different calcination temperatures, the one prepared under 500℃showed more activity and the palladium grains size were about 100nm, then it was found the efficiency became lower with the rise of calcination temperature, this result might be attributed to the sintering and decomposition of the PdO particles and decrease in the surface area.
     It was also studied the influence of space velocity, concentration of VOCs and the temperature. It was found that the efficiency of catalytic combustion for toluene and formaldehyde became lower when space velocity became faster. It had a higher catalytic efficiency of toluene when space velocity under 20000h-1. But space velocity was form under 3000h-1, the monolithic catalyst had a high activity for formaldehyde. It was also found that concentration of toluene had weak influence to the catalytic combustion, the monolithic catalyst had high activity when concentration of toluene within 6.0g/m3. It had high activity when concentration of formaldehyde within 2.0mg/m3, this showed that concentration of formaldehyde had strong influence to catalytic combustion. So elements of VOCs had greater impact to the catalytic combustion, this also showed that the catalyst has selectivity. In the Catalytic combustion process, toluene catalytic efficiency of Pd/cordierite monolithic catalyst was maintained at about 99% within 10h in the endurance test, then catalytic efficiency decreased with the reaction time after 10h, mainly because PdO-Pd redox cycle could not be proceed smoothly, most of PdO was reduced to Pd0 by toluene molecule, led to the amount of PdO were not enough, therefore activity decreased.
     CeO_2-ZrO_2 mixed oxides were investigated due to their excellent oxygen storage capacity, high thermal stability. CeO_2-ZrO_2 mixed oxides were loaded on the catalyst support, and then active component palladium was plated by electroless plating. Meanwhile the washcoats and their supported-Pd catalysts were characterized by SEM, EDX and UV. In addition, it was studied the influene of palladium loading and calcination temperature. It showed that these catalysts had good catalytic activity and temperature resistance. Relative to the Pd/cordierite monolithic catalyst, compared to the catalyst calcined at 500℃, T99% of the catalyst calcined at 800℃was 255℃, increasing by 25℃. Compared to the monolithic catalyst calcined at 500℃, T99% of the monolithic catalyst calcined at 800℃was 250℃, increasing by 15℃. The main reason was that CeO_2-ZrO_2 mixed oxides could act as oxygen storge resercor giving lattice oxygen to Pd, which could stabilize PdO at high temperatures.
引文
[1]Mazzocchia C., Gronchi P., Kaddouri A., et al. Hydrogenation of CO over Rh/ SiO2-CeO2 catalysts:kinetic evidenees[J]. J. Mol. Catal. A:Chem.,2001,165: 219-230.
    [2]王胜,高典楠,张纯希,等.贵金属甲烷然催化剂[J].化学进展,2008,20(6):789-796.
    [3]Li W. B., Wang J. X., Gong H.. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catal.Today,2009,148:81-87.
    [4]吴永文,李忠,奚红霞,等.VOCs污染控制技术与吸附催化材料[J].离子交换与吸附,2003,19(1):88-95.
    [5]Chang C. T., Lee C. H., Wu Y. R., et al. Resources, Conservation and recycling[J]. 2002,34:117.
    [6]李辰,梁冰,师彦平,等.室内空气中挥发性有机化合物污染及检测方法[J].分析测试技术与仪器,2005,11(1):40-44.
    [7]张林,陈欢林,柴红.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保,2002,22(2):75-80.
    [8]Cornell M. O., Murris M. A.. New ceria-based catalysts for pollution absorbent[J]. Catal.Today,2000,59:387-393.
    [9]赵伟. CuMnOx/y-Al2O3对挥发性有机废气催化燃烧的实验研究[D].陕西:西安建筑科技大学,2008.
    [10]Rivas B. D., Gutierrez-Oritiz J. I., LoPez F. R., et al. Analysis of the simulataneous catalytic combustion of chlorinated aliphatic pollutants and toluene over caria-zirconia mixed oxides[J]. Appl. Catal. A:General,2006,314:54-63.
    [11]Anehi E., Leitenburg C. D., Dolcetti G., et al. Promotional effect of rare earths and transition metals in the combustion of disel soot over CeO2 and CeO2-ZrO2[J]. Calal. Today,2006,114:40-47.
    [12]KimH. J.,Nah S. S., Min B. R.. A new technique for preparation of PDMS pervaporation membrane for VOCs removal[J]. Adv. Environ. Res.,2002,6:255-264.
    [13]李建伟.挥发有机物催化燃烧整体式催化剂研究与中试方案设计[D].北京:北京化工大学,2010.
    [14]李淑莲,陈文光,孙继良. CeO2-ZrO2复合氧化物对金属蜂窝整体催化剂性能的影响[J]. 催化学报,2002,23(4):341-345.
    [15]田地,张彭义.挥发性有机无光催化降解研究进展[J].上海环境科学,2000,19(4):162-165.
    [16]Santos S., Jones K., Abdul R., Boswell J., Pacac J.. Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system[J]. Biochemical Engineering Journal,2007,37:261-270.
    [17]樊奇.挥发性有机废气研究进展[J].四川环境,2005,24(4):40-41.
    [18]秦朝远,乔彤森.生物法处理气体中易挥发有机物研究进展[J].石油技术与应用,2006,24(1):49-52.
    [19]Tidahy H. L., Siffert S., Lamonier J. F., et al. Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs[J]. Appl. Catal. B: Environ.,2007,70:377-383.
    [20]田凌燕,蔡烈奎,汪军化,等.催化燃烧技术的应用进展[J].节能,2010,2:22-25.
    [21]Colussi S., Leitenburg C., Doleetti G., et al. The role of rare eatrh oxides as promoters and stabilizers in combustion catalysts[J]. Alloy Compd.,2004,374:387-392.
    [22]Yoshida H., Yazawa Y., Hattori T., et al. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion [J]. Catal. Today,2003,87: 19-28.
    [23]王珂,林志娇,江志东.甲烷催化燃烧整体型催化剂研究进展[J].天然气化工,2009,34(1):71-78.
    [24]Robert J., Ye L., Wolfgang R., et al. Preeious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy [J]. Catal. Rev.,2007,49(2): 141-196.
    [25]Gandia L. M., Gil A., Korili S. A.. Effcets of various alkali-acid additives on the activity of a manganese oxide in the catalytic combustion of ketones[J]. Catal. B. 2001,33:1-8.
    [26]Luo M. F., Fang P., He M.. In situ XRD, Raman and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J. Mol. Catal. A.,2005,239:243-248.
    [27]高丽蓉,孙燕华.La0.8Sr0.2MnO3+λ负载于α,γ-Al2O3上作为燃烧催化剂的研究[J].内蒙古大学学报,1998,29(4):583-585.
    [28]Valerie L.. Modifications of Pt/alumina combustion catalysts by barium addition[J]. Appl. Catal. A,1996,138:93-108.
    [29]贾美林.负载型La0.8Sr0.2CoO3燃烧催化剂的载体效应[J].分子催化,2000,14(4):265-269.
    [30]Primavera A.. Natural gas conversion VOC[J]. Surface Sci. Catal.,1998,119:87-92.
    [31]Bozo C., Guilhaume N., Garbowski E., et al. Combustion of methane on CeO2-ZrO2 based catalysts[J]. Catal. Today,2000,59:33-45.
    [32]Nijhuis T. A., Beers A. E. W., Vergunst T., et al. Preparation of monolithic catalysts[J]. Catal. Rev.,2001,43(4):345-380.
    [33]刘恒.车用催化剂金属载体表面预处理的研究及其应用[D].云南:昆明理工大学,2004.
    [34]Boger T., Heibel A. K., Sorensen C. M.. Monolithic catalysts for the chemical industry[J]. Ind. Eng. Chem. Res.,2004,43:4602-4611.
    [35]陈明,王新,焦文玲,等.甲烷催化燃烧机理及催化剂研究进展[J].燃气与动力,2010,30(11):34-37.
    [36]Saad F.. Catalytic destruction of volatile organic compound emssions by platinum based catalyst[J]. Chemosphere,1999,38(9):2109-2116.
    [37]Brink R. W.. Catalytic combustion of chlorobenzene on Pt/α-Al2O3 in the presence of aliphatic hydrocarbons[J]. Catalysis Today,1999,54(3):101-106.
    [38]Panayiotis P.. VOC removal:investigation of ethylacetate oxidation over supported Pt catalysts[J]. Catalysis Today,1999,54(3):81-92.
    [39]罗孟飞,袁贤鑫. Pd-Pt/Al2O3燃烧催化剂的活性和热稳定性[J].燃料化学学报,1995,23(1):23-25.
    [40]Simona M., Salvatore S., Carmelo C., et al. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts[J]. Applied Catalysis B:Environmental,2000, 28 (3-4):245-251.
    [41]Simona M., Salvatore S., Carmelo C, et al. Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide[J]. Applied Catalysis B: Environmental,2001,34(4):277-285.
    [42]王桂香,董国君,张密林,等.负载型Pd催化剂[J].化学工程师,2001,87(6):6-8.
    [43]Alexander I. K., Anguelina P. K., Haichao Liu., et al. A new approach to active supported Au catalysts[J]. Applied Catalysis A:General,1999,182(1):9-28.
    [44]Zhou K., Chen H., Tian Q.. Pd-containing perovskite-type oxides used for three-way catalysts[J]. Journal of Molecular Catalysis A:Chemical,2002,189(2):225-232.
    [45]王幸宜,卢冠忠,任建德.钯、铜、锰、铈三效催化剂性能研究[J].环境科学学报,1994,14(4):403-407.
    [46]Jennlm N., O-Bong Y., Do H. K., Seong W.. Characteristics of the Pd-only three-way catalysts Prepared by sol-gel method[J]. Catalysis Today,1999,53(4):575-582.
    [47]张志强,贺站锋,蒋毅,等.用于苯催化燃烧的CuMnCeZr/Al-Ti整体式催化剂的制备与表征[J].石油化工,2010,39(10):1157.
    [48]Taylor S. L., Heneghan C. S., Hutchings G. J., et al. The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds[J]. Catal. Today,2000,59:249.
    [49]Sinquin G., Petit C., Libs S., et al. Catalytic destruetion of chlorinated volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms[J]. Appl. Catal. B:Environmental,2000,27:105-115.
    [50]余凤江,张丽丹.苯催化燃烧反应Cu-Mn-Ce-Zr-O催化剂催化活性的研究[J].北京化工大学学报,2001,28(4):67-72.
    [51]Scire S., Minico S., Crisafulli C., et al. Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3[J]. Catal. Commu.,2001, 2:229-232.
    [52]Spinicci R.. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion[J]. Journal of Molecular Catalysis A:Chemieal,2003,197(4):147-155.
    [53]Irusta S.. Catalytic Combustion of Volatile Organic compounds over La-Based Perovskites [J]. Journal of Catalytic,1998,179(3):400-412.
    [54]Blasin-Aube V., Belkoueh, J. Monceaux L.. General Study of Catalytic oxidation of Various VOCs over La0.8Sr0.2MnO3+x Perovskite Catalytic influence of Mixture[J]. Applied Catalysis B:Environmental,2003,43:175-186.
    [55]王幸宜,卢冠忠,汪仁,等.铜锰氧化物的表面过剩氧及其甲苯催化燃烧活性[J].催化学报,1994,115(2):103-108.
    [56]孟春迎,王兰芝,侯凯湖.化学镀法制备Pd及其合金复合膜过程分析[J].大庆石油学院学报,2006,30(2):57-60.
    [57]李玉山,王来军,文明芬,等.化学镀法制备单钯汽车尾气净化催化剂[J].工业催化,2006,14(7):57-59.
    [58]郑向江.化学镀法制备尾气催化剂的催化性能研究[J].化学工程师,2009,11:67-69.
    [59]李酽,刘刚,刘红霞,等.化学镀层的性能及基体的镀前处理[J].航空制造技术,2004,(7):86-88.
    [60]王桂香,李宁,李娟,等.以次亚磷酸钠为还原剂的塑料直接镀铜[J].精细化工2006,23(1):70-74.
    [61]刘仁志.非金属电镀与精蚀-技术与实践[M].北京:化学工业出版社,2006.
    [62]郑筱梅,李自林.用均匀设计试验优化镀液组成[J].材料保护,2001,34(4):34-35.
    [63]Cheng Y. S., Yeung K. L., Effects of electtroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrance Science,2001,182:195-203.
    [64]John F. M., William F. S., Peter E. S., et al. Handbook of X Ray Photoelectron Spectroscopy[M]. U. S. A.:Perkin-Eimer Corporation Physical Electronics Division, 1992.
    [65]康新婷,谈萍,葛渊等.化学镀钯复合膜研究进展[J].稀有金属材料与工程,2008,37(4):580-585.
    [66]岳雷,赵雷洪,滕波涛.Pd/Ce0.8Zr0.15La0.05Oδ整体催化剂甲苯催化燃烧性能的研究[J].中国稀土学报,2009,27(3):327-333.
    [67]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学报,2010,26(4):885-894.
    [68]常剑,高金森,徐春明.大颗粒FCC汽油芳构化催化剂烧碳再生动力学研究[J].燃料化学学报,2007,35(6):673-677.
    [69]张庆豹,赵雷洪,滕波涛,等.用于甲苯催化燃烧的Pd/Ce0.8Zr0.2O2/基底整体催化剂[J].催化学报,2008,29(4):373-378.
    [70]金凌云,何迈,鲁继青,等.Y203涂层负载Pd整体式催化剂的制备和催化性能[J].催化学报,2007,28(7):635-640.
    [71]Fabbrini L., Rosseti I., Forni L.. Effect of primer on honeycomb-supported La0.9Ce0.1CoO3+δ perovskite for methane catakytic flameless combustion[J]. Appl. Catal. B.,2003,44(2):107-116.
    [72]Femandez-Garcia M., Martinez-Arias A., Iglesias-Juez A., et al. New Pd/CexZr1-xO2/ Al2O3 three-way catalysts prepared by microemulsion characterization and catalytic behavior for CO oxidation[J]. Appl. Catal. B.,2001,31(1):39-50.
    [73]Fornasiero P., Di-Monte R., Ranga-Rao G.. Rh-loaded CeO2-ZrO2 solid solutions as highly efficient oxygen exchangers:dependence of the reduction behavior and the oxygen storage capacity on the structural properties [J]. J. Catal.,1995,151(1):168.
    [74]R. Ranga-Rao G., Fornasiero P., Di-Monte R.. Reduction of NO over partially reduced metal-loaded CeO2-ZrO2 solid solution[J]. J. Catal.,1996,162(1):1.
    [75]Vlaic G., Fornasiero P., Geremia S.. Relation-ship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the ZrO2 local structure[J]. 1997,168(2):386.
    [76]Ciuparu D., Lyubovsky M. R., Altman E., et al. Catalytic combustion of methane over palladium-based catalysts[J]. Catal. Rev. Sci. Eng.,2002,44(1-4):593-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700