甲烷重整镍基催化剂制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气转化和利用已经成为一种新的能源途径,对于保障我国能源安全及解决环境污染问题具有重大的经济和现实意义。近年来,人们致力于将甲烷(天然气的主要成分)转化为高附加值的碳氢化合物,尤其是同时利用甲烷和二氧化碳两种“温室气体”催化重整制合成气是近几年来颇受关注的课题。甲烷、二氧化碳重整可以制备低H2/CO比的合成气(≤1),而低H2/CO比的合成气更适合生产甲醛、聚碳酸脂和乙醇等化工原料。
     虽然甲烷、二氧化碳重整具有环境和经济上的诸多优势,但工业上基于此重整反应的生产并不多。从生产成本和催化活性角度出发,镍基催化剂是最常用的催化剂,但甲烷、二氧化碳重整反应工业化的主要障碍之一是镍基催化剂的积炭问题。
     本论文以调控铈锆复合氧化物的结构和性质为目标,采用络合分解法制备了一系列CexZr1-xO2固溶体,选用等体积浸渍法制备了NiO/CexZr1-xO2型催化剂,通过BET、XRD、Raman、TG和TPR等手段分析了载体和催化剂的结构及性质。系统地考察了其催化CH4-CO2重整反应性能,并在最优催化剂上考察了甲烷三重整反应的催化性能。结果表明,以水杨酸作络合剂所制得Ce0.6Zr0.4O2负载12.5 wt.% Ni催化剂的活性和稳定性较好,并与催化剂的结构相关联。具体研究内容及主要结论如下:
     (1)通过对载体的TG、XRD、Raman和BET等表征数据分析,确定600℃作为金属配合物的焙烧温度。在600℃焙烧4 h,金属配合物已基本分解完全,形成了晶型规整的铈锆固溶体;在该温度下形成的铈锆固溶体具有最小的晶粒尺寸,作为催化剂的载体,具有适中的比表面积。
     (2)在较低反应温度、加压和高空速条件下通过CH4-CO2重整反应筛选催化剂,考察了反应空速和反应压力对CO2重整甲烷催化活性的影响。结果表明,反应压力和空速对反应的转化率和选择性都有不同程度的影响,其中压力影响更大。
     (3)考察了Ni引入方式、Ce/Zr比及Ni负载量对CO2重整甲烷催化活性的影响,确定了最佳催化剂。由水杨酸(S)制备的载体与NiO形成的催化剂(Ni/CZ-S)表现出较高的反应活性和稳定性;不同Ni引入方式和Ce/Zr比主要影响载体的氧化还原性能,进而影响NiO的还原行为;随着Ni含量提高,活性中心数量增多,这样即使在反应过程中积炭覆盖或氧化流失部分活性中心,仍能保持相对较高的反应活性和稳定性。
     (4)将最优催化剂应用于甲烷三重整反应,考察了空速和压力对甲烷三重整催化活性的影响。由于甲烷催化部分氧化反应(CPOM)的存在,空速对CH4转化率、H2收率和H2/CO影响较小,但是对CO2转化率影响相对较大;压力对三重整反应的转化率、H2收率和H2/CO影响显著,但当压力高于5 atm时,其影响相对减缓。
     (5)考察了原料气组成对甲烷三重整催化活性的影响。通过调变原料气比,在一定范围内,可以控制三重整反应生成的合成气H2/CO比(1.5~3.0之间);在加压条件下,三重整反应中产生积炭仍制约着催化剂的使用寿命,其中CO歧化可能在该实验条件下占主导作用。
The conversion and utilization of natural gas are important options for a new energy source, which has great economic and practical significance to protect China's energy security and to solve the environmental pollution problem caused from the contaminants in fossil fuel. Recently, some work has been done on the conversion of methane(a main component of natural gas) into high valued hydrocarbon products. Especially, the catalytic carbon dioxide reforming of methane to syngas (CO+H2) using the two kinds of "greenhouse gas" at the same time became a popular issue in last few years. The syngas with lower H2/CO molar ratio is more suitable for production such as formaldehyde, polycarbonate, ethanol, and other chemicals. Consequently, considerable efforts have been devoted to the development of high-performance catalysts.
     Although the process of CH4-CO2 reforming has environment benefits and economic advantages, there are only a few commercial processes based on the CH4-CO2 reforming reaction. From the view of production cost and catalytic activity, Ni-based catalysts are more widely used for reforming of methane, but the major obstacle for commercialization of the CH4-CO2 reforming over Ni-based catalyst is still the rapid deactivation of catalysts caused by carbon deposition.
     Herein, for the purpose to vary the structures and properties of CexZr1-xO2 composite oxide, a series of cerium zirconium solid solutions were obtained via complex-decomposition method. The structural and textural properties of the CexZr1-xO2 were characterized by TG, XRD, and N2 adsorption-desorption techniques. The Ni/CexZr1-xO2 catalysts were prepared by impregnation method, and the catalytic performances of the nickel loaded samples were investigated for the CO2 reforming of methane. Then, catalytic performance of the optimum catalysts was investigated for the tri-reforming of methane. Reforming results indicate that 12.5wt.% Ni loaded on the Ce0.6Zr0.4O2 catalyst prepared by using salicylic acid as a complex agent shows the best performance among the catalysts investigated, which is consistent to the characterization results of the catalysts. Detail results and main conclusions are given follows:
     (1) Through analysing the data of TG, XRD, Raman and BET, calcinations temperature (600℃) of metal complexes was selected. After calcinated at 600℃for 4 h, metal complexes have completely decomposed, and formed cerium zirconium solid solutions with regular crystalline phase; Formed at 600℃for 4 h. cerium zirconium solid solutions, with least grain size and moderate specific surface area, is suitable for the support of catalyst.
     (2) The effects of GHSV (gas hourly space velocity) and pressure on catalytic performance for CH4-CO2 reforming reaction under lower temperature, high GHSV, and pressurized condition were developed. Reforming results show that conversion and selectivity of reaction are significantly influenced by GHSV and pressure, and pressure has greater effect.
     (3) The optimum catalyst was confirmed by investigating the factors of nickel introducing mode, Ce/Zr molar ratio, and content of nickel. Due to different interaction forces between NiO and support prepared by using salicylic acid (S) as a complex agent, Ni/CZ-S shows the best performance among the catalysts investigated. Reduction behavior of support and NiO particle are direcitly affected by nickel introducing mode and Ce/Zr molar ratio. With an increase of nickel content, active site increases. Although active site reduces with the increase of time on stream, catalyst still can maintain higher activity and stability.
     (4) The effects of GHSV and pressure on catalytic performance for tri-reforming of CH4 were investigated. Owing the CPOM existence, CH4 conversion, H2 yield and H2/CO molar ratio are not significantly influenced by GHSV, but significantly influenced by pressure. With a further increase of pressure (≥5 atm), the influence of pressure became weaker relatively.
     (5) The influences of raw materials ratio on catalytic performance for tri-reforming of CH4 were investigated. H2/CO of syngas can be regulated via adjusting the ratio of raw materials in a certain range (1.5~3.0). Under pressurized conditions, the life-time of catalyst is still restricted by carbon deposition formed during tri-reforming of methane. Noteworthy, carbon deposition comes from CO disproportionation reaction, being a major factor for catalyst deactivation.
引文
[1]毛玉如,方梦祥,骆仲泱.空气分离/烟气再循环技术研究进展[J].锅炉技术,2002,33(3):5-9.
    [2]Tokunaga O., Ogasawara S. Reduction of Carbon Dioxide with Methane over Ni-Catalyst[J]. React. Kinet. Catal. Lett.,1989,39:69-74.
    [3]Song C. Tri-Reforming:A New Process for Reducing CO2 Emissions[J]. Chemical Innovation,2001,31(1):21-26.
    [4]Hu Y., Ruckenstein E. Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming[J]. Adv. Catal.,2004,48:297-345.
    [5]Liu Z.-W., Jun K.-W., Roh H.-S., et al. Pulse Study on the Partial Oxidation of Methane over Ni/θ-Al2O3 Catalyst[J]. J. Mol. Catal. A:Chem.,2002,189:283-293.
    [6]York A.P.E., Xiao T.-C., Green M.L.H., et al. Methane Oxyforming for Synthesis Gas Production[J]. Catal. Rev. Sci. Eng.,2007,49(4):511-560.
    [7]Rakass S., Oudghiri H., Rowntree P. Steam Reforming of Methane over Unsupported Nickel Catalysts[J]. J. Power Sources,2006,158:485-496.
    [8]王芳.甲烷二氧化碳重整钴基催化剂制备及活性评价研究[D].太原:太原理工大学,2010.
    [9]李琼玖,叶传湘.天然气转化制合成气工艺方法[J].氮肥设计,1996,34(5):45-48.
    [10]李文兵,齐智平.甲烷制氢技术研究进展[J].天然气工业,2005,25(2):165-168.
    [11]胡兆明.甲烷蒸汽催化重整制氢的实验研究[D].上海:上海交通大学,2004.
    [12]许珊,王晓来,赵睿.甲烷催化制氢气的研究进展[J].化学进展,2003,15(2):141-150.
    [13]Oudghiri-Hassani H., Rakass S., Abatzoglou N. Inhibition of Carbon Formation During Steam Reforming of Meathane Using Thio-Coated Nickel Catalysts[J]. J. Power Sources,2007,17:285-294.
    [14]Choudhary V., Banerjee S., Raijput A. Hydrogen from Step-Wise Steam Reforming of Methane over Ni/ZrO2:Factors Affecting Catalytic Methane Decomposition and Gasification by Steam of Carbon Formed on the Catalyst[J]. Appl. Catal. A:Gen., 2002,234:259-270.
    [15]Li B., Kado S., Mukainakano Y. Temperature Profile of Catalyst Bed During Oxidative Steam Reforming of Methane over Pt-Ni Bimetallic Catalysts[J]. Appl. Catal. A:Gen.,2006,304:62-71.
    [16]Ashcroft A.T., Cheetham A.K., Green M.L.H., et al. Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide[J]. Nat. Chem.,1991,352:225-226.
    [17]R.Rostrupnielsen J., B.Hansen J.H. CO2-Reforming of Methane over Transition Metals[J]. J. Catal.,1993,144(1):38-49.
    [18]Gadalla A.M., Bower B. The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with CO2[J]. Chem. Eng. Sci.,1988,43(11):3049-3062.
    [19]Song C.S., Pan W. Tri-Reforming of Methane:A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas with Desired H2/CO Ratios[J]. Catal. Today,2004,98(4):463-484.
    [20]Pan W. Tri-Reforming and Combined Reforming of Methane for Producing Syngas with Desired H2/CO Ratios[D]. Pennsylvania:Pennsylvania State University,2002.
    [21]赵云莉.甲烷重整制氢镍基催化剂制备及活性评价研究[D].太原:太原理工大学,2009.
    [22]董新法,姬涛,林维明.CH4、CO2与O2制合成气催化剂研究Ⅵ.催化剂表面积炭种类和积炭动力学研究[J].分子催化,2004,18(4).
    [23]Bradford M.C.J., Vannice M.A. CO2 Reforming of CH4 over Supported Pt Catalysts[J]. J. Catal.,1998,173(1):157-171.
    [24]Hegarty M.S., O'Connor A.M., Ross J.R.H. Syngas Production from Natural Gas Using ZrO2-Supported Metals [J]. Catal. Today,1998,42(3):225-232.
    [25]刘少文,李永丹.甲烷重整制氢气的研究进展[J].武汉化工学院学报,2005,27(1):20-25.
    [26]Xu H.Y., Shi K.Y., Shang Y.C. A Study on the Reforming of Natural Gas with Steam, Oxygen and Carbon Dioxide to Produce Syngas for Methanol Feedstock [J]. J. Mol. Catal. A:Chem.,1999,147:41-46.
    [27]Claridge J.B., York A.P.E., Brungs A.J. New Catalysts for the Conversion of Methane to Synthesis Gas:Molybdenum and Tungsten Carbide[J]. J. Catal.,1998, 180(1):85-100.
    [28]Brungs A.J., York A.P.E., Green M.L.H. Comparison of the Group V and VI Transition Metal Carbides for Methane Dry Reforming and Thermodynamic Prediction of Their Relative Stabilities[J]. Catal. Lett.,1999,57(1):65-69.
    [29]Ruckenstein E., Hu Y.H. Role of Support in CO2 Reforming of CH4 Syngas over Ni Catalysts[J]. J. Catal.,1996,162:230-236.
    [30]路勇,余长春,丁雪加.负载型镍催化剂上甲烷与二氧化碳重整制合成气[J].催化学报,1996,17(3):212-216.
    [31]Gronchi P., Mazzocchia C.,Rosso D.R. Carbon Dioxide Reaction with Methane on La2O3 Supported Rh Catalysts[J]. Energy Convers. Manage.,1995,36:605-608.
    [32]Wang H.Y., Au C.T. Carbon Dioxide Reforming of Methane to Syngas over SiO2 Supported Rhodium Catalysts[J]. Appl.Catal. A:Gen.,1997,155:239-252
    [33]Lee S.H., Cho W., Ju W.-S., et al. Tri-Reforming of CH4 Using CO2 for Production of Synthesis Gas to Dimethyl Ether[J]. Catal. Today,2003,87(1-4):133-137.
    [34]J J.J., Roman-Martinez M.C., Illan-Gomez M.J. Effect of Potassium Content in the Activity of K-Promoted Ni/Al2O3 Catalysts for the Dry Reforming of Methane[J]. Appl. Catal. A:Gen.,2006,301:9-15.
    [35]Jeong H., Kim K.I., Kim D., et al. Effect of Promoters in the Methane Reforming with Carbon Dioxide to Synthesis Gas over Ni/Hy Catalysts [J]. J. Mol. Catal. A, 2006,246(1-2):43-48
    [36]徐东彦,李文钊,陈燕馨.煤层甲烷部分氧化与CO2-H20重整联合制合成气研究[J].煤炭学报,2004,29(3):468-471.
    [37]Varez A., Jolly J., Oliete P., et al. Multiphase Transformations Controlled by Ostwald's Rule in Nanostructured Ceo.5Zro.5O2 Powders Prepared by a Modified Pechini Route[J]. Inorg. Chem.,2009,48(20):9693-9699.
    [38]叶青,徐柏庆.柠檬酸溶胶-凝胶法制备的Ce1-xZrx02:结构及其氧移动性[J].物理化学学报,2006,22(1):33-37.
    [39]冯长根,胡玉才,王丽琼.铈锆氧化物固溶体对全钯三效催化剂性能的影响[J].应用化学,2003,20(2):159-162.
    [40]胡玉才,冯长根,王丽琼.新一代三效催化剂的关键材料——CexZr1-xO2固溶体研究进展[J].环境科学与技术,2002,25(4):42-44.
    [41]Fornasiero P., Kaspar J., Montini T. Interaction of Molecular Hydrogen with Three-Way Catalyst Model of Pt/Ceo.6Zr0.4O2/Al2O3 Type[J]. J. Mole. Catal. A: Chem.,2003,204-205:683-691.
    [42]Rossignol S., Gerard F., Duprez D. Effect of the Preparation Method on the Properties of Zirconia-Ceria Materials[J]. J. Mater. Chem.,1999,9:1615-1620.
    [43]郑向江,郭灿雄,文明芬(Ce-Zr)MA1-MO2复合氧化物的制备及其表征[J].稀土, 2008,29(5):40-43.
    [44]张玉红,熊国兴NiO/γ-Al2O3催化剂中NiO与γ-A1203间的相互作用[J].物理化学学报,1999,15(8):735-741.
    [45]Noronha F.B., Fendley E.C., Resasco D.E. Correlation between Catalytic Activity and Support Reducibility in the CO2 Reforming of Methane over Pt/CexZr1-xO2 Catalysts[J]. Chem. Eng. J.,2001,82:21-23.
    [46]叶青,徐柏庆Ce1-xZrxO2的氧化还原性能及其对CO2重整CH4反应的影响[J].催化学报,2006,27(2):151-156.
    [47]Halmann M., Steinfeld A. Fuel Saving, Carbon Dioxide Emission Avoidance, and Syngas Production by Tri-Reforming of Flue Gases from Coal and Gas Fired Power Stations, and by the Carbothermic Reduction of Iron Oxide[J]. Energy,2006, 31(15):3171-3185.
    [48]姜洪涛,李会泉,张懿.甲烷三重整制合成气[J].化学进展,2006,18(10):1270-1277.
    [49]孙迎.甲烷联合重整三重整制合成气的热力学分析[D].太原:太原理工大学,2007.
    [50]何博文,高广伟,汪洪斌.环境高温对甲烷爆炸极限的影响[J].煤矿安全,1988(11):6-7.
    [51]姜洪涛,李会泉,张懿Ni/Al2O3催化剂上甲烷三重整制合成气[J].分子催化,2007,21(2).
    [52]徐占林,毕颖丽,甄开吉.甲烷催化二氧化碳重整制合成气反应研究进展[J].化学进展,2000,12(2):121-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700