磁头/磁盘系统冲击响应数值分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬盘(Hard Disk Drive, HDD)是一种重要的数据存储设备,主要由磁盘、磁头、滑块、悬臂、转轴、主轴电机等组成。其中,磁头附着在滑块尾部,当硬盘工作时,磁头滑块在悬臂和转轴的作用下飞行在高速旋转的磁盘上方,实现读/写功能。为了提高储存密度,磁头滑块与磁盘之间的距离即磁头滑块的飞行高度已经小于10m。在工作的过程中,硬盘可能由于移动、碰撞和跌落而导致磁头滑块与磁盘之间的相对位置发生改变,影响硬盘的工作性能。因此,研究工作中的硬盘遭受外界干扰情况下磁头/磁盘系统的冲击响应特性(即磁头滑块与磁盘之间的相对位置随时间的变化规律),对于控制和改善硬盘的工作性能有着重要意义。
     针对磁头/磁盘界面FK-Boltzmann气膜润滑方程表达式较为复杂、求解困难的问题,本文用一个分段线性函数去逼近FK-Boltzmann模型中的流率函数,推导了一个表达式相对比较简单的模型,即线性化流率模型(Linearized Flow Rate, LFR),通过算例表明:线性化流率模型与FK-Boltzmann模型计算结果相对误差很小,计算效率提高了大约20%。
     采用有限体积法离散气膜润滑方程,引入控制体积边界高度不连续因子,成功解决了高度不连续带来的流量问题,并通过线高斯迭代法和追赶法求解了离散后形成的方程组。同时,以磁头滑块压力梯度为网格密度函数,通过自适应网格技术在压力梯度大的区域分布较多网格、在压力梯度小的区域分布较少网格,从而保证在网格总数一定的情况下获得较为合理的网格分布。多重网格法用于提高求解气膜润滑方程的计算效率,因为在研究磁头/磁盘系统冲击响应特性过程中需要反复求解气膜润滑方程,如果计算效率过低,会导致整个计算过程效率下降。文中采用了5层网格,迭代初值在第3层网格赋值。数值结果显示,这种结合了有限体积法、自适应网格技术、多重网格法的数值计算方法,有效地提高了计算气膜润滑方程的计算效率,为研究磁头/磁盘系统冲击响应特性节省了许多计算时间。
     为了模拟磁头/磁盘系统冲击响应特性,需要在Ansys中建立一个包括磁盘、磁头滑块、悬臂、转轴、外壳等的有限元模型。其中,磁头/磁盘界面气膜承载力随着时间发生变化,需要通过自己编写的程序反复求解气膜润滑方程获得气膜承载力,并把该力作用到硬盘系统有限元模型上。因此,需要在Ansys软件与求解气膜润滑方程程序之间进行相互调用,并传递计算参数。本文通过LS-DYNA的重启动功能成功解决了这个问题,并模拟了硬盘外壳遭受不同波形、不同振幅、不同周期的加速度载荷时磁头/磁盘系统的冲击响应特性。模拟结果显示,冲击载荷振幅的增加会导致飞行参数变化幅度增加,周期的增加会延迟飞行参数的变化,而波形对飞行参数的影响较小
     基于硬盘读回电压信号与磁头/磁盘之间距离的关系,搭建了实验平台。以数值模拟中采用的硬盘为被测试对象,开展实验测量研究。把位移载荷施加到硬盘的外壳上,获取不同振幅、不同周期情况下的磁头与磁盘之间的距离,并与相同条件下的数值模拟值进行了比较,结果表明:磁头/磁盘之间距离变化的数值模拟结果与实验测量结果的变化频率几乎相同,大多数区域的相对误差很小,在一些较少的局部区域,两者的最大相对误差为7.69%。。
     综合来说,本文基于磁头/磁盘界面气膜润滑方程,即新推导的LFR模型,通过有限体积法、自适应网格技术、多重网格法高效率地求解了气膜润滑方程;结合硬盘系统有限元模型,利用Ansys软件和LS-DYNA求解器模拟了硬盘外壳遭受不同波形、不同振幅、不同周期加速度载荷作用下的冲击响应特性;搭建实验平台进行数据测量,验证了数值模拟的有效性。
A hard disk drive (HDD), a kind of important storage devices, is made of disk, head, slider, suspension, shaft, spindle motor, etc, where the head is attached at the end of the slider. When a HDD is working, the slider (head slider) is flying over a high rotating disk, this makes a HDD excuting read/write functions. The distance between the slider and the disk is called the flying height of the slider, and this flying height in today's HDD is less than10nm. In the process of work, th relative position between the head and the disk changes due to the movement, collision and falling of HDD, which influences on the performance of HDD. Therefore, the research work of the shock response in head/disk system has important significance for controlling and improving the work performance of HDD.
     The FK-Boltzmann model has a complex expression, and it is not easy to solve it by using numerical methods. In this thesis, a piecewise linear function is used to approximate the flow rate function in FK-Boltzmann model, and a new model called linearized flow rate (LFR) model is derived. By numerical examples, the relative errors between the FK-Boltzmann model and the LFR model are small, and the calculation efficiency of the LFR model is about20%higher than that of the FK-Boltzmann.
     In this thesis, the finite volume method is used to discretized the gas film lubrication, a discontinuous height factor is introduced to solve the problems of gas flow resulted from the discontinuous height on boundary of control volume. The discretized equation is solved by line-by-line Gaussian iteration with combining the chasing method. Meantime, a grid density function, which variable is pressure gradient of the slider, is defined and used to allocate many grids in large pressure gradient area. It ensures a reasonable distribution grid. Multigrid method is used to improve the efficiency of solving gas film lubrication equation. The gas film lubrication must be solved repeatly in the process of studing the dynamic characteristics of the head/disk interface; a low computational efficiency may cause a decline in the whole computing process. In this thesis, a5-layer multigrid method is used, and the initial value is given on the third layer grid. The calculation results show that the multigrid method can well improve the computational efficiency of numerical method. Numerical results show that this type of method combined the finite volume method, adaptive grid technique, multiple grid method, can improve effectively the speed of solving the gas film lubricatioin, which saves much time for studying of dynamical characteristics in the head/disk interface.
     In order to simulate the shock response in the head/disk interface, a finite element model including the disk, slider, suspension, shaft, cover, etc, is established in software Ansys. The film bearing capacity changes over time, and the gas film lubrication is solved by our program for obtaining the film bearing capacity. The film bearing capacity is applied to the finite element of HDD system. Therefore, a call between our program and the software Ansys is needed, and the calculation pareameters are passed between them. This problem is solved successfully by the LS-DYNA restart function. The dynamical characteristics in the head/disk interface are simulated in the case of the HDD subjected to different waveform, amplitude, period of the acceration impact load. Numerical results show that the increasing of the impact load amplitude will lead to the increasing of changing amplitude of flying parameters, and the increasing of the period will delay the changing of the flying characters. But, the wareform has a little influence on the flying parameters.
     Based on the relationship between the read back voltage signal and the distance between the slider and the disk, an experimental platform is set up. The Hitachi HDD in the numerical simulation is the testing object. The distance between the head and the disk is obtained when the cover of HDD is subjected from different displacement load with different amplitude and period. The testing results are compared with thosed of numerical simulation in the same conditions, and the comparing results show that the maximum relative error is7.69%.
     In a word, new gas film lubrication, the LFR model, is derived, and is efficiently solved by finite volume method, adaptive grid method and multiple grid method. The dynamic charateristics of the Hitachi HDD is simulated by using software Ansys and LS-DYAN solver when the cover of the HDD is subjected from different acceleration shock load with different wareform, amplitude and period. An experimental platform is set up for verifying the validity of the numerical simulation.
引文
[1]杨书仪,刘德顺,赵继云.基于LS-DYNA的移动硬盘跌落冲击耐撞性能分析[J].振动与冲击,2012,31(9):13-17
    [2]Ambekar R P, Bogy D B, Dai Q Critical clearance and lubricant instability at the head-disk interface of a disk drive[J]. Applied Physics Letters,2008,92(3):033104
    [3]Marchon B, Pitchford T, Hsia Y T, Gangopadhyay S. The head-disk interface roadmap to an areal density of Tbit/in2 [J]. Advances in Tribology,2013,2013:1-8
    [4]Lim S. Finite element analysis of flexural vibrations in hard disk drive spindle systems [J]. Journal of Sound and Vibration,2000,233(4):597-612
    [5]Kim T J, Kim K T, Hwang S M, Analysis of radical run out for symmetric and asymmetric HDD spindle motors with rotor eccentricity [J]. Journal of Magnetism and Magnetic Materials,2001,226-230:1232-1234
    [6]Jia H S. Evaluation of the longitudinal coupled vibrations in rotating flexible disk/spindle systems [J]. Journal of Sound and Vibration,1997,208(2):175-187
    [7]Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings [J]. Journal of Basic Engineering,1959,81:94-100
    [8]Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient [J]. Journal of Tribology,1993,115(2):289-294
    [9]Hsia Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances [J]. Journal of Lubrication Technology,1983, 105(1):120-129
    [10]Wu L, Bogy D B. A generalized compressible Reynolds lubrication equation with bounded contact pressure [J]. Physics of Fluids,2001,13(8):2237-2244
    [11]Wu L, Bogy D B. New first and second order slip models for the compressible Reynolds equation [J]. Journal of Tribology,2003,125(3):558-561
    [12]Chen D, Bogy D B. Comparisons of slip-corrected Reynolds lubrication equations for the air bearing film in the head-disk interface of hard disk drives [J]. Tribology Letters,2010, 37(2):191-201
    [13]Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954,94(3):511-525
    [14]Peng Y, Lu X, Luo J. Nanoscale effect on ultrathin gas film lubrication in hard disk drive[J]. Journal of Tribology,2004,126(2):347-352
    [15]Fukui S, Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation:first report-derivation of a generalized lubrication equation including thermal creep flow[J]. Journal of Tribology,1988,110(2):253-261
    [16]Fukui S, Kaneko R. A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems[J]. Journal of Tribology,1990,112(1):78-83
    [17]Shen S, Chen G, Crone R M. A kinetic-theory based first order slip boundary condition for gas flow [J]. Physics of Fluids,2007,19(8):086101
    [18]Shi B J, Yang T Y. Pressure simulation of sliders with ultra-low flying heights in hard disk drives by using finite volume method[J]. Advanced Science Letters,2011,4(4-5): 1578-1582
    [19]黄平,许兰贵,孟永钢,温诗铸.求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法[J].机械工程学报,2007,43(3):43-48
    [20]Kogure K, Fukui S, Mitsuya Y, Kaneko R. Design of negative pressure slider for magnetic recording disks [J]. Journal of Lubrication Technology,1983,105(3):496-502
    [21]Mitsuya Y. Molecular mean free path effects in gas lubricated slider bearings [J]. Bulletin of the JSME,1979,22(167):863-870
    [22]Garcia-Suarez C, Bogy D B, Talke F E. Use of an upwind finite element scheme for air bearing calculations [J]. ASLE SP-16,1984,90-96
    [23]Nguyen S H. p-Version finite element analysis of gas bearings of finite width[J]. Journal of Tribology,1991,113(3):417-420
    [24]Crone R M, Jhon M S, Bhushan B, Karis T E. Modeling the flying characteristics of a rough magnetic head over a rough rigid-disk surface[J]. Journal of Tribology,1991,113(4): 739-749
    [25]Cha E, Bogy D B. A numerical scheme for static and dynamic simulation of subambient pressure shaped rail sliders[J]. Journal of Tribology,1995,117(1):36-46
    [26]Lu S. Numerical simulation of slider air bearings. Doctoral Dissertation, University of California,1997
    [27]Wu L, Bogy D B. Unstructured adaptive triangular mesh generation techniques and finite volume schemes for the air bearing problem in hard disk drives[J]. Journal of Tribology, 2000,122(4):761-770
    [28]Francis J A, Alejandro L G, Berni J A. direct simulation monte carlo for thin-film bearings [J]. Phys.Fluids,1994,6(12):3854-3860
    [29]Kuria I M, Raad P E. An implicit multidomain spectral collocation method for the simulation of gas bearing between textured surfaces [J]. Journal of Tribology,1996, 118(4):783-793
    [30]吴建康,陈海霞.计算机磁头/磁盘超薄气膜润滑压强的算子分裂算法[J].摩擦学学报,2003,23(5):402-405
    [31]Li X H, Du H J, Liu B, Lau G K. Numerical simulation of slider air bearings based on a mesh-free method for HDD applications [J]. Microsystem Technologies,2005,11(8-10): 797-804.
    [32]Li X H. Numerical simulation of slider air bearings in head-disk interface system based on a mesh-free method. Doctoral Dissertation, Nanyang Technological University,2007
    [33]Bhargava P. Numerical simulations of the head-disk interface in hard disk drives, Doctoral Dissertation,University of California,2008
    [34]Bhargava P, Bogy D B. Numerical simulation of operational-shock in small form factor hard disk drives [J]. Journal of Tribology,2007,129(1):153-160
    [35]Shi B J, Shu D W, Gu B, Lu G X. Static and dynamic analysis of bearing slider for small form factor drives [J]. International Journal of Modern Physics B,2008, 22(9-11):1391-1396
    [36]Luo J, Shu D W, Shi B J, et al. The pulse width effect on the shock response of the hard disk drive [J]. International Journal of Impact Engineering,2007,34(8):1342-1349
    [37]Shi B J, Wang S, Shu D W, Luo J, Meng H, Ng Q Y, Zambri R. Excitation pulse shape effects in drop test simulation of the actuator arm of a hard disk drive [J]. Microsystem Technologies.2006,12(4):299-305
    [38]Wibowo D. Mitigating Shock of Operating HDDs Using Smart Suspensions. Doctoral Dissertation, Nanyang Technological University,2010
    [39]史二梅.硬盘驱动器抗冲击主动控制研究[D].西安电子科技大学硕士学位论文,2013
    [40]Suk M, Ishii T, Bogy D B. Comparison of flying height measurement between multi-channel laser interferometer and the capacitance probe slider [J]. Magnetics, IEEE Transactions on,1991,27(6):5148-5150
    [41]Suk M, Ishii T, Bogy D B. Evaluation of capacitance displacement sensors used for slider-disk spacing measurements in magnetic disk drives [J]. IEEE Transactions on Magnetics,1992,28(5):2542-2544
    [42]He Y B, Zhang H D, Fukuzawa K. Fly height measurement based on phase comparison michelson interferometry using low-coherence light source [J]. IEEE Transactions on Magnetics,2008,42(2):309-314
    [43]Mitsuya Y. Measurement of ultra low spacing:laser interferometry [J]. Japanese Journal Tribology,1999,43(7):624-629
    [44]Song N H, Meng Y G, Lin J. Flying-height measurement with a symmetrical common-path heterodyne interferometry method [J]. IEEE Transaction on Magnetics,2010,46(3): 928-932
    [45]Shi W K, Zhu L Y, Bogy D B. Use of readback signal modulation to measure head disk spacing variations magnetic disk files [J]. IEEE Transaction on Magnetics,1987,23(1): 233-240
    [46]Wood R W, Wilton D T. Readback responses in three dimensions for multilayered recording media configurations [J]. IEEE Transaction on Magnetics,2008,44(7): 1874-1890
    [47]周剑平,李化飙,顾有松.高密度记录磁头系统的结果和工作原理[J].磁性材料及器件,2000,31(6):25-28
    [48]吴彦华,孙磊厚,陈扬枝,朱文坚.磁头/磁盘系统静态性能研究[J].现代制造工程,2009,7:15-18
    [49]Tower B. Second report on friction experiments (experiments on the oil pressure in bearing) [J]. Proceedings of the Institution of Mechanical Engineers,1885,58-70
    [50]Reynolds O. On the theory of lubrication and its application to Mr.Beauchamp Tower's experiments including an experiment determination of the viscosity of olive oil [J]. Philosophical Transactions of the Royal Society London,1886,177:157-234
    [51]陈进才,周功业,张立邦,孙巍.超低飞高磁头动力学模型研究进展[J].计算机研究与发展.2009,46:203-208
    [52]Gans R F. Lubrication theory at arbitrary Knudsen number [J]. Journal of Tribology Technology,1985,107(3):431-433
    [53]Ng E Y-K, Liu N Y. A Multi coefficient slip-corrected Reynolds equation [J]. International Journal of Rotating Machinery,2005,2:105-111
    [54]Zhou W, Yu S K, Hua W, Sett Myo K. A modified slip model for gas lubrication at nanoscale head-disk interface [J]. Journal of Engineering Tribology,2013,227 (12): 1367-1375
    [55]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004
    [56]Robert M P. Optimization of self-acting gas bearings for maximum static stiffness[J]. Journal of Applied Mechanics,1990,57(3):758-761
    [57]Yoneoka S, Katayama M, Ohwe T, Mizoshita Y, Yamada T. A negative pressure microhead slider for ultralow spacing with uniform flying height [J]. IEEE Transaction on Magnetics, 1991,27(6):5085-5087
    [58]Peng J P, Cal E H, A finite element scheme for determining the shaped rail slider flying characteristics with experimental confirmation [J]. Journal of Tribology,1995,117: 136-142
    [59]庄苹.超薄气体润滑磁盘/磁头系统动力学分析[J].中国机械工程,2001,12:1191-1194
    [60][Weissner S, Zander U, Talke F E. A new finite-element based suspension model including displacement limiters for load/unload simulations [J]. Journal of Tribology,2003, 125(1):162-167
    [61]Praveen H, Sinan M. An adaptive finite element strategy for analysis of air lubrication in the head disk interface of a hard disk drive [J]. Revue Europeenne des Elements,2005, 14(2-3):155-179
    [62]Bhargava P, Bogy D B. An efficient FE analysis for complex low flying air-bearing slider designs in hard disk drives-part I:static solution [J]. Journal of Tribology,2009,131(3): 031902
    [63]李人宪.有限体积法基础[M].北京:国防工业出版社,2005
    [64]Wu L, Bogy D B. Unstructured triangular mesh generation techniques and a finite volume numerical scheme for slider air bearing simulation with complex shaped rails [J]. IEEE Transactions on Magnetics,1999,35(5):2421-2423
    [65]Wu L, Bogy D B. Effect of the intermolecular forces on the flying attitude of sub-5 NM flying height air bearing sliders in hard disk drives [J]. Journal of Tribology,2002, 124(3):562-567
    [66]Wu L, Bogy D B. Unstructured adaptive triangular mesh generation techniques and finite volume schemes for the air bearing problem in hard disk drives [J]. Journal of Tribology, 2000,122(4):761-770
    [67]Wu L, Bogy D B. Numerical simulation of the slider air bearing problem of hard disk drives by two multidimensional upwind residual distribution schemes over unstructured triangular meshes [J]. Journal of Computational Physics,2001,172(2):640-657
    [68]Wu L, Bogy D B. Use of an upwind finite volume method to solve the air bearing problem of hard disk drives [J]. Computational Mechanics,2000,26(6):592-600
    [69]王玉娟,陈云飞,庄苹,颜景平.表面粗糙度对磁头磁盘系统静态特性的影响[J].机械工程学报,2002,38(1):22-26
    [70]Lu C J, Chiou S S. On the interface diffusion coefficient for solving Reynolds equation by control volume method [J]. Tribology International,2003,36(12):929-933
    [71]Lu C J, Chiou S S. Wang T K. Adaptive multilevel method for the air bearing problem in hard disk drives [J]. Tribology International,2004,37(6):473-480
    [72]阮海林,王玉娟,段传林,陈云飞.基于多重网格控制体方法的皮米磁头气膜压强求解[J].传感技术学报,2006,19(5):2260-2263
    [73]方文定.高密度硬盘磁头形状优化设计[D].尔南大学硕十学位论文,2006
    [74]段传林.高密度负压磁头的力学分析和形状优化设计[D].东南大学硕士学位论文,2007
    [75]Cheriet A, Feliachi M, Mimoune S M. Nonconforming mesh generation for finite volume method applied to 3-D magnetic field analysis [J]. EPJ Applied Physics,2007, 37(2):191-195
    [76]Patankar SV. Numerical heat transfer and fluid flow [M]. New York:McGraw-Hill,1980
    [77]陈惠敏,谭晓兰,常涛.磁头滑块压强分布的一种数值求解方法[J].润滑与密封,2009,34(5):47-53
    [78]乔宁.计算机硬盘磁头滑块的稳健设计研究[D].北方工业大学硕士学位论文,2010
    [79]Li L P, Bogy D B. A local adaptive multigrid control volume method for the air bearing problem in hard disk drives [J]. Journal of Tribology,2013,135(3):032001
    [80]Miu D. K, Bogy D B. Dynamics of gas-lubricated slider bearings in magnetic recording disk files part Ⅱ:numerical simulation [J]. Journal of Tribology,1986,108(4):589-593
    [81]傅仙罗,张红英.轻负荷磁头气动力分析[J].计算机学报,1992,6:401-407
    [82]黄平,吴彦华,牛荣军.影响磁头超薄气膜飞行稳定特性因素的数值分析[J].华南理工大学学报(自然科学版),2007,35(12):28-33
    [83]黄平,许兰贵,孟永钢,温诗铸.求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法[J].机械工程学报,2007,43(3):43-48
    [84]姚华平.超薄磁头/磁盘气膜动态润滑特性分析研究[D].华南理工大学博士学位论文,2009
    [85]Huang W, Bogy D B. Three-dimensional direct simulation monte carlo method for slider air bearings [J]. Physics of Fluids,1997,9 (6):1764-1769
    [86]彭美化,毛明志,郑国强.计算机磁头飞行过程的仿真研究[J].计算机仿真,2004,7(21):68-71
    [87]张雄.无网格法[M].北京:清华大学出版社,2004
    [88]Shu C, Ding H, Yeo K S, Xu D. Development of least-square-based two-dimensional finite-difference schemes and their application to simulate natural convention in a cavity [J]. Computers & Fluids,2004,33(1):137-154
    [89]Li X H, Du H J, Liu B, Li J H. Numerical simulation of taper flat slider air bearing based on a mesh-free method [J]. IEEE Transactions on Magnetics,2004,40(4):3201-3203.
    [90]Allen A M, Bogy D B. Effects of shock on the head-disk interface [J]. IEEE Transactions on Magnetics,1996,32(5):3717-3719
    [91]Lin C C. Finite element analysis of a computer hard disk drive under shock [J]. Journal of Mechanical Design,2002,124(1):121-125
    [92]Zheng Q H, Bogy B D. Numerical simulation of shock response of disk-suspension-slider air bearing systems in hard disk drives [J]. Microsystem Technologies,2002,8(4-5): 289-296
    [93]Jayson E J, Murphy J, Smith P W, Talke F E. Effects of air bearing stiffness on a hard disk drive subject to shock and vibration [J]. Journal of Tribology,2003,125(2):343-349
    [94]Jayson E J, Murphy J, Smith P W, Head slap simulation for linear and rotary shock impulses [J]. Tribology International,2003,36(4):311-316
    [95]Murthy A N, Feliss M, Gillis D, Talke F E. Experimental and numerical investigation of shock response in 3.5 and 2.5 in. form factor hard disk drives [J]. Microsystem Technologies,2006,12(12):1109-1116
    [96]Harmoko H, Yap F F, Vahdati N, Gan S, Liu M J, Shi B J. A more efficient approach for investigation of effect of various HDD components on the shock tolerance [J]. Microsystem Technologies,2007,13(8-10):1331-1338
    [97]Murthy A N, Pfabe M, Xu J F, Talke F E. Dynamic response of lin form factor disk drives to external shock and vibration loads [J]. Microsystem Technologies,2007, 13(8-10):1031-1038
    [98]Bhargava P, Bogy D. Effect of shock pulse width on the shock response of small form factor disk drives [J]. Microsystem Technologies,2007,13(8-10):1107-1115
    [99]Jang G H, Seo C H. Finite-element shock analysis of an operating hard disk drive considering the flexibility of a spinning disk-spindle, a head-suspension-actuator, and a supporting structure [J]. IEEE Transactions on Magnetics,2007,43(9):3738-3743
    [100]Yap F F Harmoko H, Liu M J, Vahdati N. Modeling of hard disk drives for shock and vibration analysis-consideration of nonlinearities and discontinuities [J]. Nonlinear Dynamics,2007,50(3):717-731
    [101]Liu M J, Yap F F, Harmoko H. Shock response analysis of hard disk drive using flexible multibody dynamics formulation [J]. Microsystem Technologies,2007,13(8-10): 1039-1045
    [102]White J. Air bearing interface characteristics of opposed asymmetric recording head sliders flying on a 1 in. titanium foil disk [J]. Journal of Tribology,2008,130(4):041902
    [103]Yu N, Polycarpou A A, Hanchi J V. Elastic contact mechanics-based contact and flash temperature analysis of impact-induced head disk interface damage[J]. Microsystem Technologies,2008,14(2):215-227
    [104]Wu T L, Shen I Y. Position error predictions of a hard disk drive undergoing a large seeking motion with shock excitations [J]. IEEE Transanctions on Magnetics,2009,45(11): 5156-5161
    [105]Shi B J, Li H Q, Shu D W, Zhang Y M. Nonlinear Air-Bearing Slider Modeling for Hard Disk Drives with Ultra-Low Flying Heights [J]. Communications in Numerical Methods in Engineering,2009,25(10):1041-1054
    [106]Zheng H, Murthy A N, Fanslau Jr E B, Talke F E. Effect of suspension design on the non-operational shock response in a load/unload hard disk drive [J]. Microsystem Technologies,2010,16(1-2):267-271
    [107]Yu N, Polycarpou A A, Hanchi J V. Thermo-mechanical finite element analysis of sider-disk impact in magnetic storage thin film disks [J]. Tribology International,2010, 43(4):737-745
    [108]Rai R, Bogy D B. Parametric study of operational shock in mobile disk drives with disk-ramp contact [J]. IEEE Transanctions on Magnetics,2011,47(7):1878-1881
    [109]魏浩东,敖宏瑞,姜洪源,皮亚东.微型硬盘驱动器工作状态下的冲击特性仿真[J].振动与冲击,2011,30(12):88-92
    [110]魏浩东.硬盘加载与卸载及冲击过程中的动力学和摩擦学特性研究[D].哈尔滨工业大学博士学位论文,2011
    [111]Chen G S, Chen C F, Wilburn T. A study of non-operational dynamic responses of disk in 3.5 in. hard disk drive to impact load [J]. Microsystem Technologies,2012,18(9-10): 1261-1266
    [112]Lee Y, Hong E J, Kim C S. Effect of mechanical parameters for loading contact and instability in HDD [J]. IEEE Tansanctions on Magnetics,2013,49(6):2686-2692
    [113]王希超.涉及气体稀薄效应的磁头磁盘空气轴承动力学特性分析[D].哈尔滨工业大学硕士学位论文,2013
    [114]徐明.磁头/磁盘瞬态接触行为多尺度研究[D].哈尔滨工业大学硕十学位论文,2013
    [115]Tanaka K, Takeuchi Y, Terashima S. Measurement of transient motion of magnetic disk slider [J]. IEEE Tansanctions on Magnetics,1984,20(5):924-926
    [116]Henze D, Mui P, Clifford G. Multi-channel interferometric measurements of slider flying height and pitch [J]. IEEE Tansanctions on Magnetics,1989,25(5):3710-3712
    [117]Song N H, Meng Y G, Lin J. Flying-height measurement with a symmetrical common-path heterodyne interferometry method [J]. IEEE Tansanctions on Magnetics, 2010,46(3):928-932
    [118]杨明楚,雒建斌,温诗铸.磁记录微观摩擦学性能测试仪的研制[J].清华大学学报自然科学版).2000,40(8):3640
    [119]Li Y F, Menon A. Flying height measurement metrology for ultra-low spacing in rigid magnetic recording [J]. IEEE Transactions on Magnetics,1996,32(1):129-134
    [120]Zhou J, Liu B. Flying height measurment considering the effects of the slider-disk interaction [J]. IEEE Transactions on Magnetics,2000,36(5):2677-2679
    [121]Liu B, Zhu Y. Optical characterization of slider-disk interaction [C].Proceedings of the International Tribology Conference,2000,2129-2133
    [122]Liu X Q, Clegg W, Liu B. Ultra low head disk spacing measurement using dual beam polarisation interferometry [J]. Optics&Laser Technology,2000,32(4):287-291
    [123]殷纯永,现代干涉测量技术[M].天津:天津大学出版社,1999
    [124]Hsu C C, Lee J Y. Non-ambiguous measurement of disk/slider spacing and effective optical constants with circular heterodyne interferometry [J]. Optics Communications,2004, 241(1-3):137-143
    [125]Deng Y P, Tsai H C, Nixon B J. Drive-level flying height measurements and altitude effects [J]. IEEE Tansanctions on Magnetics,1994,30(6):4191-4193
    [126]Smith G J. Dynamic in-situ measurements of head-to-disk spacing [J]. IEEE Tansanctions on Magnetics,1999,35(5):2346-2351
    [127]Yuan Z M, Liu B, Zhang W. Engineering study of triple-harmonic method for in situ characterization of head-disk spacing [J]. Journal of Magnetism and Magnetic Materials, 2002,239(1):367-370
    [128]Zhu J, Liu B. In Situ FH analysis at disk drive level [J]. Journal of Magnetism and Magnetic Materials.2006,303(2):97-100
    [129]Wallace Jr R I. The reproduction of magnetically recorded signals [J]. The Bell Technical Journal,1951,30(4):1145-1173
    [130]Chainer T J, Yarmchuk E J. A technique for the measurement of track misregistration in disk files [J]. IEEE Transactions on Magnetics,1991,27(6):5304-5306
    [131]Klaassen K B, Pcppen J C L. Slider-disk clearance measurements in magnetic disk drives using the readback transducer [J]. IEEE Transactions on Instrumentation and Measurement, 1994,43(2):121-126
    [132]Yuan Z M, Liu B. Absolute head media spacing measurement in situ [J]. IEEE Transactions on Magnetics,2006,42(2):341-343
    [133]Marchon B, Saito K, Wilson B, Wood R. The limits of the Wallace approximation for PMR recording at high areal density [J]. IEEE Transactions on Magnetics,2011, 47(10):3422-3425
    [134]Boettcher U, Lacey C A, Li H, Amemiya K, Callafon R A, Talke F E. Analytical read back signal modeling in magnetic recording [J]. Microsystem Technologies,2011, 17(5-7):997-1002
    [135]Takano K. Readback spatial sensitivity function by reciprocity principle and media readback flux [J]. IEEE Transactions on Magnetics,2013,49(7):3818-3821

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700