“picket fence”卟啉衍生物的合成及其分子识别作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栅栏状(Picket fence)卟啉由于四周被保护起来形成中空的笼腔结构,当轴向配体键合到卟啉环平面时,除了中心的轴向配位作用外,轴向配体与栅栏结构所构成的笼腔之间会产生额外的相互作用,这种额外作用会强化栅栏卟啉体系的分子识别能力。以往的研究表明该笼型结构不仅对中性分子具有识别作用,而且对于阴离子有很强的作用。氨基酸作为生物蛋白的组成部分具有很好的生物相容性和特定的生物功能。因此,向卟啉化合物中引入氨基酸作为栅栏结构,可增强所合成的卟啉体系的生物相容性。基于这一目的,我们设计并合成了氨基酸“picketfnece”卟啉,并研究了它们的分子识别作用。
     本论文以Boc保护的氨基酸为栅栏结构,采用DCC缩合的方法,合成了5种“picket fence”结构的卟啉化合物。并作为主体分子,探讨了它们对F~-、Cl~-、Br~-、I~-、H_2SO_4~-、AcO~-、H_2PO_4~-这七种阴离子的识别行为。结果表明,这一系列模型化合物对阴离子具有很强的识别作用,结合常数达到了10~5。数量级。在这七种阴离子中,不同的化合物对F~-、Cl~-离子表现出选择性的识别行为。
     金属离子嵌入卟啉环中心以后具有非常重要的生理活性。以Boc保护的甘氨酸“picket fence”卟啉化合物为例,合成了其五种金属卟啉复合物。考虑到Cl~-作为人体内唯一的阴离子通道,具有非常重要的生理学作用,所以被选择作为客体分子来研究。与其自由碱基卟啉化合物一样,对Cl~-也具有识别作用(除了铜卟啉以外)。为了探讨识别的机理,研究了自由碱基卟啉在六种不同极性溶剂(甲苯、四氢呋喃、二氯甲烷、乙腈、乙醇和四氢呋喃-水(1:1 v/v))中对Cl~-的识别行为。实验结果表明:在非质子性溶剂,如甲苯、四氢呋喃、二氯甲烷和乙腈中均有较强的键合能力,而在质子性溶剂,如乙醇和四氢呋喃-水(1:1 v/v)混合溶剂,紫外-可见滴定图谱上没有检测到变化。因此可以得出:此化合物是一种以氢键为主要作用力的模型化合物,由于乙醇和四氢呋喃-水(1:1 v/v)混合溶剂中的水分子均提供了过量的氢键,替代了Cl~-与栅栏中酰胺键间的相互作用,因而在这两种溶剂中没有键合Cl~-的现象。这一结果表明,Boc保护的氨基酸“picket fence”卟啉与C1~-间的相互作用以氢键为主。
     同时,“picket fence”卟啉化合物也是相对较好的肌红蛋白和血红蛋白模型。一个协同键合氧气的生物学相关模型将揭示满足协同性所需的最简单的结构,也有助于较好地理解血红蛋白中变构控制所需的能量。
     本文成功的制备了一种通过酯键链接的含有四个特戊酰基为栅栏结构的“Picket fence”卟啉体系和能够与之进行配位的两种多碱基卟啉配体。使现有的合成模型化合物更接近血红蛋白的键合机理,可以试探性的模拟血红蛋白的四个血红素协同结合氧气的过程,对人工血液替代品的研究提供基础理论性的探索更有意义。
"Picket Fence" porphyrin with functional groups positioned above the prophyrin plane constructed a special binding model. For the binding of an axial ligand to a protected porphyrin complex, some interaction between the axial ligand and the cavity can be regarded as the extra recognition factor in addition to the coordination bond, which could strength molecular recognition ability. Previous results have shown that this cavity structure can recognize not only neutral molecular, but also anions. Amino acids as ingredient of protein have good biocompatibility and special biological functions. So conjugated these amino acids with prophyrins can form the amino acid "picket fence" structure, which will also have good biocompatibility. Based upon these consideration in this thesis, we synthesized some amino acid "picket fence" porphyrins and studied anions recognition ability.
     In this article, five "picket fence" porphyrins were synthesized by DCC condensation with Boc protected amino acids as fence structure. Seven anions (F~-、Cl~-、Br~-、I~-、H_2SO_4~-、AcO~-、H_2PO_4~-) were used as guest to study molecular recognition of these five "picket fence" porphyrins. Results showed that this kind of compounds had strong binding ability to anions, and the association constants reached up to 10~5. Among anions for F~- and Cl~-, they showed some selectivity.
     Metal ions insertion into porphyrin core will bring out very important physiological activity. Five metal compounds based upon Boc-Gly "picket fence" porphyrin were synthesized. As their free base counterpart, these metal porphyrins also showed anion recognition ability (except Cu porphyrin). In order to explore the binding mechanism, solvent effect was explored. Because the Cl~- channels are unique anion channels, they play crucial roles in physiological process. So chloride ions were chosen as guest to study solvent effects in six different polar solvents (toluene, THF, CH_2Cl_2, CH_3CN, EtOH, THF-H_2O (1:1 v/v)). Results showed that binding was strong in aprotonic solvents like CH_3CN, CH_2Cl_2, THF and toluene, and nonbinding occurred in protonic solvents like EtOH and THF-H_2O (1:1 v/v). The reason for this phenomenon was that either EtOH or H_2O in THF-H_2O (1:1 v/v) mixture provided over excess hydrogen-bond donor, which instead of Cl~- interact with amide functional group resulted in blocking the interaction of Cl~- with amide. These results suggested that the interaction between amino acid fence porphyrins and Cl~- was dominated by hydrogen-bond.
     Meanwhile, "picket fence" porphyrins are also better model for mimic myoglobin and hemoglobin. One synergistical dioxygen binding model correlated with biology will reveal the most important structure, which can satisfy the coordinated dioxygen binding. And it will be helpful for understanding the energy requirement controlled by hemoglobin allosterism.
     So, here one kind of multi-porphyrin system was synthesized by esteratic link four "picket fence" porphyrins together. And two kinds of porphyrins with multiple basic ligands were synthesized, too. This multi-porphyrin will make the present synthetic model compound more close to the mechanism of hemoglobin binding dioxygen. And it could tentatively simulate hemoglobin to cooperate with dioxygen, which would more meaningful to provide theoretical base for researches of artificial blood substitutes.
引文
1. Beauchesne, P. The Design of Blood Substitutes: Oxygen Carriers.BioTeach Journal. [J]. 2004,21:34-39.
    2. Dougherty, R. C; Strain, H. H.;Svec,W.A.;Uphaus, R.A.Katz, J. J. Structure of Chlorophyll c~1.J. Am.Chem. Soc.[J].1966, 88: 5037.
    3. Rothemund P. A new porphyrin synthesis: The synthesis of porphyrin. J. Am. Chem. Soc. [J].1936,58:625.
    4. Rothemund P. Porphyrin Studies III: The structure of the porphine ring system. J Am Chem Soc.[J]. 1939,61:2912.
    5. Alan D Adler;Frederick R Longo; William Shergalis. Mechanistic investigatio of porphyrin syntheses. J Am Chem Soc.[J].1964, 84: 3145-3149.
    6. Alan D.A.; Larry S; Frederick R. L.; et al.Mechanistic study of the syntheses of porphyrin. J Heterocycl Chem. [J].1968, 5: 669-678.
    7. Jonathan S. L;Irwin C.S.; Henry C. H.; et al. Rothemundandadlelongoreaction srevisited:synthesis of tetraphenylporphyrins undere quilibrium conditions. J Org Chem. [J]. 1984, 54: 827-836.
    8. Jonathan S. L.; Henry C. H. Synthesis of tetraphenylporphyrins under very mild conditions.Tetrahedron Lett. [J].1986, 27: 4969-4970.
    9. Wagner R. W.; Lawrence D. S.; Lindsey J. S. An improved synthesis of tetramesitylporphyrin.Tetrahedron Lett. [J]. 1987,28: 3069-3070.
    10. Jonathan S. L.; Kristy A. M.; John S. T; et al. Investigation of a synthesis of meso-porphyrins employing high concentration sandan electrontrans portchainforaerobic oxidation. J Org Chem.[J]. 1994,59:579-587.
    11.刘云,徐同宽,肖德宝等.四苯基卟啉的催化合成和微波合成研究 北京轻工业学院学报.[J].1998,16(4):37-43.
    12. Benjamin J. L; Yang Z. C; Jonathary S. L. Investigation of Conditions Giving Minimal Scrambling in the Synthesis of trans-porphrins from Dipyrromethanes and Aldehydes. J Org Chem. [J]. 1999,64:2864-2872.
    13. Polisetti O.R.;Benjamin J. L. Efficient Synthesis of Monoacyl Disphyrromethanes and Their Use in the Preparation of Sterically Unhindered trans-Porphyrins J Org Chem. [J]. 2000, 65:1084-1092.
    14. Lehn, J. M. Supramolecular Chemistry; VCH: Weinheim, [M]. 1995.
    15. Schneider, H. J.; Yatsimirski, A. Principles and Methods in Supramolecular Chemistry; Wiley:Somerset, [M]. 2000.
    16. Lindoy, L. F.; Atkinson, I. M. Self-assembly in Supramolecular Systems; 2000; RSC. [M].
    
    17. Sendt, K.; Johnston, L. A.; Hough, W. A.; Crossley, M. J.; Hush, N. S.; Reimers, J. R. Switchable electronic coupling in model oligoporphyrin molecular wires examined through the measurement and assignment of electronic absorption spectra. J. Am. Chem. Soc. [J]. 2002, 124: 9299.
    
    18. Lammi, R. K.; Wagner, R. W.; Ambroise, A.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J.S. Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays. J. Phys. Chem. B. [J]. 2001, 105: 5341.
    
    19. Ambroise, A.; Wagner, R. W.; Rao, P. D.; Riggs, J. A.; Hascoat, P.; Diers, J. R.; Seth, J.; Lammi,R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Mater. [J]. 2001, 13: 1023.
    
    20. Gosztola, D.; Niemczyk, M. P.; Walielewski, M. R. Picosecond molecular switch based on bidirectional inhibition of photoinduced electron transfer using photogenerated electric fields. J.Am. Chem. Soc. [J]. 1998, 120: 5118.
    
    21. Holten, D.; Bocian, D. F.; Lindsey, J. S. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc. Chem.Res. [J]. 2002, 35: 57.
    
    22. Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.; Anderson, H. L. Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder. J.Am. Chem. Soc. [J]. 2002, 124: 9712.
    
    23. Yokoyanna, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature. [J]. 2001,413:619.
    
    24. Tour, J. M.; Rawlett, A. M.; Kozaki, M.; Yao, Y.; Jagessar, R. C; Dirk, S. M.; Price, D. W.; Reed,M. A.; Zhou, C.-W.; Chen, J.; Wang, W.; Campbell, I. Synthesis and preliminary testing of molecular wires and devices. Chem. Eur. J. [J]. 2001, 7: 5118.
    
    25. Guldi, D. M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. [J]. 2002, 31: 22.
    
    26. Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S.Light-harvesting and photocurrent generation by gold electrodes modified with mixed self-assembled monolayers of boron-dipyrrin and ferrocene-porphyrin-fullerene triad. J. Am. Chem.Soc. [J]. 2001, 123: 100.
    
    27. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. [J]. 2000, 34: 4098.
    
    28. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. [J]. 1992, 92, 435.
    
    29. Kim, Y.-H.; Hong, J.I. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide. Chem. Commun. [J]. 2002, 512.
    
    30. Gusev, A. V.; Rodgers, M. A. J. Aaaociation complexes between cationic metallophthalocyanines and anionic metalloporphyrins Ⅰ:spectrometric studies of electronic interactions. J. Phys. Chem.,A. [J]. 2002, 106: 1985.
    31.Shinmori,H.;Yasuda,Y.;Osuka, A.; Eur.J.Org.Chem. [J]. 2002, 67:1197.
    32.Ikeda, M.; Tanida, T.; Takeuchi, M.; Shinkai, S. Allosteric silver (Ⅰ) ion binding with peripheral π clefts of a Ce (Ⅳ) double decker porphyrin.Org. Lett. [J].2000,2:1803.
    33. Hunter, C. A.; Tregonning, R. Modular assembly of porphyrin sandwiched as potential hosts.Tetrahedron. [J]. 2002, 58: 691.
    34. Diederich, F. Chimia.2001, 55, 821.
    35. D'Souza, F.; Deviprasad, G. R. Studies on porphyrin-quinhydrone complexes: molecular recognition of quinine and hydroquinone in solution. J. Org. Chem. [J]. 2001, 66: 4601.
    36. Sanders, J. K. M. Towards synthetic enzymes based on porphyrins and steroids. Pure Appl.Chem.[J]. 2000, 72: 2265.
    37. Deviprasad, G. R.; D'Souza, F. Molecular recognition directed porphyrin chemosensor for selective detection of nicotine and cotinine. Chem. Commun. [J]. 2000, 19: 1915-1916.
    38. Wallimann, P.; Marti, T.; Fuerer, A.; Diederich, F. Steroids in molecular recognition. Chem. Rev.[J]. 1997,97, 1567.
    39. Sirish, M.; Chertkov, V. A.; Schneider, H. J. Porphyrin-based peptide receptors: syntheses and NMR analysis. Chem. Eur. J. [J]. 2002, 8, 1181-1188.
    40. Hayashi, T.; Aya, T.; Nonoguchi, M.; Mizutani, T.; Hisaeda, Y.; Kitagawa, S.; Ogoshi, H. Chiral recognition and chiral sensing using zinc porphyrin dimmers. Tetrahedron. [J]. 2002, 58, 2803.
    41. Malinovski, V.; Tumir, L; Piantanida, I.; Zinic, M.; Schneider, H. J. New porphyrin-nucleobase hybrid compounds and their interaction with nucleosides and nucleic acids. Eur. J. Org. Chem. [J].2002, 3785-3795.
    42. Mizutani, T.; Wada, K.;Kitagawa, S. Molecular recognition of amines and amino esters by Zinc porphyrin receptors: binding mechanisms and solvent effects. J. Org. Chem. [J]. 2000, 65: 6097.
    43. Sessler, J. L.; Andrievsky, A. Efficient transport of aromatic amino acids by sapphyrin-lasalocid conjugates. Chem. Eur. J. [J]. 1998,4:159-167.
    44. John J. Pan; Deborah Charych Molecular. Recognition and Colorimetric Detection of Cholera Toxin by Poly (diacetylene) Liposomes Incorporating Gml Ganglioside. Langmuir. [J]. 1997, 13:1365-1367.
    45.龙锋,张权宇,马恒等.阴离子通道与高血压的研究进展 中国实用医学研究杂志.[J].2004,3(4):338-340.
    46. Hume, J. R.; Duan D.; Collier, M. L.; et al.Anion transport in heart.Physiol Rev. [J]. 2000, 80(1):31-81.
    47. Johannes, E.; Crofts, A.; Sanders D. Control of Cl~- efflux in Chara corallina by cytosolre pH,free Ca~(2+),and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation. Plant Physiol.[J].1998, 118: 173-181.
    48. Matveyeva N. P.; Amdreyuk, D. S.; Yermakov, I. P. Transport of Cl~-across the plasma membrance during pollen grain germination tobacco. Biochemistry. [J]. 2003, 68(11):1247-1251.
    49. Ashcroft, F. M. Ion Channels and Disease; Academic, San Diego, [M]. 2000; pp 185-230.
    50. Jentsch, T. J.; Hubner, C. A.; Fuhrmann, J. C. Ion channels: function unravelled by dysfunction.Nat. Cell Biol. [J]. 2004, 6: 1039-1047.
    51. Ezoe, M.; Yagi, S.; Nakazumi, H.;Itou,M.;Araki,Y.;Ito,O.Molecular recognition of viologen by zinc porphyrinic receptors with diarylurea sidearms.Toward construction of a supramolecular electron transfer system. Tetrahedron. [J]. 2006, 62: 2501-2510.
    52. Ogoshi, H.; Mizutani, T. Nobel approaches to molecular recognition using porphyrins. Curr.Opin. Chem. Biol.[J].1999, 3: 736-739.
    53. Starnes, S. D.; Arungundram, S.; Saunders, C. H. Anion senser based on P, P'-disubstiruted porphyrin derivatives. Tetrahedron Lett. [J]. 2002,43:7785-7788.
    54. Miroslav D.; Pavel I.; Ivan S.; et al.Calix[4]arene-porphyrin conjugatesas, versatile molecular reoeptors for anions. Org. Lett. [J]. 2003, 5(2): 149.
    55. Yeon-Hwan Kim; Jong-In Hong. Carbamate-appended Zn-porphyrin: a neutral receptor for anions. Tetrahedron Lett. [J]. 2000, 41: 4419-4423.
    56. Stephen D. Starnes; Sailaja A. Anion sensors based on P,P-disubstituted porphyrin derivatives.Tetrahedron Lett. [J]. 2002,43:7785-7788.
    57. Dennis H. Burns; Kenichi Calderon-Kawasaki. Buried solvent determines both anion binding selectivity and binding stoichiometry with hydrogen-bonding receptors. J. Org. Chem. [J]. 2005,70: 2803-28.
    58. Yeon-Hwan Kim; Jong-In Hong. Carbamate-appended Zn-porphyrin: a neutral receptor for anions.Tetrahedron Lett. [J]. 2000,41:4419-4423.
    59. Shin-ichi Kondo; Masanori Nagamine;Yumihiko Yano.Synthesis and anion recognition properties of 8,8'-dithioureido-2,2'-binaphthalene. Tetrahedron Lett. [J]. 2003,44:8801-8804.
    60. Borovkov, V. V.; Lintuluoto, J. M.; Sugeta, H. p-ramolecular Chirogenesis in Zinc Porphyrins:Equilibria, Binding Properties, and Thermodynamics. J. Am. Chem. Soc.[J].2002,124(12):2993.
    61. Tadashi Mizutani; Kenji Wada; Susumu Kitagawa. Porphyrin receptors for amines, amino acids,and oligopeptides in water. J. Am. Chem. Soc. [J]. 1999, 121: 1425-11431.
    62. Zhanguang Chen; Jinbin Liu; Yali Han; et al. A novel histidine assay using tetra phenylporphyrin manganese (Ⅲ) chlorideas a molecular recognition probe by esonance light scattering technique.Analytica Chimica Acta. [J]. 2006, 570: 109-115.
    63. Furusho Y;Kjrtlur Ei. T; Mizmto Y;et al.Chirality-Memory Molecule: A D_2-Symmetric fullysubstituted porphyrin as a conceptually new chirality sensor. J. Am. Chem. Soc. [J]. 1997,119:5267-5268.
    64. Sirish, M.; Chertkov, V. A.; Schneider, H. J. Porphyrin-Based Peptide Recep tors: Syntheses and NMR Analysis. Chem. Eur. J. [J]. 2002, 8(5): 1181.
    65. Hiroyasu I; Hiroki M.; Oshio U. Na. Chiral Recognition of Amino Acids and Dipeptides by a Water-Soluble Zinc Porphyrin.Inorg. Chem. [J]. 2004,43(4): 1211.
    66.雷亚春,张勇,刘滇生.卟啉及其配合物在分析化学中应用进展 光谱实验室.[J].2003,20(4):479-484.
    67. Takako Ohyama;Hajime Mita;Yasuhiko Yamamoto.Binding of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23Hporphyrin to an AT-Rich Region of a Duplex DNA. Biophy.Chem. [J]. 2005, 113:53-59.
    68. Hajime Mita; Takako Ohyama; Yasuhiko Yamamoto. Formation of a Complex of 5,10,15,20-Tetrakis (N-methylpyridinium-4-yl)-21H,23H-porphyrin with G-Quadruplex DNA. Biochemistry.[J].2006,45(22): 6765-6772.
    69. Hiroto M.; Takeshi N.;Shinkai.S.Sugar Sensing Utilizing Aggregation Properties of Boronic-acid-appended Porphyrins and Metal-porphyrins. J. Chem. Soc, Perkin Trans. 2. [J]. 1994, 975-981.
    70. Masato Ikeda; Seiji Shinkai; Atsuhiro, Osuka. Meso-meso-linked porphyrindimer as a novel scaffold for the selective binding of oligosaccharides. Chem. Commun.[J].2000,1047.
    71. Tadashi Mizutani; Takuya Kurahashi; Takeshi Murakami; et al.Molecular Recognition of Carbohydrates by Zinc Porphyrins: Lewis Acid/Lewis Base Combinations as a Dominant Factor for Their Selectivity. J. Am. Chem. Soc. [J]. 1997, 119: 8991-9001.
    72.高爽,王杏乔,于远香.meso-四(对-璜酸基苯基)卟啉对麦芽糖的分子识别高等化学学报.[J].1996,17:1833-1834.
    73. Momenteau, M.; Reed, C. A. Synthetic Heme Dioxygen Complexes. Chem. Rev. 1994, 94: 659-698.Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional analogues of cytochrome coxidase, myoglobin, and hemoglobin. Chem. Rev. [J]. 2004, 104: 561-588.
    74. Tsuchida, E.; Komatsu, T.; Arai, K.; Yamada, K.; Nishide, H.; Fuhrhop, J. Self-assembled lipid prophyrin bilayer vesicle: microstructure and dioxygen binding in aqueous medium. Langmuir.[J].1995,11,1877.
    75. Jiang, D.; Aida, T. A dendritic iron porphyrin as a novel haemoprotein mimic: effects of the dendrimer cage on dioxygen-binding activity. Chem. Commun. [J]. 1996, 1523.
    76. David, S.; James, B. R.; Dolphin, D.; Traylor, T. G; Lopez, M. A. Dioxygen and carbon monoxide binding to apolar cyclophane hemes:durene-capped hemes.J.Am.Chem. Soc. [J].1994, 116,6.
    77. Tsuchida, E.; Komatsu, T.; Yanagimoto, T. J. Porphyrins Phthalocyanines. [J]. 2000,41, 2282.
    
    78. Weyermann, P.; Diederich, F. Synthesis of dendritic iron (II) porphyrins with a tethered axial imidazole ligand designed as new model compounds for globins. J. Chem. Soc, Perkin Trans. [J].2000,4231.
    
    79. Collman, J. P.; Herrmann, P. C.; Fu, L.; et al. Aza-crown-capped porphyrin models of myoglobin:studies of the steric interactions of gas binding. J. Am. Chem. Soc. [J]. 1997, 119: 3481-3489.
    
    80. Lomatsu, T. H.; Tsuchida, E.; Nishide, H. meso-Tetrakis[o-(N-methyl)pyridiniu-m]porphyrin ensembles with axially coordinated cyclodextrin-penetrating phenethyl imidazole: reversible dioxygen-binding in aqueous DMF solution. Chem Commun. [J]. 2003, 50-51.
    
    81. Collman, J. P.; Gagne, R. R.; Reed, C. A.; Halbert, T. R.; Lang, G.; Robinson, W. T. "Picket Fence Porphyrins." Synthetic Models for Oxygen Binding Hemoproteins. J. Am. Chem. Soc. [J]. 1975,97(6): 1427-1439.
    
    82. Jagessar, R. C.; Maoyu Shang; Scheldt, W. R.; Burns, D. H. Neutral Ligands for Selective Chloride Anion Complexation: (α,α,α,α)-5,10,15,20-Tetrakis(2-(arylurea)phenyl)porphyrins. J.Am. Chem. Soc. [J]. 1998, 120: 11684-11692.
    
    83. Denise M. Perreault; Xiaohong Chen; Eric V. Anslynthe Advantages of Using Rigid Polyaza-Clefts for Hydrogen-Bonding Molecular Recognition. Tetrahedron. [J]. 1995, 51(2): 353-362.
    
    84. An Yoriiaae, M. M. G.; Reinhoudt, D.N. Neutral anion receptors: design and application. J. Chem.Soc. Chem. Cnmmun. [J]. 1998,443.
    
    85. Werner, F.; Schneider, H. Complexation of anions including nucleotide anions by open-chain host compounds with amide, urea, and aryl functions. J. Helv. Chim. Acta. [J].2000, 83: 465-478.
    
    86. Xie, H.; Yi, S.; Wu, S. Study on host-guest complexation of anions based on tri-podal naphthylthiourea derivatives. J. Chem. Soc, Perkin Trans. 2. [J].1999, 2751.
    
    87. Jagessar, R. C.; Burns, D. H. (cis)-5, 10, 15, 20-Tetrakis[2-(arylurea)phenyl]- porphyrins: novel neutral ligands for remarkably selective and exceptionally strong chloride anion complexation in (CD_3)_2SO.J. Chem. Soc, Chem. Commun. [J].1997, 1685.
    
    88. Raposo, C.; Almaraz, M.; Martin, M.; Weinrich, V.; Mussons, M. L.; Alcazar, V.; Caballero, M. C.;Moran, J. R. Tris(2-aminoethyl)amine, a Suitable Spacer for Phosphate and Sulfate Receptors.Chem. Lett. [J]. 1995, 759.
    
    89. Fan, E.; Van Arman, S. A.; Kincaid, S.; Hamilton, D. A. Molecular recognition: hydrogen-bonding receptors that function in highly competitives solvent. J. Am. Chem. Soc. [J].1993, 115:369.
    
    90. Wilcox, C. S.; Kim, E.; Romano, D.; Kuo, L. H.; Burt, A. L.; Curran, D. P. Experimental and theoretical studies of substituent effects in hydrogen bond based molecular recognition of a zwitterion by substituted arylureas. Tetrahedron. [J]. 1995, 51: 621.
    91. Hamann, B. C.; Branda, N. R.; Rebek, J., Jr. Tetrahedron Lett. [J].1993, 34: 6873.
    
    92. Kavallieratos, K.; Bertao, C. M.; Crabtree, R. H. Hydrogen bonding in anion recognition: a family of versatile, nonpreorganized neutral and acyclic receptors. J. Org. Chem. [J]. 1999, 64:1675.
    
    93. Gale, P. A.; Sessler, J. L.; Allen, W. E.; Tvermoes, N. A.; Linch, V. Calix[4]pyrroles: C-rim substitution and tunability of anion binding strength. J. Chem. Soc, Chem. Commun. [J]. 1997,665.
    
    94. Huber, G. M.; Glaser, J.; Seel, Ch.; Vogue, F. High-yielding rotaxane synthesis with an anion template. Angew. Chem., Int. Ed. Engl. [J].1999, 38: 383-386.
    
    95. Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D.N. Synthesis and complexation studies of neutral anion receptors. Angew. Chem., Int. Ed. Engl. [J]. 1993, 32: 900-901.
    
    96. Davis, A. P.; Gilmer, J. F.; Perry, J. J. A steroid-based cryptand for halide anions. Angew. Chem.,Int. Ed. Engl. [J]. 1996, 35: 1312-1315.
    
    97. Huang, C.-Y.; Cabell, L. A.; Anslyn, E. V. Molecular recognition of cyclitols by neutral polyaza-hydrogen-binding receptors: the strength and influence of intramolecular hydrogen bonds between vicinal alcohols. J. Am. Chem. Soc. [J]. 1994, 116: 2778.
    
    98. Takeuchi, K. J.; Busch, D. H. Inclusion complex formation by transition-metal complexes containing a void in proximity to a site that can be made catalytically active. J. Am. Chem. Soc.[J]. 1983, 105:6812.
    
    99. Meade, T. J.; Kwik, W. L.; Herron, N.; Alcock, N. W.; Busch, D. H. Hydrophobic, regiospecific guest binding by transition-metal host complexes haing permanent voids as revealed by FT-NMR relaxation studies. J. Am. Chem. Soc. [J]. 1986, 108, 1954.
    
    100. Meade, T. J.; Takeuchi, K. J.; Busch, D. H. An inclusion complex containing the dioxygen molecular and an organic guest molecular cohabiting within a vaulted cobalt (II) cyclidene host-a rare kind of ternary complex. J. Am. Chem. Soc. [J]. 1987, 109: 725.
    
    101. Ramprasad, D.; Lin, W. K.; Goldsby, K. A.; Busch, D. H. Molecular design based on inclusion chemistry. Synthesis, characterization, and crystal structures of a new family of lacunar Schiff base complexes with promise as broad-range host molecules. J. Am. Chem. Soc. [J]. 1988, 110,1480.
    
    102. Meade, T. J.; Alcock, N. W.; Busch, D. H. Inclusion complex formation involving a new class of transition-metal host. Inorg.Chem. [J]. 1990,29(19): 3766-3776.
    
    103. Breslow. R.; Overman. L. E. "Artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity. J.Am.Chem.Soc. [J]. 1970,92(4): 1075-1077.
    
    104. Tabushi, I.; Shimizu, N.; Sugimoto, T.; Shiozuka, M.; Yamamura, K. Cyclodexrin flexibly capped with metal ion. J. Am. Chem. Soc. [J]. 1977, 99, 7100.
    105. Meade, T. J.; Busch, D. H. Prog.lnorg.Chem. [J]. 1985, 33: 59.
    
    106. Tabushi, I.; Kuroda, Y.; Mizutani, T. Functionalized cyclodextrins as artificial receptors: guest binding to bisimidazolyl-p-cyclodextrin-zinc. Tetrahedron. [J]. 1984,40: 545-552.
    
    107. Hamilton, A.; Lehn, J. M; Sessler, J. L. Coreceptor molecular. Synthesis of metalloreceptors containing porphyrin subunits and formation of mixed substrate supermolecular by binding of organic substrates and metal ions. J.Am.Chem.Soc. [J]. 1986, 108(17): 5158-5167.
    
    108. Lindsey, J. S.; Kearney, P. C; Duff, R. J.; Tjivikua, P. T.; Rebek, J., Jr. Molecular recognition:multipoint contacts with new sizes and shapes. J. Am. Chem. Soc. [J]. 1988, 110: 6575.
    
    109. Kuroda, Y.; Hiroshige, T.; Sera, T.; Shiroiwa, Y.; Tanaka, H.; Ogoshi, H. Cyclodextrin-sandwiched prophyrin. J. Am. Chem. Soc. [J]. 1989, 111: 1912.
    
    110. Aoyama, Y.; Asakawa, M.; Yamagishi, A.; Toi, H.; Ogoshi, H. Simultaneous hydrogen bonding and metal coordination interactions in the two-point fixation of amino acids with a bifunctional metalloporphyrin receptor. J. Am. Chem. Soc. [J]. 1990, 112: 3145.
    
    111. Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. Dabco-metalloporphyrin binding: ternary complexes, host-guest chemistry and the measurement of .pi._.pi. interactions. J. Am. Chem. Soc.[J]. 1990, 112:5773.
    
    112. Anderson, H. L.; Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. Thermodynamics of induced-fit binding inside polymacrocyclic porphyrin hosts. J. Am. Chem. Soc. [J]. 1990, 112: 5780.
    
    113. Gunter, M. J.; Jhonston, M. R. A porphyrin-based crown ether co-receptor for the complexation of paraquet. Tetrahedron Lett. [J]. 1990, 31: 4801.
    
    114. Ellis, P. E., Jr.; Linard, J. E.; Szymanski, T.; Jones, R. D.; Budge, J. R.; Basolo, F. Axial ligation constants of iron(II) and cobalt(II) "capped" porphyrins. J. Am.Chem. Soc. [J]. 1980,102: 1889.
    
    115. Linard, J. E.; Ellis. P. E., Jr.; Budge, J. R.; Jones, R. D.; Basolo, F. Oxygenation of iron (II) and cobalt (II) "copped" porphyrins. J. Am. Chem. Soc. [J]. 1980, 102: 1896.
    
    116. Collman, J. P.; Brauman, J. I.; Fitzgerald, J. P.; Hampton, P. D.; Naruta, Y.; Sparapany, J. W.;Ibers, J. A. Synthesis, characterization, and X-ray structure of the ruthenium picnic-basket porphyrins. J. Am. Chem. Soc. [J]. 1988, 110: 3477.
    
    117. Collman, J. P.; Brauman, J. I.; Fitzgerald, J. P.; Sparapany, J. W.; Ibers, J. A. Reversible binding of dinitrogen and dioxygen by a ruthenium picnic-basket porphyrin. J. Am. Chem. Soc.[J]. 1988,110:3486.
    
    118. Imai, H.; Kyuno, E. Base binding to zinc picket fence porphrins. Attractive intramolecular interactions in organic solvents. Inorg.Chem. [J]. 1990, 29: 2416.
    
    119. Bonar-Law, R. P.; Sanders, J. K. M. Synthesis, binding properties and self-functionalization of a steroid-capped porphyrin. J. Chem. Soc. Chem. Commun. [J]. 1991, 8: 574.
    120. Spiro,T.G.Resonance Raman Spectra of Iron Tetraphenylporphyrin Complexes:Characterization of Structure and Bonding Sensitive Bands. Biochim. Biophys. Ada. [J]. 1975,416: 169.
    121. Boffi, A.; Chiancone, E.; Takahashi, S.; Rousseau, D. L. Stereochemistry of the Fe(Ⅱ)- and Fe(Ⅲ)-Cyanide Complexes of the Homodimeric Scapharca inaequivalvis Hemoglobin. A Resonance Raman and FTIR Study. Biochemistry. [J]. 1997, 36(15): 4505-4509.
    122. Larry D. Gruenke; Jie Sun; Thomas M. Loehr; Lucy Waskell. Resonance Raman Spectral Properties and Stability of Manganese Protoporphyrin IX Cytochrome b_5.Biochemistry. [J]. 1997,36:7114-7125.
    123. S.Swartz, M. H. B.; Bosenmaiet, L.; Dinsmore, H. Determination of porphyrins in biological materials. Methods Biochem.Anal. [J]. 1960, 8: 221.
    124. Collman, J. P.;Brauman, J. I.; Iverson, B. L.; Sessler, J. L.; Morris, R. M.; Cibson, Q. H.Dioxygen and carbonyl binding to iron(Ⅱ) porphyrins: a comparison of the "picket fence" and "pocket" porphyrins. J. Am. Chem. Soc.[J].1983,105:3052-3064.
    125. Maillard, P.; Schaeffer, C; TBtreau, C; Lavalette, D.; Lhoste, J. M.; Momenteau, M. Unusual co-ordination of water to iron(Ⅱ) amino acid basket-handle porphyrins. J. Chem. Soc, Perkin Trans. 2 [J]. 1989, 10: 1437-1442.
    126. Johnson, M. R.; Seok, W. K.;Ibers, J. A. Synthesis, characterization, crystal structures, and carbon monoxide and oxygen binding properties of novel 4-atom-linked capped porphyrins.J. Am. Chem. Soc. [J]. 1991, 113: 3998-4000.
    127. Gerber, N. C; Sligar, S. G. Catalytic mechanism of cytochrome P-450: evidence for a distal charge relay. J. Am. Chem. Soc. [J].1992, 114:8742-8743.
    128. Komatsu, T.; Furubayashi, Y.; Nishide, H.; Tsuchida, E. Synthesis and characterisation of cobalt, nickel, zinc and cadmium compounds with a pyridine-derived N_3O_2 macrocycle: Crystal and molecular structures of the macrocyclic ligand and Co(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) complexes.Inorg.Chim. Acta.[J].1999,295:234-238.
    129. Collman, J. P.; Sunderland,C.J.;Boulatov,R.Biomimetic Studies of Terminal Oxidases:Trisimidazole Picket Metalloporphyrins.Inorg.Chem.[J].2002,41:2282.
    130.王德心主编.固相有机合成-原理及应用指南[M].北京:化学工业出版社,2004,97-98.
    131. Tsuchida, E.; Komatsu, T.; Kumamoto, Shin-ichi; Ando, K.; Nishide, H. Synthesis and O_2-binding properties of tetraphenylporphyrinatoiron(Ⅱ) derivatives bearing a proximal imidazole covalently bound at the β-pyrrolic position. J.Chem.Soc.Perkin Trans. 2.[J].1995,4:747-753.
    132. Nakagawa, A.;Ohmichi,N.;Komatsu,T.;Tsuchida, E. Synthesis of protoheme Ⅸ derivatives with a covalently linked proximal base and their human serum albumin hybrids as artificial hemoprotein. Org.Biomol.Chem.[J].2004,2:3108-3112.
    133.季生福,季伟捷,寇元等烷氧桥连的四苯基铁(Ⅱ)锌(Ⅰ)双卟啉化合物的红外光谱 光谱学与光谱分析[J].1996,16(3):43-50.
    134.师同顺,安庆人,徐春放等四-(对-羟基)苯基卟啉配合物的傅里叶变换红外光声光谱 高等学校化学学报[J].1997,18(8):1375-1377.
    135.刘国发,张元福,赵永年等 镧系乙酰丙酮-α,β,γ,δ-四苯基卟啉络合物的红外和拉曼光谱 高等学校化学学报[J].1984,5(5):713-716.
    136.王静秋,倪春林 单取代色氨酸四苯基卟啉及其配合物的合成、结构表征及催化性质研究 无机化学学报[J].1996,12(1):85-87.
    137.师同顺,刘国发,丁连香等 FTIR-PAS 技术在卟啉类化合物中的应用(Ⅲ)-乙酰丙酮-meso-四-(对-氯代)苯基卟啉稀土配合物的红外光声光谱 高等学校化学学报[J].1995,16(1):94-97.
    138.罗国添,钟海山,彭亚玲等 新型L-丙氨酸尾式卟啉锌配合物的合成及其傅里叶变换红外光谱研究 光谱实验室[J].2002,19(4):441-444.
    139. Boucher, L. J.; Katz, J. J. The Infared Spectra of Metalloporphyrins (4000-160 cm~(-1)).J.Am.Chem. Soc. [J]. 1967, 89(6): 1340-1345.
    140. Burke, J. M.; Kincaid, J. R.; Spiro, T. G. Resonance Raman Spectra and Vibrational Modes of Iron (Ⅲ) Tetraphenylporphine μ-Oxo Dimer. Evidence for Phenyl Interaction and Lack of Dimer Splitting.J.Am.Chem.Soc.[J].1978, 100(19): 6077-6083 and references cited therein.
    141. James O.Alben;William H.Fuchsman;Charles A. Beaudreau;Winslow S.Caughey.Substituted Deuteroporphyrins.111.Iron (11) Derivatives. Reactions with Oxygen and Preparations from Chloroand Methoxohemins. Biochemistry. [J].1968,7:624-635.
    142. Boffi, A.;Chiancone, E.; Takahashi, S.;Rousseau, D. L. Stereochemistry of the Fe(Ⅱ)- and Fe(Ⅲ)-Cyanide Complexes of the Homodimeric Scapharca inaequivalvis Hemoglobin.A Resonance Raman and FTIR Study. Biochemistry. [J]. 1997, 36(15): 4505-4509.
    143. Gruenke, L. D.; Sun, J.; Loehr, T. M.; Waskell, L. Resonance Raman Spectral Properties and Stability of Manganese Protoporphyrin Ⅸ Cytochrome b_5.Biochemistry. [J]. 1997, 36: 7114-7125.
    144. Abe, M.; Kitagawa, T.; Kyogoku, Y. RR spectra of OEP-Ni and meso substituted derivatives. J.Chem. Phys. [J]. 1978, 69(10): 4526-4534.
    145. Spaulding, L. D.; Chang, C. C; Yu, Nai-Teng; Felton, R. H. Resonance Raman Spectra of Metallooctaethylporphyrins. A Structural Probe of Metal Displacement. J. Am. Chem. Soc. [J].1975,97:2517-2525.
    146. Kltagawa, T.; Abe, M.; Kyogoku,Y.Resonance Raman Spectra of Metallooctaethylporphyrins.Low Frequency Vibrations of Porphyrin and Iron-Axial Ligand Stretching Modes. J. Phy. Chem.[J].1976,80(11):1181-1186.
    147. Burke, J. M; Kincaid, J. R.;Spiro,T.G.Resonance Raman Spectra and Vibrational Modes of Iron (Ⅲ) Tetraphenylporphine μ-oxo imer. Evidence for Phenyl Interaction and Lack of Dimer Splitting. J. Am. Chem. Soc. [J]. 1978, 6077-6083.
    148. Rywkin, S.; Hosten, C. M.; Lombardi, J. R.; Birke, R. L. Surface-Enhanced Resonance Raman Scattering and Voltammetry Study of the Electrocatalytic Reduction of Oxygen by the μ-oxo Dimer of Iron (Ⅲ) Tetra-4-N-methylpyridylporphyrin. Langmuir.[J].2002,18:5869-5880.
    149. Karle Hanson L.; Eaton W. A.; Sligar S. C. et al.Origin of the anomalous Soret spectra of carboxycytochrome P-450. J. Am. Chem. Soc. [J].1976,98(9):2672.
    150. Gouterman M.Spectra of porphyrins. J. Mol.Spectroscopy [J].1961,6:138.
    151. Buchler J. W., Kokisch W., Smith P. D. Structure and Bonding [M].1978, 34:80.
    152.罗国添,钟海山,彭亚玲,徐敏.新型 L-丙氨酸尾式卟啉锌配合物的合成及其傅立叶变换红外光谱研究.光谱实验室[J].2002,19(4):441-444和其中的引用文献
    153.雷大乾,江大籁,高琳.过渡金属Mn(Ⅲ),Fe(Ⅲ),Rh(Ⅲ)和Pd(Ⅱ)卟啉配合物的共振拉曼光谱研究.光谱学与光谱分析[J].1997,17(5):40-44
    154.师周顺,郑国栋,周建钢等.四(对-硝基苯基)卟啉配合物的红外和拉曼光谱 高等化学学报.[J].1992,13(11):1432-1435
    155. M.Abe, T. Kitagawa, Y. Kyogoku. RR spectra of OEP-Ni and meso substituted derivatives. J.Chem. Phys. [J]. 1978, 69(10): 4526-4534.
    156. L.D.Spaulding,C.C.Chang, Nai-Teng Yu, and R. H. Felton. Resonance Raman Spectra of Metallooctaethylporphyrins. A Structural Probe of Metal Displacement. J. Am. Chem. Soc. [J].1975,97:2517-2525.
    157. T.Kitagawa, M. Abe, Y. Kyogoku, Resonance Raman Spectra of Metallooctaethylporphyrins.Low Frequency Vibrations of Porphyrin and Iron-Axial Ligand Stretching Modes. The Journal of Physical Chemistry. [J].1976,80(11):1181-1186.
    158. Sunnder, S.; Mendelsohn, R; et al. J. Chem. Phys. 1975, 673, 63.
    159. W.R.Scheidtin "The Porphyrins", Vol.3 (Dolphin, D.;ed.) Chapter 10, Academic Press, New work 1978. [M].
    160. J.E.Falk,"Porohyrins and Metalloporphyrins", Elsevier, Amsterdam, [M]. 1964, pp.55.
    161. Hiromitsu Maeda and Yoshihiro Ito. BF_2 complex of fluorinated dipyrrolyldiketone: a new class of efficient receptor for acetate anions.Inorg. Chem. [J]. 2006, 45: 8205-8210 and references cited therein.
    162. James P. Collman,Todd Eberspacher, Lei Fu, Paul C.Herrmann. Functional models for the oxygen binding activationg hemeproteins, myoglobin and cytochrome c oxidase. J. Mol.Catal.A:Chem.[J].1997,117:9-20.
    163. Kryatova,O.P.; Kolchinski, A. G.; Rybak-Akimova, E. V. Metal-containing ditopic receptors for molecular recognition of diammonium cations. Tetrahedron. [J]. 2003, 59: 231-239.
    164. Busch, D. H. The complete coordination chemistry-one practioner's perspective. Chem. Rev.[J]. 1993,93,847-860.
    165. Fabbrizzi, L.; Poggi, A. In Transition Metals in Supramolecular Chemistry. Fabbrizzi, L.;Poggi, A., Eds.; Kluwer Academic: Dordrecht, [M]. 1994.
    166. Canary, J. W.; Gibb, B. C. Progr.Inorg.Chem. [J]. 1997,45,1-82.
    167. Souza, F. D.; Deviprasad, G. R. Studies on porphyrin-quinhydrone complexes: molecular recognition of quinine and hydroquinone in solution. J. Org. Chem. [J]. 2001, 66: 4601-4609 and references cited therein.
    168. Jagessar, R. C; Maoyu Shang; Scheidt, W. R.; Burns, D. H. Neutral ligands for selective chloride anion complexation:(α,α,α,α)-5,10,15,20-tetrakis(2-(arylurea)- phenyl)porphyrins. J. Am.Chem. Soc. [J]. 1998, 120:11684-11692.
    169. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry Third Edition. Wiley-VCH,Weinheim,Germany, [M]. 2003; pp 418- 423.
    170. AnYoriiaae, M. M. G.; Reinhoudt, D.N.Neutral anion receptors: design and application. J.Chem. Soc. Chem. Cnmmun. [J]. 1998,443.
    171. Kavallieratos, K.;Bertao, C. M.; Crabtree, R. H. Hydrogen bonding in anion recognition:a family of versatile, nonpreorganized neutral and acyclic receptors. J. Org. Chem. [J].1999, 64:1675.
    172. Huang, C. Y.; Cabell, L. A.; Anslyn, E. V. Molecular recognition of cyclitols by neutral polyaza-hydrogen-binding receptors: the strength and influence of intramolecular hydrogen bonds between vicinal alcohols. J. Am. Chem. Soc. [J]. 1994, 116: 2778.
    173. Werner, F.; Schneider, H. Complexation of anions including nucleotide anions by open-chain host compounds with amide, urea, and aryl functions. J. Helv.Chim.Ada.[J]. 2000, 83: 465-478.
    174. Wuenschell, G. E.; Tetreau, C; Lavalette, D.; Reed, C. A. H-Bonded Oxyhemoglobin Models with Substituted Picket-Fence Porphyrins: The Model Compound Equivalent of Site Directed Mutagenesis. J. Am. Chem. Soc. [J]. 1992, 114:3346-3355.
    175.童林荟,申宝剑著.超分子化学研究中的物理方法[M].北京:科学出版社,2004
    176.姚泰主编 生理书[M].人民卫生出版社
    177. Akio Ojida, Yasuko Mito-oka, Kazuki Sada. Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(Ⅱ)-dipicolylamine) Based Artificial Receptors. J. Am. Chem.Soc.[J].2004(126): 2454-2463.
    178. Yan-Li Zhao;Heng-Yi Zhang;Min Wang.Organic Anion Recognition of Naphthalenesulfonates by Steroid-Modified (?)-Cyclodextrins:Enhanced Molecular Binding Ability and Molecular Selectivity. J. Org. Chem. [J]. 2000, 235-238.
    179. Xiang Li, Bing Shen, Xiao-Qiang Yao, and Dan Yang. A small synthetic molecular forms chlorides channels to mediate chloride transport across cell membranes. J. Am. Chem. Soc. [J].2007, 129: 7264-7265.
    180. Halpern, B.; Nitecki, D. E. The deblocking of t-butyloxyc Arbonyl-peptides with formic acid.Tetrahedron Lett. [J]. 1967, 31: 3031-3033.
    181. Tarbell, D.S.; Yamamoto, Y.; Pope, B. New method to prepare N-t-butoxycarbonyl derivatives and the corresponding sulfur analogs from ditbutyl dicarbonate or dtbuthl dithiol dicarbonates and amino acids. Proc.Nat. Acad. Sci. [J]. 1972, 69(3): 730-732.
    182.张磊,张阿方.柱状多肽刷的合成.2005年全国高分子学术论文报告会[R].
    183.吴桂芝,陆维艾等.人工佐剂二棕榈酰-S-甘油酰-半胱氨酸及其中间体FOMC-Lys的合成.中国药物化学杂志[J].2000,1(10):97-102.
    184.吴凯群,翁玲玲,郑虎.[1,6-双(L-α,β-二氨基丙酸)]催产素的合成 生物医学工程学杂志[J].2006,04:39-43.
    185. Barthe'le'my Nyasse; Leif Grehn;Hernani L. S. Maia. 2-Naphthalenesulfonyl as a Tosyl Substitute for Protection of Amino Functions Cyclic Voltammetry Studies on ModelSulfonamides and Their Preparative Cleavage by Reduction. J. Org. Chem. [J]. 1999,64(19): 7135-7139.
    186. Barth'el'emy Nyasse; aLeif Grehnb; Ulf Ragnarsson. Mild, efficient cleavage of arenesulfonamides by magnesium reduction. Chem. Commun.[J]. 1997, 1017-1018.
    187. Yuan, Y.; Gao, G.; Jiang, Z. L.; et al.Synthesis and selective anion recognition of imidazolium cyclophanes. Tetrahedron. [J]. 2002, 58: 8993-8999.
    188. Rucareanu, S.; Schuwey, A.; Gossauer, A. One-Step Template-Directed Synthesis of a Macrocyclic Tetraarylporphyrin Hexamer Based on Supramolecular Interactions with a C3-Symmetric Tetraarylporphyrin Trimer. J. Am. Chem. Soc. [J]. 2006, 128: 3396-3413.
    189. Wagner, R. W; Lawrence, D. S.; Lindsey, J. S. An improved synthesis of tetramesitylporphyrin.Tetrahedron Lett. [J]. 1987,28(27): 3069-3070.
    190. Lindsey, J. S.; Hsu, H. C; Schreiman, I. C. Synthesis of tetraphenyl- porphyrins under very mild conditons. Tetrahedron Lett. [J].1986, 27(41): 4969-4970.
    191. Lindesy, J. S.; MacCrum, K. A.; Tyhonas, J. S.; et al. Investigation of a synthesis of meso- porphyrins employing high concentration conditions and an electron transport chain for aerobic oxidation.J. Org. Chem. [J]. 1994, 59: 579-587.
    
    192. Eshima, K. Y.; Nishide, H.; Tsuchida, E. J. Chem. Soc, Chem. Commun. [J]. 1987, 130.
    
    193. Tsuchida, E.; Komatsu, T.; Kumamoto, S.; Ando, K.; Nishide, H. Synthesis and O_2-binding properties of tetraphenylporphyrinato-iron( II ) derivatives bearing a proximal imidazole covalently bound at the β-pyrrolic position. J. Chem. Soc. Perkin Trans. 2. [J]. 1995,4: 747-753.
    
    194. Oar, M. A.; Serin, J. M.; Dichtel, W. R.; Frechet, J. M. J. Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer.Chem. Mater. [J]. 2005, 17: 2267-2275.
    
    195. Dichtel, W. R.; Hecht, S.; Frechet, J. M. J. Functionally layered dendrimers: a new building block and its application to the synthesis of multichromophoric light-harvesting systems. Org.Lett. [J]. 2005, 7(20): 4451-4454.
    
    196. Lipase-catalyzed resolution of 4-trimethylsilyl-3-butyn-2-ol and conversion of the (R)-enantiomer to (R)-3-butyn-2-yl mesylate and (P)-1-tributylstannyl-l,2-butadiene. O. S. [DB].2005, vol 82, pp. 43.
    
    197. Halpern, B.; Nitecki, D. E. The deblocking of t-butyloxyc Arbonyl-peptides with formic acid.Tetrahedron Lett. [J]. 1967, 31: 3031-3033.
    
    198. Tarbell, D.; Yamamoto, S. Y; Pope, B. New method to prepare N-t-butoxycarbonyl derivatives and the corresponding sulfur analogs from ditbutyl dicarbonate or dtbuthl dithiol dicarbonates and amino acids. Proc. Nat. Acad. Sci. [J]. 1972, 69(3): 730-732.
    
    199. Collman, J. P.; Brauman, J. I.; Iverson, B. L.; Sessler, J. L.; Morris, R. M.; Cibson, Q. H.Dioxygen and carbonyl binding to iron( II) porphyrins: a comparison of the "picket fence" and "pocket" porphyrins. J. Am. Chem. Soc. [J]. 1983, 105, 3052-3064.
    
    200. Maillard, P.; Schaeffer, C.; TBtreau, C.; Lavalette, D.; Lhoste, J. M.; Momenteau, M. Unusual co-ordination of water to iron( II) amino acid basket-handle porphyrins. J. Chem. Soc, Perkin Trans. 2. [J]. 1989, 1437-1442.
    
    201. Johnson, M. R.; Seok, W. K.; Ibers, J. A. Synthesis, characterization, crystal structures, and carbon monoxide and oxygen binding properties of novel 4-atom-linked capped porphyrins. J. Am. Chem. Soc. [J]. 1991, 113, 3998-4000.
    
    202. Komatsu, T.; Furubayashi, Y.; Nishide, H.; Tsuchida, E. Synthesis and characterisation of cobalt, nickel, zinc and cadmium compounds with a pyridine-derived N_3O_2 macrocycle: Crystal and molecular structures of the macrocyclic ligand and Co(II), Ni(II) and Zn(II) complexes. Inorg.Chim. Acta. [J]. 1999, 295, 234-238.
    
    203. Collman, J. P.; Sunderland, C. J.; Boulatov, R. Biomimetic Studies of Terminal Oxidases:Trisimidazole Picket Metalloporphyrins. Inorg. Chem. [J]. 2002,41, 2282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700