生物填料的研制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际有机废水厌氧处理中,许多有机废水由于缺乏微量金属元素而使厌氧微生物活性降低,影响生物处理效果。本实验的主要目的是将微量金属元素负载到陶粒中,使其缓慢释放微量金属元素,从而增加微量金属元素的生物有效度,提高微生物的处理效率,降低过多投入微量金属元素所产生的人工及原料成本。
     实验以粉煤灰为主要原料,复合添加适量外加剂,采用蒸气养护法,以陶粒强度为主要指标,通过单因素试验和正交试验确定出了陶粒的最佳配方,粉煤灰、水泥、石灰、石膏、CaCl_2、Na_2SO_4、NaCl的最佳配比分别为:73.4%、14.68%、7.34%、1.84%、0.46%、1.84%、0.46%。同时,考察了不同工艺条件对陶粒强度的影响,最终确定出烘干时间、烘干温度、蒸养时间、蒸养温度、含水率和拌料水温的最优工艺条件分别为0.5h、60℃、14h、100℃、29.2%、70℃。
     通过对木屑和蛭石进行吸附试验发现,它们对微量金属元素的吸附,在10h时达到相对平衡,陶粒对微量金属元素的释放从第4d开始,溶液浓度趋于平衡。
     在微生物反应器中添加微量金属元素试验可以确定,微生物生长所需的最优微量金属元素Ni~(2+)、Fe~(2+)、Co~(2+)的浓度分别为0.4mg/L、7.2mg/L和0.1mg/L。对空白对照组、单种微量金属元素组、微量金属元素组合组、自制普通陶粒组、商品陶粒组和改性陶粒组六组反应器的对比试验中得出:这些反应器中微生物对COD的去除率分别为72.84%、74.95%、78.53%、80.63%、82.63%和91.79%,添加改性陶粒反应器的COD去除率最高,比空白对照组的高出18.95%。动力学分析发现,微生物降解有机物过程为一级反应,它们的反应速率常数分别为0.1129d~(-1)、0.1228d~(-1)、0.1356d~(-1)、0.1671d~(-1)、0.1720d~(-1)和0.2302d~(-1),改性陶粒组的反应速率常数明显高于其它组,尤其是空白对照组,说明改性陶粒能显著增加反应器内活性污泥的活性,反映出改性陶粒具有比其它陶粒及直接添加微量金属元素更加优越处理性能。
In practical organic wastewater treatment process, due to many organic wastewater lack of trace metal element, which could lead to the decrease of anaerobic microorganism activity, and affect the biological treatment effect.The main purpose of this experiment is to load trace metal elements in ceramsete, which could slowly release trace metal element. And thus increase the biological availability of trace metal element, improve the processing efficiency of micro- organism, reduce the labour and raw material cost, which brought by excessive input trace metal elements.
     The experiment use fly ash and activator as main raw material, adopt steam curing method to produce ceramsite. By using single-factor experiment and orthogonal test to ascertain the suitable formula of ceramsite, the experiment indicated that the best formula of ceramsite is that: fly ash, cement, lime, gypsum, CaCl_2, Na_2SO_4 and NaCl respectively are 73.4%, 4.68%, 7.34%, 1.84%, 0.46%, 1.84% and 0.46%. meanwhile, by inspecting the effects of different technological conditions, it is found that the optimal technological conditions of drying time, drying temperature, steam curing time, steam curing temperature, moisture content and mixing water temperature respectively are 0.5h, 60℃, 14h, 100℃, 29.2% and 70℃.
     After studying on the adsorption experiment of sawdust and vermiculite, which indicated that the adsorption content of sawdust and vermiculite on trace metal element can almost balance after 10 hours. it indicated that the trace metal element concentration of reactor solution which released by ceramsite verged to balance after 4 days.
     It can be sure that the optimal concentration of trace metal element Ni~(2+), Fe~(2+), Co~(2+), which the microorganism needed, respectively are 0.4mg/L, 7.2mg/L and 0.1mg/L, through adding trace metal element in microorganism reactors. By going on contrast test among control group, single trace metal element group, mixing trace metal element group, common ceramsite group, commodity ceramsite group and modified ceramsite group, it is found that the COD removal efficiency of microorganism in these microorganism reactors respectively are 72.84%, 74.95%, 78.53%, 80.63%, 82.63% and 91.79%. The COD removal efficiency of reactor which added modified ceramsite is the highest, more than 18.95%, contrast with control group.
     Using dynamics analysis found that the process of microorganism degradation is first-order reaction, their reaction rate constant are respectively 0.1129d~(-1), 0.1228d~(-1), 0.1356d~(-1), 0.1671d~(-1), 0.1720d~(-1) and 0.2302d~(-1),the reaction rate constant of modified ceramsite is significantly higher than any other groups, especially than the control group, which indicated that adding modified ceramsite in bioreactor can significantly increase the activity of activated sludge, reflecting that modified ceramsite has more superior process organic wastewater performance than other ceramsites and directly adding trace metal element in bioreactor.
引文
[1]丁琨.微量元素与工业废水生物处理.安徽建筑工业学院学报, 2006. 14(1): 89-92
    [2]周少奇.环境生物技术.北京:科学出版社. 2003. 154-156
    [3]陈旭东,李超霞等.高浓度有机废水处理技术及进展.河北化工, 2008. 13(12): 71-73
    [4] Pavlostath. S. Kinetics of anaerobic treatment. Water Science and Technology, 24(8): 35-59
    [5]张无敌,宋洪川.沼气发酵与综合利用,昆明:云南科技出版社. 2004. 96-103
    [6] Lange. M. comprehensive study into the molecular methodology and mole- cular biology of methanogenic. Archaea Fems Microbiol Rev, 2001. 5(12): 553-571
    [7] Patel. K. C. phylogenetic and ecological diversity of methanogenic. Anaerobe, 2000. 2(6): 205-226
    [8] Li Yaxin. Stimulation effect of trace metalson anaerobic digestion of high sodium content substrate. Water Treatment, 1995. 3(10): 145-154
    [9]潘云峰,李文哲.微量金属元素对厌氧污泥颗粒化的影响.可再生能源, 2007. 25(6): 51-54
    [10] Speece. R. E. Anacrobic Digestion of biomass. U S A. Elsevier Applied Scie- nce Pub, 1987. 6: 109-128
    [11] Zhang Yasheng, Zhang Zhenya. Uptake and mass balance of trace metals forethane producing bacteria. Biomass and Bioenergy, 2003. 25: 427-433
    [12]赵阳,李秀芬,堵国成等.钴及其配合物对产甲烷关键酶的影响.水资源保护, 2008.24(2): 82-85
    [13] Dwayne. A. E, Lee. R. K, Ralph. S. T etal. Estimation of methanogen biomassby quantitation of coenzyme M. Applied and Environmental Microbiology, 1999. 65(12): 5541-5545
    [14] Yang Pin, Gao Fei. Principles of biological biochemistry. Beijing: Higher Edu- cation Press, 2000(8):106-112
    [15] Zhang. Y. S, Zhang. Z. Y, etal. Uptake and mass balance of trace metalsfor methane producing bacteria. Biomass Bioenergy, 2003. 25: 427-433
    [16] Harma. J, Singh. R. Effect of nutrients supplementation on anaerobic sludge development and activity for treating distillery effluent. Bioresource Technol, 2001. 79: 203-206
    [17] Speece. R. E. Effect of process configuration and substrate complexity on the performance of anaerobic processes. Wat Res, 2001. 35(3): 817
    [18]胡勇,孔垂雪,尹小波.不同营养元素组合对高浓度制药废水产沼气的影响研究.中国沼气, 2009. 27(3): 19-22
    [19]李亚新,杨建刚.研究了微量金属元素对甲烷菌激活作用的动力学研究.中国沼气, 2000. 18(2): 8-11
    [20] Speece. R. E.Parkin. G. F, Gallagher. D. Nickel Stimulation of Anaerobic Digestion. Wat Res, 1983. 17(6): 677
    [21] Van. Den, Berg L. Factors effecting rate of methane fermentation from acetic acid by enriched methanogenic cultures. Can Soc Microbiol, 1997.22(5): 1313
    [22]柴社立,蔡晶,芮尊元.微量金属对废水厌氧处理效果的影响.环境污染与防治, 2006. 28(8): 385
    [23]董春娟,吕炳南,苏秀英.废水厌氧处理系统微量金属生物有效度及影响因素.化工环保, 2004. 24(3): 190-193
    [24]张涵,李文哲.微量金属元素的添加频率对牛粪厌氧发酵特性的影响.东北农业大学学报, 2006. 37(2): 203-204
    [25]潘云峰,李文哲.微量金属元素对牛粪厌氧发酵产气特性的影响.江苏环境科技, 2006. 119(4): 5-6
    [26]刘亚敏,崔海波等.填料在废水生物处理方面应用的研究进展.化学工程与装备, 2008. 11: 115-116
    [27]马国平,何玉凤,杨宝芸等.高分子填料在生物法处理废水中的应用进展.化学通报, 2007. 1: 41-44
    [28]刘景明,刘慧等.废水处理有机填料的合成材料现状及展望.环境科学与技术, 2010. 33: 321-325
    [29]范福州,康永,孔琦,安晓娇.废水处理用生物膜载体研究进展.化工进展, 2005. 24(12): 1331-1334
    [30] Lu Linwei. Application of Soft fiber filler in aerobic anaerobic wastewater treatment system of biofilm. South Lian Science and Technology, 2000. 7(3): 16-18
    [31]黄长盾.不同填料对充氧性能影响的试验研究.中国给水排水, 1992. 8(3): 60-62
    [32] D. J. Gapes, Keller. Impact of oxygen mass transfer on nitrification reactions in suspended carrier. Process Biochemistry, 2009. (44): 43-53
    [33] Zhang Fan, Cheng Jiang, Yang Zhuo ru. Research progress in biofilm carrier for wastewater treatment. Techniques and Equipment for Environm ental Pollution Control, 2004. 5(4): 8-12
    [34]孙华,张菊萍,李湘霖.投加悬浮填料改善活性污泥法处理性能的试验研究.重庆环境科学, 2001, 23(6): 37-40
    [35]张菊萍,孙华,周增炎.一种新型悬浮填料的性能试验研究.安全与环境学报, 2002. 2(5): 42-44
    [36]常欣,王艺,丛喜彬.污水生物处理反应填料的应用现状及发展前景.吉林建筑工程学院学报, 2005. 22(4): 11-14
    [37] Sheng Chen, Dezhi Sun, Jong Shik Chung. Anaerobic treatment of highly concentrated aniline wastewater using packed-bed biofilm reactor.Process Biochemistry, 2007. (42): 1666-1670
    [38] Lorenzo. Bertin, Diana Di Gioia, Claudia. Barberio.Biodegradation of polyet- hoxy lated nonylphenols in packed-bed biofilm reactors. Ind Eng Chem Res, 2007. 6(46): 6681-6687
    [39]程江,张凡,海景等.聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜性能的影响.化工学报, 2004. 55(9): 1564-1567
    [40]海景,黄尚东,张凡等.改性聚丙烯生物填料的制备与应用.化工环保, 2006. 26(4): 333-336
    [41]查建明,张苗苗,王立久.生物陶粒在污水处理中作滤料的研究与应用.广东建材, 2005. 1: 8-10
    [42]孙霞,王清杰等.陶粒填料的研究进展.科学实践, 2008. 252-253
    [43]杨怡华,王勇华等.利用石粉开发超轻陶粒的研究.中国非金属矿工业导刊, 2009. 4: 32-33
    [44]檀春丽,李家和.北京市非粘土陶粒生产及应用可行性实验.低温建筑技术, 2009. 9(135): 18-20
    [45]段宁.粉煤灰烧结陶粒的研发生产及应用.山西电力, 2009. 3(154): 70-72
    [46]范锦忠.粉煤灰陶粒的生产方法和主要性能.砖瓦, 2007. 9: 114-117
    [47]胡家玮,严子春等.陶粒滤料技术研究.能源与环境, 2009.2: 90-91
    [48]左艳君,凤琴等.高性能水处理陶粒填料的研制.江西化工, 2005. 4: 95-97
    [49]余莹,黄江南,林波等.新型水处理填料-纳米改性陶粒的研制.给水排水, 2004. 30(12): 95-99
    [50]董诚,许珂敬等.利用粉煤灰制备轻质多孔陶粒工艺研究.山东理工大学学报, 2008. 22(6): 54-56
    [51]谢友均,马昆林等.蒸养超细粉煤灰高性能混凝土性能实验研究.深圳大学学报理工版, 2007. 24(3): 234-237
    [52]何智海,刘运华.蒸养条件下粉煤灰活性激发实验研究.粉煤灰综合利用, 2008. 5: 24-27
    [53]何智海,刘运华,刘江红.蒸养制度对粉煤灰混凝土强度的影响.混凝土, 2007. 12(218): 4-9
    [54]邹志祥,张瑜,董众兵.粉煤灰制免烧陶粒的实验研究.煤炭转化, 2007. 30(2): 73-76
    [55]何智海,刘运华等.蒸养条件下水泥-粉煤灰复合胶凝材料的水化性能研究.工业建筑, 2008. 38: 807-812
    [56]冯敏,刘永德,赵继红.污水处理用生物陶粒滤料的研究进展.河北化工, 2009. 32(1): 64-66
    [57]董诚,许珂敬等.利用粉煤灰制备轻质多孔陶粒工艺研究.山东理工大学学报, 2008. 22(6): 54-56
    [58] LamL, Wong. Y. L, Poon cs. Degree of hydration and gel space ratio of high volume fly ash/cement systems. Cement and Concrete Research, 2000. 30(5): 747-756
    [59] B. W. Langan, Kweng, M. A. Ward. Effect of Silica fume and fly ash on heat of hydration of portland cement. Cement and Concrete Research, 2002. 32: 1045
    [60]丁益,任启芳.粉煤灰活化处理技术与应用进展.安徽建筑工业学院学报, 2009. 17(3): 72-74
    [61]杨雄,唐月英,俞黎明.粉煤灰细化对高性能混凝土性能的影响.浙江建筑, 2008. 25(8): 58-60
    [62]任卫芳,秦娴敏.影响混凝土强度的因素及提高混凝土强度的措施.福建建工, 2008. 4(105): 88-89
    [63]马保国,王迎宾等.碱性环境下粉煤灰活性的温度效应研究.粉煤灰综合利用, 2009. 5: 3-6
    [64]陶宇燕,柯国军.粉煤灰的活性激发方法与技术研究.山西建筑, 2009. 35(28): 145-147
    [65]柯昌君.粉煤灰蒸压制品中长石的激发机理.硅酸盐学报, 2006. 8(34): 1015
    [66]刘美燕,赵碧华,陶晓林.粉煤灰的活性激发技术在商品混凝土中的应用探讨.江西建材, 2008: 15-17
    [67] Zhang Ya Mei, Sun Wei, Yan Han Dong. Hydration of high-volume fly ash cement pastes. Cement and Concrete Composites, 2000. 30(6): 445-452
    [68]陈金平.化学激发粉煤灰体系的抗压强度性能研究.粉煤灰综合利用, 2009.16: 14-17
    [69]任书霞,要秉文,王长瑞.粉煤灰活性的激发及机理研究.粉煤灰综合利用, 2008. 4: 50-52
    [70]王智,郑洪伟等.硫酸盐对粉煤灰活性激发的比较.粉煤灰综合利用, 1999. 3: 15-18
    [71]何廷树,卫国强.激发剂种类对不同粉煤灰掺量的水泥胶沙强度的影响.混凝土, 2009. 5: 62-64
    [72]何智海,刘运华,刘江红.激发剂对蒸养水泥-粉煤灰胶凝材料性能的影响.粉煤灰综合利用, 2008: 23-26
    [73]柯国军,杨晓峰,彭红等.化学激发粉煤灰活性机理研究进展.煤炭学报, 2005. 30(3): 366-370
    [74]王复生,朱元娜,张磊.氯化钠对粉煤灰硅酸盐混合水泥活性激发能力和结合方式的试验研究.硅酸盐通报, 2009. 28(1): 31-37
    [75]叶东忠.不同激发剂对粉煤灰火山灰活性的影响.粉煤灰, 2009. 2: 10-12
    [76]刘美燕,赵碧华,陶晓琳.粉煤灰的活性激发技术在商品混凝土中的应用探讨.江西建材, 2008. 26: 16
    [77]中华人民共和国国家标准.水质镍的测定丁二酮肟分光光度法. GB11910-89
    [78]中华人民共和国国家标准.饮用天然矿泉水检验方法. GB8538-1995
    [79]中华人民共和国环境保护行业标准.水质铁的测定邻菲啰啉分光光度法. HJ/T 345-2007
    [80]中华人民共和国环境保护行业标准.水质化学需氧量的测定快速消解分光光度法. HJ/T 399-2007
    [81]李琪.粉煤灰在环境工程中的应用.科技资讯, 2008. 131-133
    [82]郑宾国,刘军坛,崔节虎等.粉煤灰在我国废水处理领域的利用研究.水资源保护, 2007. 23(3): 36-39
    [83]黄波.粉煤灰的经济价值与综合利用.内蒙古科技与经济, 2008. 165(15):27-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700