牡蛎良种选育的遗传学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡蛎是中国传统的贝类养殖品种之一,是中国乃至世界产量最大的经济贝类。2007年我国牡蛎的养殖产量达到351万吨,占世界牡蛎养殖总产量的79.8%。我国虽然是牡蛎养殖大国,但还并不是牡蛎养殖强国,遗传改良研究相对滞后。缺乏良种、单产低是我国牡蛎产业目前急需解决的重大问题。目前,我国养殖牡蛎种类的遗传背景信息十分匮乏,遗传学基础研究相对薄弱,重要经济性状定位研究发展缓慢。此外,经济种类还面临分类混乱、区分困难等诸多疑难和热点问题,这都严重影响了我国牡蛎的养殖及遗传改良工作。因此,本论文围绕上述问题进行牡蛎种类亲缘关系解析、遗传背景分析、重要经济性状定位等研究,旨为我国牡蛎良种选育工作奠定基础。
     首先,借助分子手段分析了巨蛎属牡蛎的亲缘关系,解决了我国牡蛎经济种类分类混乱问题,从而为牡蛎的良种选育奠定基础。本部分工作包括以下四个方面:
     1)利用变性梯度凝胶电泳(DGGE)技术对巨蛎属五种牡蛎的线粒体DNA片段进行分析。结果显示五种牡蛎在变性梯度凝胶中可以被清楚的区分开,每种牡蛎均检测到种特异性条带。测序结果也进一步证实五种牡蛎各具一种单倍型,从而证实了DGGE技术结果的可靠性。
     2)利用线粒体基因组全序列深入研究巨蛎属牡蛎的亲缘关系。测定了岩牡蛎及密鳞牡蛎的线粒体全序列,并与GenBank中已公布的六种巨蛎属牡蛎线粒体全序列进行比较基因组学研究。K2P遗传分化结果显示:以往分类上存在争议的太平洋牡蛎、褶牡蛎、有明巨牡蛎、香港巨牡蛎均为清楚的不同种类。其中太平洋牡蛎和褶牡蛎的亲缘关系最近;而有明巨牡蛎、香港巨牡蛎和岩牡蛎三者的亲缘关系比较近。线粒体基因排列比较结果显示巨蛎属牡蛎的线粒体基因排列变化比较大,其中美洲牡蛎的变化最大,出现多个tRNA基因易位现象;而太平洋牡蛎、香港巨牡蛎、有明巨牡蛎、熊本牡蛎和褶牡蛎之间不存在线粒体基因重组现象,说明五个种之间的系统发生关系相对比较近;岩牡蛎与这五种牡蛎相比,出现一个tRNA易位。
     3)利用微卫星标记对亲缘关系最近、分类争议比较大的太平洋牡蛎和褶牡蛎进行了种群遗传学比较研究。结果显示太平洋牡蛎的七个微卫星标记均可在褶牡蛎群体中成功扩增,并表现出多态。遗传分化指标(Fst、遗传距离)显示太平洋牡蛎和褶牡蛎群体间存在显著性遗传分化。个体分配检验中,两个种的个体分配正确率达100%,进一步证实了太平洋牡蛎和褶牡蛎之间显著的遗传分化。
     4)利用HSP70核基因序列对巨蛎属五种牡蛎进行比较分析,结果显示太平洋牡蛎和褶牡蛎遗传分化最小,有明巨牡蛎和褶牡蛎的遗传分化最大。系统发育分析显示有明巨牡蛎和香港巨牡蛎各自构成一个单系群,进一步澄清了两者之间的亲缘关系;但是熊本牡蛎、太平洋牡蛎、褶牡蛎没有形成明确的单系群,三者的系统发生关系使用HSP70序列并没能得到很好的解决。在HSP70序列中发现了有明巨牡蛎和香港巨牡蛎种特异性SNP位点各7个,这些位点的发现为牡蛎的种类鉴定提供标记基础。另外,在有明巨牡蛎中,还发现2个SNP位点在南北方群体中等位基因频率分布存在显著差异,呈现出温度适应性分化。
     其次,针对中国养殖牡蛎的代表性种类—太平洋牡蛎及美国已选育成功的具有优良性状的种类—美洲牡蛎,分别进行了标记开发、遗传背景分析、图谱构建和抗病基因定位研究。通过两种牡蛎遗传基础研究比较,充分利用和汲取美洲牡蛎选育研究中的成果和经验,为开展我国牡蛎的良种选育工作提供指导。本部分工作包括以下四个方面:
     1)利用生物信息学手段,开发了26个太平洋牡蛎EST-SSR位点,其中23个位点可在种间成功扩增。在3个太平洋牡蛎家系中检测其中20个EST-SSR的遗传分离模式,结果显示35个分离组合中有5个偏离孟德尔分离比定律,其中4个经无效等位基因校正后符合孟德尔分离比。20个位点中,有3个位点(15%)检测到无效等位基因的存在,太平洋牡蛎EST-SSR的无效等位基因频率明显低于其Genomic-SSR的无效等位基因频率。EST-SSR标记的开发为以后的牡蛎比较基因学等提供基础。
     2)利用7个微卫星标记对我国南北方五个太平洋牡蛎养殖群体和两个日本野生群体进行种群遗传学研究。结果显示我国养殖群体的遗传多样性与日本野生群体相比,并未出现显著下降,但低频率等位基因数(或稀有等位基因)较野生群体有所下降。遗传分化指标(Fst、遗传距离、个体分配检验)显示养殖群体与野生群体间存在显著遗传分化。上述结果表明,虽然我国自从日本引进太平洋牡蛎进行人工养殖已有近30年的历史,但目前并未出现显著的遗传多样性下降现象,这可能与养殖者在育苗过程中,将不同批次或不用地点育苗的子代进行混养的养殖模式有关,另外,养殖者之间的不同来源的牡蛎频繁互引、扩大养殖,也可能补充了牡蛎的遗传多样性。
     3)采用11个微卫星标记对美洲牡蛎五个主要选育品系的八个群体和两个野生群体进行种群遗传学分析。结果显示选育群体中平均等位基因丰富度显著小于野生群体的平均等位基因丰富度,等位基因丰富度降低了48.3%-68%。选育群体中出现了稀有等位基因减少现象。选育群体中杂合度与野生群体相比,并未出现显著性差异。Fst值显示选育群体间及与野生群体间存在着显著的遗传分化,个体分配检验可以清楚的将选育群体与野生群体区分开(正确分配率达94.1%),选育品系间也存在显著性遗传分化,99%的个体可以被正确的分配至源群体中。上述结果表明选育群体中已经存在明显的遗传多样性下降现象,在以后的选育过程中,应尽量扩大亲本数目,必要时可进行品系间杂交育种。
     4)利用微卫星和SNP标记在美洲牡蛎回交家系和F2家系中构建遗传图谱,分析2个家系在病害感染死亡前后各个位点基因型频率的变化,共定位了11个抗病连锁基因区域/QTL,其中3个区域/QTL在两个家系中均检测到。11个抗病连锁基因区域/QTL所包含的标记81.9%为EST来源标记,说明TypeⅠ型标记在基因定位上比TypeⅡ型标记更加有效。将定位的抗病连锁标记进一步在6个抗病群体、2个非抗病群体、2个野生群体中进行等位基因频率分析,将在抗病群体中出现规律性频率分布的标记进一步在非抗病群体病害感染死亡前、死亡后的群体中进行等位基因频率比较分析,最终检测到1个微卫星标记、1个SNP标记和1个未知功能基因与美洲牡蛎抗病性状紧密连锁。
Oysters are one of the traditional cultured shellfishes in China and the largest commercial molluscan group cultured in China, as well as in the world. The production of oysters reached 351 metric tons in 2007 in China, accounting for 79.8% of total oyster production in the world. China is dominant in the oyster farming industry in the world, but not yet an oyster farming great power. The researches on improvement of oysters are relatively lagging. Lack of good broodstock and decreases in production efficiency represent the major constraints on oyster farming industry in China. Now the oyster industry in China faces lots of questions and hot problems, such as lack of information of genetic background of cultured oyster species, deficiency of studies in genetic bases of oysters, slow development in identification of important commercial traits and difficulty in discrimination and taxonomic confusion with commercial species, which seriously influence farming and genetic improvement of oysters in China. Therefore, the objective of this dissertation was to study the relationships among oyster species, genetic background of commercial species, important commercial traits and so on, with the goal of laying a foundation to oyster selective breeding in China.
     Firstly, in order to solve the confusion in identification of commercial oyster species in China and benefit the selective breeding, the relationships among Crassostrea oysters were studied based on molecular information. This content contained four sections:
     1) Denaturing gradient gel electrophoresis (DGGE) was used to analyze a mitochondrial DNA fragment for identification of five Crassostrea oysters. The results showed that the five Crassostrea oysters could be separated by DGGE and each species had a species-specific banding pattern in DGGE. Species-specific composite haplotype was also verified by sequencing results, which further confirmed the reliability of DGGE.
     2) The relationships and phylogeny among Crassostrea oysters were deeply analyzed through comparative mitochondrial genomes. The complete sequences of C. nippona and Ostrea denselamellosa mitogenomes were determined and compared with other 6 complete mitochondrial sequences of Crassostrea oysters from GenBank. The genetic divergence (K2P) revealed C. gigas, C. angulata, C. ariakensis and C. hongkongensis were four distinct species. The relationship between C. gigas and C. angulata was closest and close relationships were detected among C. ariakensis C. nippona and C. hongkongensis. The mitochondrial gene rearrangements appeared to be extensive in Crassostrea. The changes mainly happened in C. virginica, with some tRNA transpositions. No gene rearrangement occurred among C. hongkongensis, C. gigas, C. ariakensis, C. sikamea and C. angulata, suggesting the relatively close relationships. The gene order of C. nippona is largely identical to that of the 5 Crassostrea species above except for the translocation of one tRNA.
     3) To better understand the relationship between the two closest species, C. gigas and C. angulata, population genetic study in C. angulata and C. gigas were analysed with microsatellites. All 7 microsatellites developed from C. gigas could be successfully amplified in C. angulata populations and showed high polymorphism. Genetic divergence indexes (Fst and DA) demonstrated significant genetic differentiation between C. angulata and C. gigas populations. Individual assignment tests correctly assigned 100% of individuals to their original species populations, with C. angulata and C. gigas as two reference groups, indicating the significant genetic divergence between C. angulata and C. gigas.
     4) The sequences of nuclear gene HSP70 of 5 Crassostrea species were analysed and the results demonstrated that the genetic divergence between C. angulata and C. gigas was lowest, and that between C. angulata and C. ariakensis was highest. The result of phylogenetic analysis showed C. ariakensis and C. hongkongensis formed a monophyletic clade, respectively, which cleared the relationship between the two species further. While C. gigas, C. sikamea and C. angulata did not form distinct monophylies and the phylogenetic relationships among them had not been resolved well by HSP70 sequences. Seven species-specific SNPs were detected in C. ariakensis and C. hongkongensis HSP70, which provided markers for discrimination of oyster species. Moreover, in C. ariakensis, the distribution of allele frequency of 2 SNPs was significantly different between northern and southern populations, and showed adaptive divergence in different temperature environment.
     Secondly, development of markers, population genetic studies, genetic mapping and identification of disease-resistant genes were performed in C. gigas which is the typical oyster species cultured in China, and C. virginica, of which some broodstocks have good traits by selective breeding in the US. Comparison of the genetic bases studies between the two species and utilization of the achievements and lessons from genetic improvement of C. virginica will provide a guide to oyster selective breeding in China. This content included four parts:
     1) Twenty-six polymorphic EST-SSRs were developed for C. gigas using bioinformatics, of which 23 loci gave successful interspecies amplifications. Twenty EST-SSRs were tested in 3 families of C. gigas for examination of inheritance mode. Thirty-five tests of segregation ratios revealed five significant departures from expected Mendelian ratios, four of which confirmed Mendelian expectations when accounting for the presence of null alleles. Null alleles were detected at 3 loci (15%) of the 20 loci and the frequency of null alleles at EST-SSRs was lower than that in genomic SSRs in C. gigas. These EST-SSR markers would be valuable for comparative studies of oyster genomes.
     2) Five cultured populations of C. gigas from China and 2 wild populations from Japan were examined at 7 microsatellite markers to assess the level of genetic diversity and relationships among the populations. Comparing the 5 cultured populations with 2 Japanese wild populations, no significant reduction in allelic richness or heterozygosity was observed in cultured populations. But the number of low frequency alleles (rare allele) in cultured populations decreased. Genetic divergence indexes (Fst, genetic distance and individual assignment test) showed significant genetic differentiation between cultured and wild populations. The results obtained in this study suggested that there was no reduction in genetic diversity of the cultured populations in China, although it has been about 30 years since C. gigas was transferred from Japan to China for culture. A large number of effective breeders and/or mixing of genetically different lots produced separately might have a significant contribution to the high genetic variation in the cultured populations.
     3) Eleven microsatellites were used to examine genetic variation and divergence in 8 populations from 5 major selected strains in the US and 2 wild populations of C. virginica. The average allelic richness was significantly lower in selected populations than in the wild populations. The selected populations had 48.3%-68% reduction in allele richness and had fewer rare alleles compared with wild populations. There was no significant reduction in heterozygosity in selected populations. Fst values showed there was significant divergence between selected and wild populations. Assignment tests could clearly separate the selected and wild populations (94.1%). Among the selected strains, assignment test could assign 99% individuals to their original strains. The information from this study demonstrated that there is considerably reduction in genetic diversity in selected populations, suggesting that in the future using more parents in selective breeding or hybrid breeding among the strains is necessary.
     4) Microsatellite and SNP markers were used to construct genetic maps in backcross and F2 families of C. virginica. Disease-resistant loci were identified by analysis of allele frequency shifts before and after disease-inflicted mortalities in families. Eleven disease-resistant gene regions were identified, of which 3 were detected in both two families.81.9% of the markers in the 11 disease-resistant gene regions were EST-markers, suggesting Type I markers were more effective than Type II markers in identification of genes. Markers from disease-resistant regions were screened in 6 disease-resistant strains,2 non-disease-resistant strains and 2 wild populations. Allele frequencies in disease-resistant strains were compared with that in other populations to identify markers which showed consistent frequency in disease-resistant strains and then were tested further in before and after disease-inflicted mortalities in 2 non-disease-resistant populations. Finally, one microsatellite marker, one SNP marker and one gene whose function is unknown, strongly associated with disease resistance in eastern oyster, were found.
引文
杜红丽,张细权.2002.鸡热应激蛋白70基因多态性.第六届动物遗传学讨论会论文集.
    李莉,郭希明.2003.遗传图谱及其在主要水产动物的研究进展.海洋科学,11期.
    李孝绪,齐钟彦.1994.中国牡蛎的比较解剖学及系统分类和演化的研究.海洋科学集刊,35:143-178.
    李孝绪.1989.中国常见牡蛎外套腔的形态比较.海洋与湖沼,20:502-507.
    刘必谦,戴继勋.1998.巨蛎属牡蛎遗传多样性研究.水产学报,22:193-197.
    楼允东.鱼类育种学.北京:中国农业出版社,2001.
    吕豪,魏若飞,吕典壮,唐振东.1994.太平牡蛎(Crassostrea gigas)与大连湾牡蛎(Ostrea talienwhamensis)杂交实验.水产科学,13:8-11.
    齐钟彦,马绣同,王祯瑞,林光宇,徐凤山,董正之.黄渤海的软体动物.北京:农业出版社,1989.
    汪德耀,刘汉英.1959.牡蛎人工杂交初步研究.动物学报,11:283-290.
    王如才,李琪,于瑞海,王昭萍,田传远,郑小东.牡蛎养殖技术.北京:金盾出版社,2004.
    王如才,王昭萍,张建中.海水贝类养殖.青岛:青岛海洋大学出版社,1993.
    王如才,王昭萍.海水贝类养殖学.青岛:青岛海洋大学出版社,2008.
    肖述,喻子牛.2008.养殖牡蛎的选择育种研究与实践.水产学报,32:287-295.
    徐凤山.中国海双壳类软体动物.北京:科学出版社,1997.
    杨锐,喻子牛,陈再忠,孔晓瑜,戴继勋.2000.山东沿海褶牡蛎与太平洋牡蛎等位基因酶的遗传变异.水产学报,24:130-133.
    张玺,楼子康.1956.中国牡蛎的研究.动物学报,8:65-94.
    赵汝翼,程济民,赵大东.大连海产软体动物志.北京:海洋出版社,1982.
    中国海湾志编纂委员会.中国海湾志.北京:海洋出版社,1993.
    中国农业部渔业局.中国渔业统计年鉴.北京:中国农业出版社,2005.
    中国农业部渔业局.中国渔业统计年鉴.北京:中国农业出版社,2008.
    周茂德,高允田,吴融.1982.太平洋牡蛎与近江牡蛎、褶牡蛎人工杂交的初步研究.水产学报,6:235-241.
    Abascal F, Zardoya R, Posada D.2005. ProtTest:Selection of best-fit models of protein evolution. Bioinformatics 21:2104-2105.
    Ahmad M.2000. Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet.101:892-896.
    Akasaki T, Yanagimoto T, Yamakami K, Tomonaga H, Sato S.2006. Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (Order Gadiformes) products. J Food Sci.71:190-195.
    Aldridge BM, McGuirk SM, Clark RJ, Knapp LA, Watkins D1, Lunn DP.1998. Denaturing gradient gel electrophoresis:a rapid method for differentiating BoLA-DRB3 alleles. Anim Genet.29:389-394.
    Allen SK, Gaffney PM, Ewart JW.1993. Genetic improvement of the eastern oyster for growth and disease resistance in the northeast. NRAC Fact Sheet No.210.
    Allendorf FW, Phelps SR.1980. Loss of genetic variation in hatchery stock of cutthroat trouts. Trans Am Fish Soc.109:537-543.
    Appleyard SA, Ward RD.2006. Genetic diversity and effective population size in mass selection lines of Pacific oyster (Crassostrea gigas). Aquaculture.254:148-159.
    Ardren WR, Borer S, Thrower F, Joyce JE, Kapuscinski AR.1999. Inheritance of 12 microsatellite loci in Oncorhynchus mykiss. J Hered.90:529-536.
    Arnold C, Rossetto M, McNally J, Henry RJ.2002. The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. Am J Bot.89:22-28.
    Bakke I, Johansen S.2005. Molecular phylogenetics of Gadidae and related Gadiformes based on mitochondrial DNA sequences. Mar Biotechnol.7:61-69.
    Ballard JWO.2000. Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol.51:64-75.
    Banks MA, Hedgecock D, Walters C.1993. Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol Mar Biol Biotechnol.2:129-136.
    Bassam BJ, Caetano-Anolles G, Gresshoff PM.1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem.196:80-83.
    Bayne BL, Hedgecock D, McGoldrick D, Rees R.1999. Feeding behaviour and metabolic efficiency contribute to growth heterosis in Pacific oysters [Crassostrea gigas (Thunberg)]. J Exp Mar Biol Ecol.233:115-130.
    Beatie JH, Chew KK, Hershberger WK.1980. Differential survival of selected strains of Pacific oysters (Crassostrea gigas) during summer mortality. Proc Natl Shellfish Assoc.70:184-189.
    Beattie JH, Perdue J, Hershberger W, Chew K.1987. Effect of inbreeding on growth in the Pacific oyster Crassostrea gigas. J Shell Res.6:25-28.
    Bendezu IF, Slater JW, Carney BF.2005. Identification of Mytilus spp. and Pecten maximus in Irish waters by standard PCR of the 18S rDNA gene and multiplex PCR of the 16S rDNA gene. Mar Biotechnol.7:687-696.
    Benson G. 1999. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Re.27:573-580.
    Bentzen P, Olsen JB, McLean JE, Seamons TR, Quinn TR.2001. Kinship analysis of Pacific salmon:insights into mating, homing, and timing of reproduction. J Hered.92:127-136.
    Boore JL, Brown WM.1994. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics.138:423-443.
    Boudry P, Heurtebise S, Lapegue S.2003. Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens:a new oyster species in Hong Kong? Aquaculture.228:15-25.
    Breton S, Beaupre HD, Stewart DT, Piontkivska H, Karmakar M, Bogan AE.2009. Comparative mitochondrial genomics of freshwater mussels (Bivalvia:Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication. Genetics.183:1575-1589.
    Breton S, Burger G, Stewart DT, Blier PU.2006. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics.172:1107-1119.
    Brookfield IFY.1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol.5:453-455.
    Brown BL, Franklin DE, Gaffney PM, Hong M, Dendanto D, Kornfield I.2000. Characterization of microsatellite loci in the eastern oyster, Crassostrea virginica. Mol Ecol.9:2217-2219.
    Brown BL, Gunter TP, Waters JM, Epifanio JM.2000. Evaluating genetic diversity associated with propagation-assisted restoration of American shad. Conserv Biol.14:294-303.
    Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR.1993. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet.52:922-927.
    Cao L, Kenchington E, Zouros E, Rodakis GC.2004. Evidence that the large noncoding sequence is the main control region of maternally and paternally transmitted mitochondrial genomes of the marine mussel (Mytilus spp.). Genetics.167:835-850.
    Carlsson J, Morrison CL, Reece KS.2006. Wild and aquaculture populations of the eastern oyster compared using microsatellites. J Hered.97:595-598.
    Carlsson J, Reece KS.2007. Eight PCR primers to amplify EST-linked microsatellites in the Eastern oyster, Crassostrea virginica genome. Mol Ecol Notes.7:257-259.
    Carr SM, Marshall HD.2008. Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic Cod (Gadus morhua):origins of the "Codmother," trans-Atlantic vicariance and midglacial population expansion. Genetics.180:381-389.
    Castresana J.2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol.17:40-552.
    Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S.2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet.100:713-722.
    Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M.1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics.153:1989-2000.
    Cross I, Rebordinos L.2006. Species identification of Crassostrea and Ostrea oysters by polymerase chain reaction amplification of the 5S rRNA gene. J AOAC Int.89:144-148.
    Curole JP, Kocher TD.1999. Mitogenomics:digging deeper with complete mitochondrial genomes. Trends Ecol Evol.14:394-398.
    Daugaard M, Rohde M, Jaattela M.2007. The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions. FEBS Lett.581:3702-3710
    Davis CV, Barber BJ.1999. Growth and survival of selected lines of eastern oysters, Crassostrea virginica (Gmelin 1791) affected by juvenile oyster disease. Aquaculture.178:253-271.
    Deane EE, Woo NY.2006. Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquat Toxicol.79:9-15.
    Dieringer D, Schlotterer C.2003. MICROSATELLITE ANALYSER (MSA):a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes.3:167-169.
    Dillon RT, Manzi JJ.1987. Hard clam, Mercenaria mercenaria, broodstocks:genetic drift and loss of rare alleles without reduction in heterozygosity. Aquaculture.60:99-105.
    Dreyer H, Steiner G. 2006. The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica-and the first record for a putative Atpase subunit 8 gene in marine bivalves. Front Zool.3:13.
    El Meziane A, Lehtinen SK, Hance N, Nijtmans LGJ, Dunbar D, Holt IJ.1998. A tRNA suppressor mutation in human mitochondria. Nat Genetics.18:350-353.
    English LJ, Maguire GB, Ward RB.2000. Genetic variation of wild and hatchery populations of the Pacific oyster, Crassostrea gigas (Thunberg), in Australia. Aquaculture.187:283-298.
    Evans S, Langdon C.2006. Effects of genotype×environment interactions on the selection of broadly adapted Pacific oysters (Crassostrea gigas). Aquaculture.261:522-534.
    Exadactylos A, Geffen AJ, Thorpe JP.1999. Growth and genetic variation in hatchery-reared larval and juvenile Dover sole, Solea solea (L.). Aquaculture.176:209-226.
    Falconer DS, Mackay TFC.1996. Introduction to quantitative genetics, p.105-118. Longman, London.
    FAO (Food and Agriculture Organization).2008. World aquaculture production of fish, crustaceans, molluscs, etc., by principal species (http://www.fao.org/fi/statist/summtab/default.asp).
    Foighil DO, Gaffney PM, Hilbish TJ.1995. Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American [Crassostrea virginica (Gmelin)] and Asian [C. gigas (Thunberg) C. ariakensis Wakiya] oyster species. J Exp Mar Biol Ecol.192:211-220.
    Foighil DO, Gaffhey PM, Wilbur AE, Hilbish TJ.1998. Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol.131:497-503.
    Ford SE, Haskin HH.1987. Infection and mortality patterns in strains of oysters Crassostrea virginica selected for resistance to the parasite Haplosporidium nelsoni (MSX). J Parasitol.73:268-376.
    Gaffney PM, Davis CV, Hawes RO.1992. Assessment of drift and selection in hatchery population of oysters (Crassostrea virginica). Aquaculture.105:1-20.
    Giribet G, Distel DL.2003. Bivalve phylogeny and molecular data. p.45-90. In Molecular Systematics and Phylogeography of Mollusks. Smithsonian Books, Washington and London.
    Gosling EM.1982. Genetic variability in hatchery-produced Pacific oysters (Crassostrea gigas Thunberg). Aquaculture.26:273-287.
    Grehan M, Tamotia Q Robertson B, Mitchell H.2002. Detection of Helicobacter colonization of the murine lower bowel by genus-specific PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol. 68:5164-5166.
    Guindon S, Gascuel O.2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol.52:696-704.
    Guo X, Ford S, Zhang F.1999. Molluscan aquaculture in China. J Shellfish Res.18:19-31.
    Guo X, Ford SE, DeBrosse G, Smolowitz R, Sunila I.2003. Breeding and evaluation of eastern oyster strains selected for MSX, Dermo and JOD resistance. J Shellfish Res.22:333-334 (Abstract).
    Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS.2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics.270:315-323.
    Guyomard R, Mauger S, Martineau S, Tabet-Canale K, Quillet E.2007. Construction of a female microsatellite linkage map in rainbow trout (Oncorhynchus mykiss), a tetraploid species. Aquaculture.272:S264.
    Haley LE, Newkirk GF, Waugh DW, Doyle RW.1975. A report on the quantitative genetics of growth and survivorship of the American oyster Crassostrea virginica under laboratory conditions, p.17-23.10th Proc Eur Symp Mar Biol. Niversa Press, Belgium.
    Han Z, Wang C, Song X, Guo W, Gou J, Li C.2005. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet.112:430-439.
    Hansen MM, Mensberg KD, Rasmussen G., Simonsen V.1997. Genetic variation within and among Danish brown trout (Salmo trutta L.) hatchery strains, assessed by PCR-RFLP analysis of mitochondrial DNA segments. Aquaculture.153:15-29.
    Hara M, Sekino M.2005. Genetic difference between Ezo-awabi Haliotis discus hannai and Kuro-awabi H. discus discus populations:Microsatellite-based population analysis in Japanese abalone. Fish Sci. 71:754-766.
    Haskin HH, Ford SE.1979. Development of resistance to Minchinia nelsoni (MSX) mortality in laboratory-reared and native oyster stocks in Delaware Bay. Mar Fish Rev.41:54-63.
    Hatey F, Tosser-Klopp G, Clouscard-martinato C.1998. Expressed sequenced tags for genes:a review. Genet Sel Evol.30:521-541.
    Hayes B, Baranski M, Goddard ME, Robinson N.2007. Optimisation of marker assisted selection for abalone breeding programs. Aquaculture.265:61-69.
    Hedgecock D, Li G, Banks MA, Kain Z.1999. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea. Japan Mar Biol.133:65-68.
    Hedgecock D, Li Q Hubert S, Bucklin K, Ribes V.2004. Widespread null alleles and poor cross-species amplification of microsatellite DNA cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res. 23:379-385.
    Hedgecock D, McGoldrick DJ, Bayne BL.1995. Hybrid vigor in Pacific oysters:an experimental approach using crosses among inbred lines. Aquaculture.137:285-298.
    Hedgecock D, McGoldrick DJ, Manahan DT, Vavra J, Appelmans N, Bayne BL.1996. Quantitative and molecular genetic analyses of heterosis in bivalve molluscs. J Exp Mar Biol Ecol,203:49-59.
    Hemmer-Hansen J, Nielsen EE, Frydenberg J, Loeschcke V.2007. Adaptive divergence in a high gene flow environment:Hsc70 variation in the European flounder (Platichthys flesus L.). Heredity 99:592-600.
    Hershberger WK, Perdue JA, Beattie JH.1984. Genetic selection and systematic breeding in Pacific oyster culture. Aquaculture.39:237-245.
    Hervio D, Bachere E, Boulo V, Cochennec N, Vuillemin V, Coguic YL.1995. Establishment of an experimental infection protocol for the flat oyster, Ostrea edulis, with the intrahaemocytic protozoan parasite, Bonamia ostreae:application in the selection of parasite-resistant oysters. Aquaculture.132:183-194.
    Hoffmann RJ, Boore JL, Brown WM.1992. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics.131:397-412.
    Hubert S, Hedgecock D.2004. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics.168:351-362.
    Huvet A, Jeffroy F, Fabioux C, Daniel JY, Quillien V, Van Wormhoudt A.2008. Association among growth, food consumption-related traits and amylase gene polymorphism in the Pacific oyster Crassostrea gigas. Anim Genet.39:662-665.
    Huvet A, Lapegue S, Magoulas A, Boudry P.2000. Mitochondrial and nuclear DNA phylogeography of Crassostrea angulata, the Portuguese oyster endangered in Europe. Conserv Genet.1:251-262.
    Imaizumi K, Akutsu T, Miyasaka S, Yoshino M.2007. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med.121:184-191.
    Jarayabhand P, Thavornyutikarn M.1995. Realized heritability estimation on growth rate of oyster, Saccostrea cucullata Born,1778. Aquaculture.138:111-118.
    Jones AG, Stockwell CA, Walker D, Avise JC.1998. The molecular basis of a microsatellite null allele from the white sands pupfish. J Hered.89:339-342.
    Kim KK, Kim R, Kim SH.1998. Crystal structure of a small heat-shock protein. Nature.394:595-599.
    Kimura M.1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol.16:111-120.
    Klinbunga S, Khamnamtong N, Tassanakajon A, Puanglarp N, Jarayabhand P, Yoosukh W.2003. Molecular genetic identification tools for three commercially cultured oysters(Crassostrea belcheri, Crassostrea iredalei, and Saccostrea cucullata) in Thailand. Mar Biotechnol.5:27-36.
    Kuraparthy V, Sood S, See DR, Gill BS.2009. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance Genes Lr57 and Yr40 into hard red winter wheats. Crop Sci.49:120- 126.
    Langdon C, Evans F, Jacobson D, Blouin M.2003. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture.220:227-244.
    Lannan JE.1972. Estimating heritability and predicting response to selection for the Pacific oyster Crassostrea gigas. Proc Natl Shellfish Assoc.62:62-66.
    Launey S, Barre M, Gerard A, Naciri-Graven Y.2001. Population bottleneck and effective size in Bonamia ostreae-resistant populations of Ostrea edulis as inferred by microsatellite markers. Genet Res.78:259-270.
    Launey S, Hedgecock D.2001. High genetic load in the Pacific oyster Crassostrea gigas. Genetics.159:255-265.
    Li G, Hubert S, Bucklin K, Ribes V, Hedgecock D.2003. Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol Ecol Notes.3:228-232.
    Li G, Lin Y, Qing N.1988. Population gene pools of big-size cultivated oysters (Crassostrea) along the Guangdong and Fujian coast of China. Proc Mar Biol South China Sea. China Ocean Press.
    Li Q, Kijima A.2006. Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas. J Exp Mar Biol Ecol.331:1-8.
    Li Q, Park C, Kijima A.2002. Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shellfish Res.21:811-815.
    Li Q, Park C, Kobayashi T, Kijima A.2003. Inheritance of microsatellite DNA markers in the Pacific abalone Haliotis discus hannai. Mar Biotechnol.5:331-338.
    Li Q, Yu H, Yu R.2006. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture.259:95-102.
    Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K.2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet.109:361-369.
    Littlewood DT.1994. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol Phylogenet Evol.3:221-229.
    Longwell AC, Stiles SS.1973. Oyster genetics and the probable future role of genetics in aquaculture. Malacol Rev.6:151-177.
    Lopez CE, Ouesada-Ocampo LM, Bohorquez A, Duque MC, Vargas J, Tohme J.2007. Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome.50:1078-1088.
    Lopez JV, Culver M, Stephens JC, Johnson WE, O'Brien SJ.1997. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol.14:277-286.
    Losee E.1979. Influence of heredity on larval and spat growth in Crassostrea vlrglnica. p.101-108. Proceeding of the Ninth Annual Meeting, World Mariculture Society.
    Lowe TM, Eddy SR.1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.25:955-964.
    Lunt DH, Whipple LE, Hyman BC.1998. Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol.7:1441-1455.
    Machado de Oliveira JC, Gama TG, Siqueira JF Jr, Rocas IN, Peixoto RS, Rosado AS.2007. On the use of denaturing gradient gel electrophoresis approach for bacterial identification in endodontic infections. Clin Oral Invest. 11:127-132.
    Magoulas A, Ghjetvaj B, Terzoglou V, Zouros E.1998. Three polymorphic microsatellites in the Japanese oyster, Crassostrea gigas (Thunberg). Anim Genet.29:69-70.
    Mallet AL, Haley LE.1983. Effects of inbreeding on larval and spat performance in the American oyster Aquaculture.33:229-235.
    Mallet AL, Haley LE.1984. General and specific combining abilities of larval and juvenile growth and viability estimated from natural oyster populations. Mar Biol.81:53-59.
    Maneeruttanarungroj C, Pongsomboon S, Wuthisuthimethavee S, Klinbunga S, Wilson KJ, Swan J, Li Y, Whan V, Chu KH, Li CP, Tong J, Glenn K, Rothschild M, Jerry D, Tassanakajon A.2006. Development of polymorphic expressed sequence tag-derived microsatellites for the extension of the genetic linkage map of the black tiger shrimp (Penaeus monodon). Anim Genet.37:363-368.
    McGoldrick DJ, Hedgecock D, English LJ, Baoprasertkul P, Ward RD.2000. The transmission of microsatellite alleles in Australian and North American stocks of the Pacific oyster (Crassostrea gigas):selection and null alleles. J Shellfish Res.19:779-788.
    Menzel RW.1971. Selective breeding in oysters, p.81-92. In Conference on Artificial Propagation of Commercially Valuable Shellfish. University of Delaware, Newark.
    Milbury CA, Gaffney PM.2005. Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Mar Biotechnol.7:697-712.
    Minegishi Y, Aoyama J, Inoue JG, Miya M, Nishida M, Tsukamoto K.2005. Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol Phylogenet Evol.34:134-146.
    Miya M, Nishida M.2000. Use of mitogenomic information in teleostean molecular phylogenetics:a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol.17:437-455.
    Morimoto RI, Hunt C, Huang SY, Berg KL, Banerji SS.1986. Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. J Biol Chem.261:12692-12699.
    Mullikin C, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J.2000. An SNP map of human chromosome 22. Nature.407:516-520.
    Nell JA, Perkins B.2006. Evaluation of the progeny of third-generation Sydney rock oyster Saccostrea glomerata (Gould,1850) breeding lines for resistance to QX disease Marteilia sydneyi and winter mortality Bonamia roughleyi. Aquat Res.37:693-700.
    Nell JA, Sheridan AK, Smith IR.1996. Progress in a Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), breeding program. Aquaculture.144:295-302.
    Nell JA, Smith IR, Sheridan AK.1999. Third generation evaluation of Sydney rock oyster Saccostrea commercialis (Iredale and Roughley) breeding lines. Aquaculture.170:195-203.
    Newell RIE.1988. Ecological changes in Chesapeake Bay:Are they the result of over-harvesting the A3nerican oyster, Crassostrea virginica? p.29-31. In Proceedings of Understanding the Estuary:Advances in Chesapeake Bay Research (March 1988). Chesapeake Bay Consortium, Baltimore, Maryland.
    Newkirk GF, Haley LE, Waugh DL, Doyle R.1977. Genetics of larvae and spat growth rate in the oyster Crassostrea virginica. Mar Biol.41:49-52.
    Newkirk GF, Haley LE.1982. Progress in selection for growth rate in the European oyster Ostrea edulis. Mar Ecol Prog Ser: 10:77-79.
    O'Foighil D, Gaffney PM, Hilbish TJ.1995. Differences in mitochondrial 16S ribosomal gene sequences allow discrimination among American(Crassostrea virginica) and Asian (C gigas, C. ariakensis) oyster species. J Exp Mar Biol Ecol.192:211-220.
    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature.290:470-474.
    Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM.2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breeding.39:189-208.
    Ozaki H, Fujio Y.1985. Genetic differentiation in geographical populations of the Pacific oyster (Crassostrea gigas) around Japan. Tohoku J Agr Res.36:49-61.
    Peakall R, Smouse PE.2006. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes.6:288-295.
    Perna NT, Kocher TD.1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol.41:353-358.
    Pie MR, Ribeiro RO, Boeger WA, Ostrensky A, Falleiros RM, Angelo L.2006. A simple PCR-RFLP method for the discrimination of native and introduced oyster species (Crassostrea brasiliana, C. rhizophorae and C. gigas; Bivalvia:Ostreidae) cultured in Southern Brazil. Aquac Res.37:1598-1600.
    Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A.2004. GeneClass2:a software for genetic assignment and first-generation migrant detection. J Hered.95:536-539.
    Posada D.2008. jModelTest:Phylogenetic Model Averaging. Mol Bio Evol.25:1253-1256.
    Primmer CR, M(?)ller AP, Ellegren H.1995. Resolving genetic relationships with microsatellite markers:a parentage testing system for the swallow Hirundo rustica. Mol Ecol.4:493-498.
    Prudence M, Moal J, Boudry P, Daniel JY, Quere C, Jeffroy F.2006. An amylase gene polymorphism is associated with growth differences in the Pacific cupped oyster Crassostrea gigas. Anim Genet.37:348-351.
    Ragone Calvo L, Calvo GW, Burreson EM.2003. Dual disease resistance in a selectively bred eastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture.220:69-87.
    Ragone Calvo L, Harmon V, Burreson EM.1997. Selection of oysters for resistance to two protozoan parasites. J Shellfish Res.16:327-328.
    Rawlings TA, Collins TM, Bieler R.2001. A major mitochondrial gene rearrangement among closely related species. Mol Biol Evol.18:1604-1609.
    Reece KS, Cordes JF, Stubbs JB, Hudson KL, Francis EA.2008. Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Mar Biol.153:709-721.
    Reece KS, Ribeiro WL, Gaffney PM, Carnegie RB, Allen SK Jr.2004. Microsatellite Marker Development and Analysis in the Eastern Oyster (Crassostrea virginica):Confirmation of Null Alleles and Non-Mendelian Segregation Ratios. J Hered.95:346-352.
    Reith M, Reid D, Smith C, Blanchard B, Martin-Robichaud D.2007. A genetic linkage map for Atlantic halibut (Hippoglossus hippoglossus). Aquaculture.272:S304.
    Ren J, Liu X, Zhang G, Liu B, Guo X.2009. "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes. BMC Genomics.10:84.
    Requena T, Burton J, Matsuki T, Munro K, Simon MA, Tanaka R, Watanabe K, Tannock GW.2002. Identification, detection, and enumeration of human Bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol.68:2420-2427.
    Rice WR.1989. Analyzing tables of statistical tests. Evolution.43:223-225.
    Ronquist F, Huelsenbeck JP.2003. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
    Rothschild BJ, Ault JS, Goulletquer P, Heral M.1994. Decline of the Chesapeake Bay oyster population:a century of habitat destruction and overfishing. Mar Ecol Prog Ser. 111:29-39.
    Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K.2004. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet. 109:1283-94.
    Ryman N, Stahl G. 1980. Genetic changes in hatchery stocks of brown trout (Salmo trutta). Can J Fish Aquat Sci.37:82-87.
    Saccone C, Giorgi CD, Gissi C, Pesole G, Reyes A.1999. Evolutionary genomics in Metazoa:the mitochondrial DNA as a model system. Gene.238:195-209.
    Sanchez AC, Brar DS, Huang N, Li Z. Khush GS.2000. Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci.40:792-797.
    Satoh M, Nakai Y.2007. Discrimination of Cryptosporidium species by denaturing gradient gel electrophoresis. Parasitol Res.101:463-466.
    Sauvage C, Boudry P, Koning DJ, Haley CS, Heurtebise S, Lapegue S.2010. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster(Crassostrea gigas). Anim Genet. doi:10.1111/j.1365-2052.2009.02018.x
    Schlingmann C, Dietl G, Rader I.2002. Association of polymorphisms in the promotor region of porcine HSP70.2-gene of boars to litter size. Archiv fur Tierzucht.45:171-180.
    Schuelke M.2000. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18: 233-234.
    Schwerin M, Maak S, Hagendorf A, von Lengerken G, Seyfert H.2002. A 3'-UTR variant of the inducible porcine hsp70.2 gene affects mRNA stability. BBA-Gene Struct Expr.1578:90-94.
    Sekino M, Hamaguchi M, Aranishi F, Okoshi K.2003. Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Mar Biotechnol.5:227-233.
    Serapion J, Kucuktas H, Feng J, Liu Z.2004. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Mar Biotechnol.6:364-377.
    Serb JM, Lydeard C.2003. Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae):an examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol Biol Evol.20:1854-186.
    Smith DR, Snyder M.2007. Complete mitochondrial DNA sequence of the scallop Placopecten magellanicus: evidence of transposition leading to an uncharacteristically large mitochondrial genome. J Mol Evol. 65:380-391.
    Smith PJ, Ozaki H, Fujio Y.1986. No evidence for reduced genetic variation in the accidentally introduced oyster Crassostrea gigas in New Zealand. New Zeal J Mar Fresh.20:569-574.
    Sokal RR, Rohlf FJ.1995. Biometry:the principles and practice of statistics in biological research,3rd edn. W. H. Freeman and Co., New York.
    Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W.2003. How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol.12:1339-48.
    Starrett J, Waters ER.2007. Positive natural selection has driven the evolution of the Hsp70s in Diguetia spiders. Biol Lett.3:439-444.
    Steiner-G, Hammer S.2000. Molecular phylogeny of Bivalvia (Mollusca) inferred from 18S rDNA sequences with particular reference to the Pteriomorphia. p.11-29 In The Evolutionary Biology of the Bivalvia. Geological Society of London Special Publications, London.
    Stickney HL, Schmutz J, Woods IG, Holtzer CC, Dickson MC, Kelly PD.2002. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res.12:1929-1934.
    Swofford DL.2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
    Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol.24:1596-1599.
    Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K, Alatossava T.1999. Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S-23S rRNA gene intergenic spacer region sequence comparisons. Appl Environ Microbiol.65:4264-4267.
    Toro JE, Aguila P, Vergara AM, Newkirk GF.1994. Realised heritability estimates for growth from data on tagged Chilean native oyster (Ostrea chilensis). World Aquac.25:29-30.
    Toro JE, Newkirk GF.1990. Divergent selection for growth rate in the European oyster Ostrea edulis:response to selection and estimation of genetic parameters. Mar Ecol Prog Ser.62:219-227.
    Van Ooijen JW.2006. Joinmap 4, software for the calculation of genetic maps in experimental populations. Kyazma B.V., Wageningen, Netherlands.
    Varshney RK, Graner A, Sorrells ME.2005. Genic microsatellite markers in plants:features and applications. Trends Biotechnol.23:48-54.
    Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I.2007. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes.7:307-310.
    Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J.2002. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA.99:9650-9655.
    Vrijenhoek RC, Ford SE, Haskin HH.1990. Maintenance of heterozygosity during selective breeding of oysters for resistance to MSX disease. J Hered.81:418-423.
    Waller TR.1998. Origin of the molluscan class Bivalvia and a phylogeny of major groups, p.1-45. In Bivalves: an Eon of Evolution. University of Calgary Press, Calgary.
    Wang DG, Fan J, Siao C, Berno A, Young P, Sapolsky R.1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science.280:1077-1082.
    Wang H, Guo X, Zhang G, Zhang F.2004. Classification of jinjiang oysters Crassostrea rivularis (Gould,1861) from China, based on morphology and phylogenetic analysis. Aquaculture.242:137-155.
    Wang H, Guo X.2008. Identification of Crassostrea ariakensis and related oysters by multiplex species-specific PCR. J Shellfish Res.27:481-487.
    Wang H, Li F, Xiang J.2005. Polymorphic EST-SSR markers and their mode Fenneropenaeus chinensis. Aquaculture.249:107-114.
    Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S.2005. High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques.39:885-893.
    Wang Y, Guo X.2007. Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica. Mar Biotechnol.9:500-511.
    Wang Y, Guo X.2008. Mapping disease-resistance genes in the eastern oyster(Crassostrea virginica). J Shellfish Res.27:1061-1062.
    Ward RD, English LJ, McGoldrick DJ, Maguire GB, Nell JA, Thompson PA.2001. Genetic improvement of the Pacific oyster Crassostrea gigas (Thunberg) in Australia. Aquat Res.31:35-44.
    Wilkinson GS, Chapman AM.1991. Length and sequence variation in evening bat D-Loop mtDNA. Genetics. 128:607-617.
    Wolstenholme DR.1992. Animal mitochondrial DNA:structure and evolution. Int Rev Cytol.141:173-216.
    Xia X, Xie Z.2001. DAMBE:data analysis in molecular biology and evolution. J Hered.92:371-373.
    Xu K, Kanno M, Yu H, Li Q, Kijima A.2010. Complete mitochondrial DNA sequence and phylogentic analysis of Zhikong scallop Chlamys farreri (Bivalvia:Pectinidae). Mol Biol Rep. doi:10.1007/s11033-010-9974-8.
    Xu Z, Primavera JH, Pena LD de la, Pettit P, Belak J, Alcivar-Warren A.2001. Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture. 199:13-40.
    Yu Z, Guo X.2003. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol Bull. 204:327-338.
    Yu Z, Guo X.2005. Genetic analysis of selected strains of the eastern oyster (Crassostrea virginica Gmelin) using AFLP and microsatellite markers. Mar Biotechnol.6:575-586.
    Yu Z, Guo X.2006. Identification and mapping of disease-resistance QTLs in the eastern oyster, Crassostrea virginica Gmelin. Aquaculture.254:160-170.
    Yu Z, Kong X, Zhang L, Guo X, Xiang J.2003. Taxonomic status of four Crassostrea oyster from China as inferred from mitochondrial DNA sequences. J Shellfish Res.22:31-38.
    Zhang J, Wang H, Cai Z.2007. The application of DGGE and AFLP derived SCAR for discrimination between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Food Control.18:672-676.
    Zhang L, Guo X, Bushek D, Ford S.2008. Mapping quantitative trait loci conferring dermo resistance in the eastern oyster Crassostrea virginica. J Shellfish Res.27:1067-1067.
    Zhang Q, Allen SKJr, Reece KS.2005. Genetic variation in wild and hatchery stocks of Suminoe oyster (Crassostrea ariakensis) assessed by PCR-RFLP and microsatellite markers. Mar Biotechnol.7:588-599.
    Zhao C, Li Q.2008. Expressed sequence tag-derived microsatellite markers for the Zhikong scallop (Chlamys farreri) and their utility in two other scallop species. Aquac Res.39:557-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700