家蚕类胰岛素基因BBX-B8的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素/类胰岛素生长因子信号通路在所有多细胞有机体的生长和发育,繁殖,抗逆性,新陈代谢和寿命等生物学方面扮演着重要角色。昆虫类胰岛素肽(Insulin-like peptides,ILPs)种类多样,在脑和其它组织中由多基因家族编码并表达,与脊椎动物胰岛素结构组成非常相似但功能却不相同。
     家蚕为鳞翅目昆虫的模式种,家蚕蚕素(Bombyxin,BBX)是首次发现的昆虫类胰岛素,拥有7个(A~G)家族38个成员,是昆虫ILPs功能研究的良好材料。家蚕BBX B族的B8基因(BBX-B8),编码88个氨基酸残基,在家蚕脑神经分泌细胞高水平表达。业已明确,家蚕BBX具有促进造血器官细胞增殖、参与糖代谢、调控蓖麻蚕前胸腺的分泌活性。为进一步探讨BBX-B8基因的功能,采用RNAi和转基因技术,较系统地研究上调、下调BBX-B8表达水平对家蚕生长发育、抗逆性、化性、丝蛋白合成等方面的影响。在克隆BBX-B8 cDNA的基础上,通过RT-PCR检测到了BBX-B8在家蚕脑、卵巢、精巢、中肠、前部丝腺、马氏管、脂肪体和胚胎等组织中有不同程度的表达,而翅原基、卵黄中未检测到BBX-B8的mRNA,表明家蚕BBX-B8的表达具有组织特异性;Western boltting测定结果显示,5龄3 d脑组织中BBX-B8水平较低,5 d起明显上升。将体外转录合成的BBX-B8 dsRNA腹注5龄3 d家蚕,sqRT-PCR和Western boltting检测结果显示,注射3 d后脑中BBX mRNA水平的下降程度依赖于dsRNA的注射剂量,10μg/头注射区脑组织中BBX水平下降约30%。证实BBX-B8 dsRNA对家蚕BBX基因有表达抑制效应。以此BBX-B8 RNAi家蚕模型对BBX功能的研究结果显示,5龄3 d注射BBX-B8 dsRNA,蛹翅原基发育受阻,畸形翅增多,成虫脑的形态发育明显延缓;注射2 d后进行高温(40℃3 h)和低温(4℃3 h)冲击,化蛹率比对照区提高12.76%;注射后禁食处理,饥饿状态下的化蛹率比对照区低9.29%;注射3 d后,血淋巴中SOD活性、T-AOC分别提高17.81%、41.86%,而CAT活性与对照无显著差异;血淋巴中海藻糖和海藻糖酶的水平分别上升12.68%和68.24%。化蛹1d后的蚕蛹注射BBX-B8 dsRNA(10、15μg/10μL·头),其造卵量分别增加7.86%和12.62%。
     将家蚕BBX-B8w(野生型)和BBX-B8m(改造型)基因克隆进昆虫非转座子载体pIZT/V5-6His中,构建转基因重组载体pIZT/V5-B8w和pIZT/V5-B8m,分别转化家蚕BmN细胞,经Zeocin筛选和分子生物学鉴定获得转化细胞B8w和B8m;调查结果显示B8w和B8m的生长稍慢于正常BmN细胞,对杆状病毒Bm-BacPAK6的感染性B8w和B8m与正常BmN细胞之间无明显差异。采用精子介导法将转基因载体pIZT/V5-B8w导入家蚕基因组,通过荧光筛选和分子生物学方法鉴定获得了BBX-B8w转基因家蚕。研究结果显示,转基因家蚕脑提取液促进除脑蓖麻蛹羽化的活性高于正常家蚕的脑提取液;转基因家蚕的发育延迟2-8 d,蛹体重减轻,丝蛋白的合成能力下降,且对雄蚕的影响大于雌蚕;有5.56%~14.29%的转基因蛾产下非滞育卵。提示BBX-B8是家蚕的一个重要的发育调节因子,影响蚕的组织器官发育、化性、抗逆性、产卵量、个体大小、丝蛋白合成,承担多种独特的生物学功能。
The insulin/IGF-like growth factor signaling pathway plays an important role in growth, development, reproduction, stress resistance, metabolism and lifespan in most multi-cellular organisms. Insect insulin-like peptides (ILPs) are a structurally diverse group encoded by a large multi-gene family and expressed in brains and other tissues,which are analogical in structure to that of vertebrate but serve different functions.
     As a model insect of Lepidoptera, Bombyxin (BBX) of silkworm is the first discovered insect insulin-like peptide and contains 7 gene families(A, B, C, D, E, F, G)consisting of 38 members. Accordingly, silkworm is a good material as the Lepidopteron model organism to study the function of insect ILPs. The B8 (GenBank Accession No. D00784) gene of BBX-B family encodes 88 amino acid residuces, is highly expressed in the neurosecretory cells of silkworm brain. It has been certified that silkworm BBX can promote cell proliferation of hematogenic organs, participates in saccharometabolism, regulates the secreting activity of eri silkworm pupae prothoracic gland. To further study the function of the BBX-B8 gene, the effect of up-regulation and down-regulation of BBX-B8 gene on the development, stress resistance, voltinism and fibroin synthesis were investigated by using RNAi and transgenic technology. After cloning the BBX-B8 cDNA, the expression profile was analyzed with RT-PCR, the results showed that the BBX-B8 gene was expressed in the brain, ovary, testis, midgut, anterior silk gland, malpighian tubules, fat body and embryonic, etc. in distinct expression levels, whereas the mRNA of BBX-B8 was not detected in the wing disc and the yolk, suggesting that BBX-B8 was expressed specifically in distinct tissues. The results of Western blotting showed that the expression level of BBX-B8 was lower in the brain of the third day larvae of fifth-instar, however, increased obviously from the fifth days of the fifth-instar. After injecting the synthesized BBX-B8 dsRNA in vitro into the blood of the 3-day larvae of fifth-instar, sqRT-PCR and western blotting were carried out at 3 days post injection, the results displayed that the level of mRNA declined in a dose-dependent manner, and that the level of BBX was declined strikingly by 30% in the brain after injection with BBX-B8 dsRNA (10μg per larva), indicating that the BBX expression was inhibited by injecting BBX-B8 dsRNA into silkworm. Using this BBX-B8 RNAi-silkworm model, the functions of BBX-B8 were investigated, the results indicated that the development of pupal wing disc was repressed, the proportion of deformed wing was increased and the morphological development of adult brain was significantly delayed after injecting BBX-B8 dsRNA into the 3-day larvae of fifth-instar. Compared to the control group, the pupation rate of the larvae which injected with BBX-B8 dsRNA was increased by 12.76% after injection followed by high-low temperature shock (40℃3 h, 4℃3 h) while the pupation rate of the injected larvae was decreased by 9.29% under starvation condition. Three days after the injection of BBX-B8 dsRNA into the 3-day larvae of fifth-instar (10μg per larva), the activity of SOD and T-AOC in hemolymph elevated by 17.81 % and 41.86 % respectively. The activity of CAT exhibited no discernable difference compared with control group, however, the levels of trehalose and trehalase in hemolymph increased by 12.68% and 68.24% respectively. It was also noted that the spawning number of the pupa injected with BBX-B8 dsRNA in 10 and 15μg per moth (10μL) one day after pupation increased by 7.86% and 12.62% respectively.
     Wild type BBX-B8 (BBX-B8w) and modified BBX-B8(BBX-B8m ) were cloned into insect non-transposon vector pIZT/V5-His to generate respectively recombination vector pIZT/V5-B8w and pIZT/V5-B8m. The BmN cells were transfected with the two respectively, after screening with Zeocin and molecular biological identification, the transformed BmN cells named B8w and B8m respectively, were obtained. Compared with normal BmN cells, the growth of transformed cells B8w and B8m was slower slightly and their infectivity to Bombyx mori nucleopolyhedrovirus was analogous to that of normal BmN cells. the vector pIZT/V5-B8w was transferred into silkworm eggs by sperm-mediated gene transfer. And after being screened for gfp gene and verified by molecular biological identification, the transgenic silkworms was obtained. The investigation demonstrated that extracts from the head of transgenic silkworms had higher activity of facilitating eclosion of brain-removed eri silkworm pupa compared with that of normal silkworm, and that the development of transgenic silkworms were delayed from 2 to 8 days, additionally, the weight of transgenic pupa were decreased, the ability of synthesizing silk protein was declined compared with normal silkworms, furthermore, in all cases influence on the male was more obvious than that on the female. It is also observed that about 5.56 % to 14.29 % transgenic moths laid non-diapausing eggs. All results mentioned above clearly indicated that BBX-B8 is an important developmental regulatory factor, serves to multiple specific biological functions and play an important role on the development of tissue and organ, voltinism, stress resistance, the amount of laying eggs, body size, synthesizing activity of silk protein.
引文
1. Adachi T, Takiya S, Suzuki Y, Iwami M, Kawakami A, Takahashi SY, Ishizaki H, Nagasawa H, Suzuki A. cDNA structure and expression of bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori. J. Biol. Chem., 1989, 264,7681-7685.
    2. Ament SA, Corona MS, Pollock HS, Robinson GE. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci USA, 2008, 105:4226-4231.
    3. Arpagaus M. Vertebrate insulin induces diapause termination in Pieris brassicae pupae. Roux's Arch Dev Biol, 1987, 196: 527-530.
    4. Bauer JH, Chang C, Morris N, Hozier S, Andersen S, Waitzman JS, Helfand SL. Expression of dominant-negative Dmp53 in the adult ?y brain inhibits insulin signaling. Proc Natl Acad Sci USA, 2007, 104: 13355-13360.
    5. Beier MS, Pumpuni CB, Beier JC, Davis JR. Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum development in anopheline mosquitoes (Diptera: Culicidae). J Med Entomol, 1994, 31: 561-565.
    6. Blundell TL, Dodson GG, Dodson E, Hodgkin DC, VijayanM. X-ray analysis and the structure of insulin. Recent Prog. Horm. Res., 1971, 27, 1-40.
    7. Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell, 1999, 97: 865-875.
    8. Bollenbacher WE, Granger N.“Comprehensive Insect Physiology, Biochemistry and Pharmacology”, Vol. 7, ed. by Kerkut GA, Gilbert LI. Pergamon Press, Oxford. 1985, pp.109-151.
    9. Brogiolo W, Stocker H, Ikeya T, Rintelen F,Fernandez R. Hafen E An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in
    10. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA, 2005, 102: 3105-3110.
    11. Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, Suderman RJ, Strand MR. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. Proc Natl Acad Sci USA, 2008, 105: 5716-5721.
    12. Cavaliere V, Donati A, Hsouna A, Hsu T, Gargiulo G. dAkt kinase controls follicle cell size during Drosophila oogenesis. Dev Dyn, 2005, 232: 845-854.
    13. Ceddia RB, Bikopoulos GJ, Hilliker AJ, Sweeney G. Insulin stimulates glucose metabolism via the pentose phosphate pathway in Drosophila Kc cells. FEBS Lett., 2003, 555: 307-310.
    14. Chen C, Jack J, Garofalo RS. The Drosophila insulin receptor is required for normal growth. Endocrinology. 1996, 137:846-856
    15. Chen Q, Ma E, Behar KL, Xu T, Haddad GG. Role of trehalose phosphate and development in Drosophila melanogaster. J Biol Chem, 2002, 277: 3274-3279.
    16. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 2001, 292: 104-106.
    17. Cohen E, Bieschke J, Perciavalle RM,. Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science, 2006, 313: 1604-1610.
    18. Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci USA, 2007, 104: 7128-7133.
    19. De Azevedo SV, Hartfelder K. The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J Insect Physiol, 2008, 54: 1064-1071.
    20. DeFronzo, R.A. Diabetes Rev. 1997, 5, 177-243.
    21. Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol, 2001, 231: 265-278.
    22. Elbein AD, Pan YT, Pastuszak I, Carroll D. David New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13: 17R-27R.
    23. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J, 1995, 14:3373-3384.
    24. Fukuda S. The hormonal mechanism of larval molting and metamorphosis in the silkworm. j.Fac. Sci. Tokyo Imperial Univ., Sec IV, 1944, 6: 477-532.
    25. Fullbright G, Lacy ER, Bullesbach EE. The prothoracicotropic hormone bombyxin has specific receptors on insect ovarian cells. Eur J Biochem, 1997, 245: 774-780.
    26. Giannakou ME, Goss M, Junger MA, Hafen E, Leevers S, Partridge L. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science, 2004, 305: 361.
    27. Goto S, Loeb MJ, Takeda M. bombyxin stimulates proliferation of cultured stem cells derived from heliothis virescens and mamestra brassicae larvae. In Vitro Cellular & Developmental Biology - Animal, 2005, 41(1 & 2):38-42.
    28. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. Functional senescence in Drosophila melanogaster. Ageing Res Rev., 2005, 4: 372-397.
    29. Guarente, L. and Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature, 2000, 408: 255-262.
    30. H. Frederik Nijhouta, Wendy A. Smithb, Ira Schachara, Srikanth Subramanianb, Alexandra Toblera and Laura W. Grunerta. The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Developmental Biology, 2007,302(52): 569-76.
    31. Hansen IA, Attardo GM, Roy SG, Raikhel AS. Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito. J Biol Chem, 2005, 280: 20565-20572.
    32. Hidehiko Kondo, Masaya Ino, Akinori Suzuki, Hironori Ishizaki and Masafumi Iwami. Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. J Molec Biol, 1996, 259: 926-937.
    33. Holzenberger M, Dupont J., Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 2003, 421: 182-187.
    34. Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol, 2008, 7: 10.
    35. Hsu HJ, Drummond-Barbosa D. Insulin levels control female germline stem cell mainte-nance via the niche in Drosophila. Proc Natl Acad Sci USA, 2009, 106: 1117-1121.
    36. Hulbert AJ, Clancy DJ, Mair W, Braeckman BP, Gems D, Partridge L. Metabolic rate is not reduced by dietary-restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila mela-nogaster. Exp Gerontol, 2004, 39:1137-1143.
    37. Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, RueppellO, Guzman-Novoa E, Arechavaleta-Velasco M, Chandra S, Fondrk MK, Beye M, Page RE Jr. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften. 2007, 94: 247-267.
    38. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 2004, 429: 562-566.
    39. Ichikawa M, Ishizaki H. Brain hormone of the silkworm. Nature, 1961, 191:933-934.
    40. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol., 2002, 12: 1293-1300.
    41. Ishizaki H, Mizoguchi, A Fujishita M, Suziki A, Moriya I, H. O’oka, Kataoka H, Isogai A, Tamura H, Suzuki A. Species specificity of the insect prothoracicotropic hormone (PTTH): The presence of Bombyx and Samia specific PTTHs in the brain of Bombyx mori Dev Growth Didder, 1983, 25: 593-600.
    42. Iwami M, Adachi T, Kondo H, Kawakami A, Suzuki Y, Nagasawa H, Suzuki A, Ishizaki H. A novel family C of the genes that encode bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori: isolation and characterization of gene C-1. Insect Biochem., 1990a, 20, 295-303.
    43. Iwami M, Kawakami A, Ishizaki H, Takahashi S Y, Adschi T, Suzuki Y, Nagasawa H, Suzuki A. Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Dev. Growth Differ., 1989, 31: 31-37.
    44. Iwami M, Sakurai S, Nagasawa, H. Non-vertebrate's hormone [M]. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    45. Iwami M, Tanaka A, Hano N, Sakurai S. Bombyxin gene expression in tissues other than brain detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and in situ hybridization, Experientia, 1996, 52: 882-887.
    46. Iwami M.“Molecular Mechanisms of Insect Metamorphosis and Diapause”, ed. by A. Sizuki, H. Kataoka and S. Mtsumoto, Industrial Publishing and Consulting, Inc., Tookyo, 1995, pp. 65-74.
    47. Iwami M.“Molting and Metamorphosis”, ed. by E. Ohnishi and Ishizaki H, Japan Sci. Soc. Perss, Tokyo/Springer-Verlag, Berlin, 1990b, pp.49-66.
    48. Iwami M. Bombyxin, An insect brain peptide that belongs to the insulin family, Zoological Science. 2000, 17: 1035-1044.
    49. Jhoti H, Mcleod AN, Btlundell TL, Ishizaki H, Nagosawa H, Suzuki A.Prothoracicotropic hormone has an insulin-like tertiary structure. febs Lett., 1987,219: 419-425.
    50. Johnson TE, Lithgow GJ, Murakami SJ. Gerontol. A Biol Sci Med Sci, 1996, 51: B392-B395.
    51. Kataoka H, Nagosawa H, Iaogai A, Ishizaki H, Suzuki A. Prothoracicotropic hormone of the silkworm, Bombyx mori: amino acid sequence and dimeric structure. Agric. Biol. Chem., 1991, 55: 73-86.
    52. Kawakami A, Iwami M, Nagasawa H, Suzuki A, Ishizaki H. Structure and organization of four clustered genes that encode bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 1989,86, 6843-6847.
    53. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell, 2005, 120: 449-460.
    54. Klowden MJ. in Physiologicla Systems in Insects (Academic, London), 2002, pp. 163-203.
    55. Kobayashi M, Yamazaki M. The proteinic brain hormone in an insect, Bombyx mori (Lepidoptera: Bombycidae). Appl Ent Zool, 1966, 1: 53-60.
    56. Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tater M, Yu K. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signal-ling. Nature Cell Biol., 2008, 10: 468-475.
    57. Luc Swevers,and Kostas Iatrou. The ecdysone regulatory cascade and ovarian development in lepidopteran insects: insights from the silkmoth paradigm, Insect Biochemistry and Molecular Biology, 2003, 33, 12: 1285-1297.
    58. Maniere G, Rondot I, Bullesbach EE, Gautron F, Vanhems E, Delbecque JP. Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina). J. Endocrinol., 2004, 181: 147-156.
    59. Marayama K, Hietter H, Nagosawa H, Isogai A, Tamura S, Suzuki A, Ishizaki H. Synthesis of bombyxin-IV, an insulin-like heterodimeric peptide from the silkworm, Bombyx mori. Agric Biol. Chem., 1988, 52: 3035-3041.
    60. Mark R. Brown, Kevin D. Clark, Monika Gulia, Zhangwu Zhao, Stephen F. Garczynski, Joe W. Crim,Richard J. Suderman and Michael R. Strand. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti, biochemistry, 2008, 105(15): 5716-5721.
    61. Masumura M, Satake S, Saegusa H, Mizoguchi A. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen Comp Endocrinol, 2000, 118: 393-399.
    62. Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A,Fujino M, Kitada C. A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol., 1987, 51:227-235.
    63. Moore P.,J Biol, 2003, 2(3): 161-165.
    64. Moto K, Kojima H, Kurihara M, Iwami M, Matsumoto S, Cell-specific expression of enhanced green fluorescence protein under the control of neuropeptide gene promoters in the brain of the silkworm, Bombyx mori, using Bombyx mori nucleopolyhedrovirus-derived vectors. Insect Biochemistry and Molecular Biology, 2003, 33: 7-12.
    65. Nagasawa H, Isogai A, Suzuki A, Tamura S and Ishizak H. Purification and properties of the prothoracicotropic hormone of the silkworm, Bombyx mori. Develop Growth and Different, 1979, 21: 29-38.
    66. Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Ishizaki H, Mizoguchi A, Fujiwara, Y and Suzuki A. Amino-Terminal Amino Acid Sequence of the Silkworm Prothoracicotropic Hormone: Homology with Insulin. Science, 1984, 226: 1344-1345.
    67. Nagata K, Hatanaka H, Kohda D, Kataoka H, Nagosawa H, Isogai A, Ishizaki H, Suzuki A, Inagaki F. Identification of the receptor recognition surface of bombyxin-11, an insulin-like peptide of the silkmoth Bombyx mori. Critical importance of the B-chain central part. J Mol. Biol., 1995, 253: 759-770.
    68. Nagata K, Hatanaka H, Kohda D, Kataoka H, Nagosawa H, Isogai A, Ishizaki H, Suzuki A, Inagaki F. Threedimensional solution structure of bombyxin-I1 an insulin-like peptide of the silkmoth Bornbyx mori - structural comparison with insulin and relaxin. J Mol. Biol., 1995, 253: 749-758.
    69. Nagosawa H, Kataoka H, Isogai A, Tamura S. Suzuki A, Mizogechi A. Fujiwara Y, Suzuki A. Takuhashi SY. Ishizaki H. Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. USA, 1986, 83: 5840-5843.
    70. Nagosawa H, Marayama K, Sato B, Hietter H, Kataoka H, Isogai A, Tamura S, Ishizak i H, SembaT, Suzuki A.“Peptide Chemistry 1987”, ed. By T. Shiba and S. Sakakibara, Protein Research Foundation, Osaka, 1988, pp. 123-126.
    71. Nakahara Y, Matsumoto H, Kanamori Y, Kataoka H, Mizoguchi A, Kiuchi M, Kamimura M. Insulin signaling is involved in hematopoietic regulation in an insect hematopoietic organ. Journal of Insect Physiology, 2006, 52: 105-111.
    72. Nijhout HF, Grunert LW. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc Natl Acad Sci USA., 2002, 99: 15446-15450.
    73. Nijhout HF. The control of body size in insects. Dev Biol, 2003, 26l(1): 1-9.
    74. O’Connor K, Baxter D. The demonstration of insulin-like material in the honey bee Apis mellifera. Comparative Biochem Physiol B, 1985, 81: 755-760.
    75. Pinkston JM, Garigan D, Hansen M, Kenyon C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science, 2006, 313: 971-975.
    76. Richard DS, Rybczynski R, Wilson TG, Wang Y, Wayne ML, Zhou Y, Partridge L, Harshman LG. Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: Female sterility of the chico insulin signaling mutation is autonomous to the ovary. J. Insect Physiol., 2005, 51: 455-464.
    77. Riehle MA, Brown MR. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res. 2002, 308: 409-420.
    78. Riehle MA, Brown MR. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 1999, 29: 855-860.
    79. Riehle MA, Brown MR. Molecular analysis of the serine/threonine kinase Akt and its expression in the mosquito Aedes aegypti. Insect Mol. Biol., 2003, 12: 225-232.
    80. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 2002, 296: 1118-20.
    81. Saegusa H, Mizoguchi A, Kataoka H, Nagasawa H, Suzuki A, Ishizaki H. Changes in the titer of bombyxin-immunoreactive material in hemolymph during postembryonic development of the silkmoth Bombyx mori. Dev. Growth Differ, 1992, 34: 595-605.
    82. Saito T, Iwabuchi K. Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori hemocyte division in single-cell culture. Appl Entomol Zool, 2003, 38 (4): 583-588.
    83. Salam SEA, Moto K, Sakurai S, Iwami M. Transcription element responsible for the brain cell-specific expression of the Bombyxin gene that encodes an insect insulin-related peptide,Zoological Science 2001, 18: 543-549.
    84. Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, Mizoguchi A. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol Biochem Mol Biol, 1997, 118: 349-57.
    85. Satake S, Nagata K, Kataoka H, Mizoguchi A. Bombyxin secretion in the adult silkmoth Bombyx mori: sex-specificity and its correlation with metabolism. J Insect Physiol, 1999, 45: 939-45
    86. Sebastian G, Linda P. The functions of insulin-like peptides in insects, IGFs: local repair and survival factors throughout life span, Springer Berlin Heidelberg, 2010: 105-124.
    87. Selman CS, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadain F, Okkenhaug K, Schuster E, Blanc E, Piper MD, Al-Qassab H, Speakman JR, Carmignac D, Robinson IC, Thonton JM, Gems D, Partridge L, Withers DJ. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. Faseb J, 2008, 22: 807-818.
    88. Shingleton AW, Das J, Vinicius L, Stern DL. The temporal requirements for insulin signaling during development in Drosophila. PLOS Biol, 2005, 3(9): e289.
    89. Shintaro Goto, Marcia J.Loeb, Makio Takeda. Bombyxin stimulates proliferation of cultured stem cells derived from heliothis virescens and mamestra brassicae larvae. In Vitro Cellular & Developmental Biology - Animal, 2005: 41(1, 2): 38-42.
    90. Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol, 1998, 16, 460-468.
    91. Spencer CC, Howell CE, Wright AR, Promislow DE. Testing an aging gene in long-lived Drosophila strains: increased longevity depends on sex and genetic background. Aging Cell, 2003, 2, 123-130.
    92. Steiner DF, Chan S.J, Welsh JM, Kwok SCM. Structure and evolution of the insulin gene. Ann.Rev Geneet., 1985, 19, 463-484.
    93. Suenobua A, Mizoguchib A, Ichikawa T. General and Comparative Endocrinology, 2004, 137: 219-226.
    94. Sun J, Molitor J, Tower J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech Ageing Dev, 2004, 125, 341-349.
    95. Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster. Mol Cell Biol, 1999, 19: 216-228.
    96. T Noguchi, Adachi-Yamada T, Katagiri T, Kawakami A, Iwami M, Ishibashi J, Kataoka H, Suzuki A, Go M, Ishizaki H. Insect prothoracicotropic hormone: a new member of the vertebrate growth factor superfamily. FEBS Lett., 1995, 376: 251-256.
    97. Tanaka M, Kataoka H, Nagata K, Nagasawa H, Suzuki A. Morphological changes of BM-N4 cells induced by bombyxin, an insulin-related peptide of Bombyx mori. Regulatory peptides, 1995, 57(3): 311-318.
    98. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science, 2003, 299: 1346-1351.
    99. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 2001, 292: 107-110.
    100.Tatar M. The neuroendocrine regulation of Drosophila aging. Exp. Gerontol., 2004,39: 1745-1750.
    101.Tsuzuki S, Masuta T, Furuno M, Sakurai S, Iwami M. Structure and expression of bombyxin E1 gene, a novel family gene that encodes bombyxin-IV, an insect insulin-related neurosecretory peptide. Comp Biochem Physiol, 1997, 117B: 409-416.
    102.Tu MP, Yin CM, Tatar M. Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell, 2002, 1: 158-160.
    103.Tu MP, Yin C-M, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol, 2005, 142: 347-356.
    104.Walker GA, Lithgow GJ. Lifespan extension in C.elegans by a molecular chaperone dependent upon insulin -like signals. Aging Cell, 2003, 2: 131-139.
    105.Walker GA., White TM, McColl G, Jenkins NL, Babich S, Candido EP, Johnson TE, Lithgow GJ. Heat shock protein accumulation is up-regulated in a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci, 2001, 56: B281-B287.
    106.Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell, 2003, 5: 811-816.
    107.Wang S, Tulina N, Carlin DL, Rulifson EJ. The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci USA, 2007, 104: 19873-19878.
    108.Weinkove D, Neufeld TP, Twardzik T, Waterfield MD, Leevers SJ. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr Biol, 1999, 9: 1019-29
    109.Wessells RJ, Bodmer R. Age-related cardiac deterioration: insights from Drosophila. Front Biosci, 2007, 12: 39-48.
    110.Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. Insulin regulation of heart function in aging fruit flies. Nat Genet, 2004, 36: 1275-1281.
    111.Wheeler DE, Buck N, Evans JD. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol, 2006, 15: 597-602.
    112.Wu Q, Brown M R. Signaling and function of insulin-like peptides in insects. Annual Review of Entomology, 2006, 51: 1-24.
    113.Yamazaki M, Kobayashi M. Purification of the prothoracicotropic hormone of the silkworm, Bombyx mori. J Insect Physiol, 1969, 15: 1981.
    114.Yang CH, Belawat. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science, 2008, 319: 1679-1683.
    115.Yoshida I, Moto K, Sakurai S, Iwami M. A novel member of bombyxin gene family: structure and expression of bombyxin G1 gene, an insulin-related peptide gene of the silkmoth Bombyx mori. Dev Genes Evol, 1998, 208: 407-410.
    116.Yoshida I, Suzuki S, Abdel Salam SE, Ino M, Korayem AM, Sakurai S, Iwami M. Bombyxin F1 gene: structure and expression of a new bombyxin family gene that forms a pair with bombyxin B10 gene. Zoological Science: 1997, 14: 615-622.
    117.长泽宽道,郭郛,钟香臣,夏邦颖,斜木昭患,磷贝彰,崛康宏,田村三郎,石崎宏矩.家蚕脑激素的分离与提纯.中国科学, 1980, 8: 791-797.
    118.陈苏,李传芬,李子剑,李珍祖,李云龙,胰岛素与脱皮激素调控果蝇个体大小的信号机制.生命的化学, 2006, 26(4): 291~293.
    119.鈴木匠,伊賀正年,善岡克次,桜井勝,岩見雅史(2006),カイコガにおける昆虫インスリン様ホルモンbombyxinのシグナル伝達機構,日本分子生物学会2006フォーラム(名古屋市)。
    120.石崎宏矩著,サナギから蛾へカイコの脳ホルモンを究める,名古屋大学出版社(日本国名古屋), 2006, 9.
    121.野猪雅栽,古野正朗,桜井勝,岩見雅史.第17回日本分子生物学会年会プログラム講演要旨集, 1994, pp.280.
    122.永田宏次,鈴木昭憲,稲垣冬彦.蛋白質核酸酵素, 1996, 41: 1485-1496.
    1. Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K. Generation of hybrid transgenic silkworms that express bombyx mori prolyl-hydroxylaseα-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol, 2006, 126(2):205-219.
    2. Alfred M. Handler, Susan D. McCombs, Malcolm J. Fraser, Stephen H. Saul. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA, 1998, 95(13): 7520-7525.
    3. Anthony E. Brown, Laurence Bugeon, Andrea Crisanti,1 and Flaminia Catteruccia. Stable and heritable gene silencing in the malaria vector Anopheles stephensi. Nucl Acids Res, 2003, 31(15): e85.
    4. Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in thetriatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol, 2006, 36: 683-6931.
    5. Atsushi Ohnishi, Kana Hashimoto, Kiyohiro Imai and Shogo atsumoto. Functional characterization of the Bombyx mori fatty acid trabsport protein (BmFATP) within the silkmoth pheromone gland. Journal of biological chemistry, 2009, 284(8): 5128-5136.
    6. Attardo GM, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS. RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA, 2003, 100: 13374 - 13379.
    7. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biotechnol. 2007, 25(11): 1322 - 1326.
    8. Boutla A, Delidakis C, Livadaras I, Tsagris M, Tabler M. Short 5’-phosphorylated double-stranded RNAs induce RNA interference in Drosophila. Curr Biol, 2001,11(22): 1776-1780.
    9. Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev, 1999, 1: 11-15.
    10. Caplen NJ, Fleenorb J, Fire A, Morgan RA. Morgan dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene, 2000, 252: 95 - 105.
    11. Caplen NJ, Parrish S, Imani F, Fire A, Morgan R A. Specific inhibition of geneexpression by small double stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA, 2001, 98(17): 9742-9747.
    12. Caplen NJ, Zheng Z, Falgout B, Morgan RA. Inhibition of viral gene expression and replication in mosquito cells by dsRNA triggered RNA interference. Mol Ther, 2002. 6: 243 - 251.
    13. Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 1994, 65: 205-209.
    14. Deodikar GB, Kamate IA, Kshirsagar KK. New strains of mulberry silkworm (Bombyx mori L.) by induced anomalus parthenogenesis. Ind J Seri, 1977, 16(1):43-48.
    15. Dong Y, Friedrich M. Nymphal RNAi: Systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol, 2005, 5:25-32.
    16. Dulcis D, Levine RB, Ewer J. Role of the neuropeptide CCAP in Drosophila cardiac function. J Neurobiol, 2005, 64(3):259-74.
    17. Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominal injection of double-stranded RNA into anesthetized adilt Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry, 20016(6): 665-670.
    18. Eaton BA, Fetter RD, Davis GW. Dynactin is necessary for synapse stabilization. Neuron, 2002, 34(5): 729-741.
    19. Elbashir SM, Martinez J, Pakaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila melanogaster embryolysate. EMBO J, 2001, 20: 6877-6888.
    20. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE. An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA, 2007, 104(7): 2419 - 2424.
    21. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature, 1998, 391 (6669): 744-745
    22. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998b, 391(6669): 806-811.
    23. Geley S, Muller C. RNAi: Ancient mechanism with a promising future. Exp Gerontol, 2004, 39(7): 985-998.
    24. Handler AM. Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem Mol Biol, 2002, 32:1211-1220
    25. Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251.
    26. Hino R, Tomita M, Yoshizato K. The generation of germline transgenic silkworms for the production of biologically active recombi nant fusion proteins of fibroin and human basic fibroblast growth factor. Biomaterials, 2006, 27(33): 5715-5724.
    27. Holen T, Amarzguioui M, Wiiger M, Babaie E. Postional effect of short interferencing RNAs targeting the human coagulation trigger tissue factor. Nucleic Acid Research, 2002, 30(8):1757-1766.
    28. Horard B, Mange A, Pelissier B, Couble P. Bombyx gene promoter analysis in transplanted silk gland transformed by particle delivery system. Insect Mol Biol, 1994, 3: 261-265.
    29. Hossain M, Shimizu S, Matsuki M, Masanori Imamura, Sho Sakurai and Masafumi Iwami. Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochemistry and Molecular Biology, 2008, 38: 1001-1007.
    30. Imamura M, Nakai J, Inooue S, Quan G X, Kanda T, Tamura T. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics, 2003, 165: 1329-1340.
    31. Isobe R, Kojima K, Matsuyama T, Quan G X, Kanda T, Tamura T, Sahara K, Asano SI, Bando H. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Archives of Virology, 2004, 149(10): 1931-1940.
    32. Kahsai L, Martin JR, Winther AM. Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol, 2010, 213: 2256-2265.
    33. Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnology, 2000, 18(8):896-898.
    34. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 1998,95(7): 1017-1026.
    35. Kurihara H, Sezutsu H, Tamura T, Yamada K. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun, 2007, 355(4): 976-980.
    36. Lee KS, Kim BY, Choo YM, Yoon HJ, Kang PD, Woo SD, Sohn HD, Roh JY, Gui ZZ, Je YH, Jin BR. Expression profile of cathepsin B in the fat body of Bombyx mori during metamorphosis. Comp Biochem Physiol B Biochem Mol Biol, 2009, 154(2): 188-194.
    37. Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tater M, Yu K. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signal-ling. Nature Cell Biol, 2008, 10: 468-475.
    38. Lee YS, Carthew RW. Making a better RNAi vector for Drosophila: use of intron spacers. Methods, 2003, 30: 322-329.
    39. Levin DM, Breuer LN, Zhuang S, Anderson SA, Nardi JB, Kanost MR. Ahemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol, 2005, 35: 369-380.
    40. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Na Biotechnol, 2007, 25: 1307 - 1313.
    41. March JC, Bentley WE. RNAi-based tuning of cell cycling in Drosophila S2 cells: Effects on recombinant protein yield. Appl Microbiol Biotechnol, 2007, 73(5): 1128-1135.
    42. Masafumi Yamao, Nagakazu Katayama, Hiroshi Nakazawa, Minoru Yamakawa, Yoshiyuki Hayashi, Saburo Hara, Kaeko Kamei, and Hajime Mori. Gene targeting in the silkwornn by use of a baculovirus. Gents and Devolopment, 1999, 13:511-516.
    43. Masumoto M, Yaginuma T, Niimi T. Functional analysis of Ultrabithorax in the silkworm, Bombyx mori, using RNAi. Dev Genes Evol, 2009, 219(9-10): 437-44.
    44. Mirka U, Masako A, Lynn R, and Marek J. Heat-inducible transgenic expression in the silkworm Bombyx mori. Dev Gene Evol, 2002, 212: 145~151.
    45. Mori H, Yamao M, Nakazawa H, Sugahara Y, Shirai N, Matsubara F, Sumida M, Imamura T. Transovarian transmission of a foreign gene in the silkworm Bombyx mori, by Autographa californica nuclear polyhedrosis virus. Biolechnology, 1995, 13: 1005-1007.
    46. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. The Plant Cell, 1990, 2 (4): 279 - 289.
    47. Newmark PA, Reddien PW, Cebria F, Alvarado AS. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 11861-11865.
    48. Ninaki O, Maekawa H, GamoT, Koga, K. and Sakaguchi, B. Hatchability of silkworm eggs injected with DNA at early embryonic stages. J Seric Sci Jpn, 1985,
    54: 428-434.
    49. O’Brochta DA, Atkinson PW. Transposable elements and gene transformation in non-dnosophilid insects. Insect Biochem Molecular Biol, 1996, 26(8~9): 739-753.
    50. Ohnishi A, HullJJ, Matsumoto S, Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci USA, 2006, 103:4398-4403.
    51. Paddison PJ, Caudy A, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(3): 1443-148.
    52. Quan GX, Kanda T, Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double stranded RNA of the silkworm white gene. Insect Molecular Biology, 2002, 11 (3): 217-222.
    53. Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem, 2002, 277: 46849-46851.
    54. Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature, 2009, 458(7236):346-350.
    55. Saleh MC. van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 2006, 8: 793-802.
    56. Sharp PA. RNAi and double-strand RNA. Gene & Development, 1999, 13: 139-141.
    57. Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected SF21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Boil Chem, 2007, 282: 7312-7319.
    58. Tabunoki H, Higurashi S, Ninagi O, Fujii H, Banno Y, Nozaki M, Kitajima M, Miura N, Atsumi S, Tsuchida K, Maekawa H, Sato R: A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS LETT, 2004, 567:175-178.
    59. Tamura T, Kanda T, Takiya S, Okano K. and Maekawa H. Transient expression of chimeric CAT genes injected into early embryos of the domesticated silkworm Bombyx mori. Jpn J Genet, 1990, 65: 401-410.
    60. Tan A, Tanaka H, Tamura T, Shiotsuki T. Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA, 2005, 102(33): 11751-11756.
    61. Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M. Heritable and inducible gentic interference by double-stranded RNA encoded by transgenes. Nature Gentics, 2000, 24(2): 180-183.
    62. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. The neuropeptide SIFamidemodulates sexual behavior in Drosophila. Biochem Biophys Res Commun, 2007, 352(2): 305-310.
    63. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G.. 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochemistry and Molecular Biology, 2002, 32:247-253.
    64. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nature Biotechnology, 2003,21: 52-56.
    65. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology, 2008, 9(1): R10.1-R10.22.
    66. Toshiki T, Chantal T, Corinne R, Toshio K, Eappen A, Mari K, Natuo K, Jean-Luc T, Bernard M, Gerard C, Usda ARS. Germline trans-formation of the silkworm Bomhyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology, 2000, 18: 81-84
    67. Travanty EA, Adelman ZN, Franz AWE, Keene KM, Beaty BJ, Blair CD, James AA, Olson KE, Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem Mol Biol, 2004, 34 (7): 607 -613.
    68. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol, 2006, 15: 383 - 391.
    69. Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T. Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics, 2007, 277: 213-220.
    70. UhlírováM, Asahina M, Riddiford LM, Jindra M. Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol, 2002, 212(3): 145-151.
    71. Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M. Use of Sindbis virus mediated RNA interference to demonstrate a conserved role of Broad Complex in insect metamorphosis. Proc Natl Acad Sci USA, 2003, 100: 15607 - 15612.
    72. Wakiyama M, Matsumoto T, Yokoyama S. Drosophila U6 promoter-driven short hairpin RNAs effectively induce RNA interference in Schneider 2 cella. Biochem Biophys Res Commun, 2005, 331(4): 1163-1170.
    73. Walshe DP, Lehane SM, Lehane MJ, Haines LR. Prolonged gene knockdown inthe tsetse fly Glossina by feeding diuble stranded RNA. Insect Mol Biol, 2009, 18(1): 11-19.
    74. Wang J, Bow H, Ding JL. Functional expression of full length Limulus Factor C in stably transformed Sf9 cells. Biotechnol Lett, 2001, 23: 71-76.
    75. Wang SP, Guo TQ, Guo XY, Huang JT, Lu CD. Structural analysis of fibroin geavy chain signal peptide of silkworm Bombyx mori. Acta Biochim Biophys Sin, 2006, 38: 507-513
    76. Winther AM, Acebes A, Ferrús A. Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci, 2006, 31(3): 399-406.
    77. Yamamoto M, Yamao M, Nishiyama H, Sugihara S, Nagaoka S, Tomita M, Yoshizato K, Tamura T, Mori H. New and highly efficient method for silkworm transgenesis using Autographa californica nucleopolyhedrovirus and piggyBac transposable elements. Biotechnol Bioeng, 2004, 88(7): 849-53.
    78. Yamao M, Katayama N, Nakazawa H, Yamakawa M, Hayashi Y, Hara S, Kamei K, Mori H. Gene targeting in the silkworm by use of a baculovirus. Genes Dev, 1999, 13: 511-516.
    79. Zhang F, Zhao Y, Chen X, Xu AY, Huang JT, Lu CD. Fluorescent transgenic silkworm.生物化学与生物物理进展, 1999, 31(2): 119-123.
    80. Gui ZZ, Lee KS, Kim BY, Choi YS, Wei YD, Choo YM, Kang PD, Yoon HJ, Kim I, Je YH, Seo SJ, Lee SM, Guo X, Sohn HD, Jin BR. Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC developmental biology, 2006, 6: 49.
    81. Zumore PO. RNA interference: listening to the sound of silence. Nat Struct Biol, 2001, 8(9): 746-750.
    82.曹广力,薛仁宇,何泽,郑小坚,沈卫德,贡成良.基于piggyBac转座子转hGM-CSF基因的家蚕研究.蚕业科学, 2006, 32(3): 324-327.
    83.陈慧梅,曹广力,薛仁宇,贡成良.非转座子载体介导的稳定转化家蚕BmN细胞表达人粒细胞-巨噬细胞集落刺激因子.生物工程学报, 2010, 26(6):
    830-836.
    84.代红久,徐国江, Thomas Jeanluc,王铸钢,蒋容静,费俭.利用鳞翅目来源的转座子piggyBac建立高效稳定的转基因家蚕技术,科学通报, 2005, 50(14): 1470-1474.
    85.河本夏雄.用莫洛尼氏鼠白血病病毒载体向家蚕体细胞导人外源基因.日本蚕丝学会讲演要旨, 1999, 53.
    86.黄辛.转基因技术实现蚕吐蛛丝-蜘蛛拖牵丝融合基因在家蚕丝基因中的插入并获得荧光茧.科学时报, 2000, 891: 1.
    87.黄自然,陈劲伟.昆虫防御机制研究的一些进展.生物学通报, 1990,(10):9-10.
    88.贾海芳.家蚕丝腺生物工厂表达hGM-CSF基因打靶载体的构建及应用研究.苏州大学,2008.
    89.李曦.家蚕丝腺生物工厂表达hGM-CSF的研究.苏州大学, 2009.
    90.李振刚,周丛照,唐恒立,范久戈. YAC介导的天蚕丝素基因向家蚕的转移──天蚕丝素基因-YAC克隆在家蚕的表达.昆虫学报, 1997, 40(1): 1-6.
    91.李振刚,周丛照,钱信果. YAC介导的天蚕丝素基因向家蚕的转移及其在F2代的表达.科学通报, 1995, 40 (24): 2267-2269.
    92.刘春,帅小蓉,程廷才,徐汉福,李春峰,代方银,夏庆友,向仲怀.家蚕胚胎发育时期的RNA干涉研究.生物化学与生物物理进展, 2004, 31(4): 322-327.
    93.刘春,徐汉福,陈玉琳,李春峰,张美蓉,夏庆友.家蚕转基因研究及肌动蛋白A3启动子的表达分析.蚕学通讯, 2007, 27(3): 1-6.
    94.孟智启,姚山麟,王为民,叶爱红,刘静.基因枪喷射技术在家蚕外源基因转移中的应用.浙江农业学报,1992, (2): 93- 95.
    95.缪云根.昆虫转座子及在家蚕中的应用.蚕桑通报, 2004, 35(2): 6-10.
    96.森肇.在家蚕中的基因整合.日本蚕丝学会讲演要旨集, 1998, 436.
    97.神田俊男,田村俊树.空气压を利用しにカイコ初期胚へのDNAの微量注射法.蚕丝昆虫研报. 1991, (2): 31-46.
    98.孙延波,李菁华,史红艳. mlL-4昆虫表达载体pIZT/V5-His的构建及其高效表达.吉林大学学报:医学版, 2006, 32(2): 194-198.
    99.唐盛高,尹隽,钟江.几种诱导昆虫细胞RNA干扰质粒的构建和效果比较.复旦学报(自然科学版), 2006, 45(6): 795-799.
    100.田村俊树.转基因昆虫研究.蚕学通讯, 2002, 21 (4): 17-21.
    101.汪琳.外源基因在家蚕中靶向整合及线粒体载体研究.西南农业大学, 2002.
    102.王根洪,刘春,杨远萍,吴雪峰,夏庆友. siRNA介导的家蚕ABC转运蛋白相关基因的干涉研究.蚕业科学, 2005, 31 (2): 117-120.
    103.夏庆友,帅小蓉,刘春,朱勇. RNA干涉及其在蚕功能基因组研究中的应用.蚕业科学, 2003, 29 (3): 213-216.
    104.肖巧学,曹阳,黄自然,鲁成.家蚕转座子表达栽体pSVHK1.4的构建.蚕业科学, 2000, 26(4): 228-233.
    105.谢敏.控制家蚕发育的转基因研究,苏州大学, 2009.
    106.薛仁宇,曹广力,王崇龙,刘波,沈卫德,贡成良. ie-1和lef-1基因dsRNA表达元件转染及转化细胞对家蚕核型多角体病毒增殖的抑制.蚕业科学, 2008, 4(2): 250-256.
    107.薛仁宇.表达dsRNA的转基因家蚕对BmNPV的抗性研究.苏州大学, 2009.
    108.杨广,尤民生,赵伊英,刘春辉.昆虫的RNA干扰.昆虫学报, 2009, 52(10):1156-1162.
    109.杨俊海.日本首先在世界上用转基因蚕成功开发出了具有荧光的高机能丝线及纤维.世界农业, 2009, 5: 26.
    110.杨中侠,文礼章,吴青君,王少丽,徐宝云,张友军. RNAi技术在昆虫功能基因研究中的应用进展.昆虫学报, 2008, 51(10): 1077-1082.
    111.张峰,陈秀,赵昀,祁国荣,黄君霆,陆长德.抗NPV-核酶转基因蚕的研究.生物化学与生物物理学报, 1999, 31(3): 331-333.
    112.张鹏杰,薛仁宇,曹广力,贡成良.表达短ie-1 dsRNA的转化细胞对家蚕核型多角体病毒的抑制作用.蚕业科学, 2008, 34 (3): 459-465.
    113.张星,胡小龙,王晓娟,谢敏,虞晓华,薛仁宇,曹广力,贡成良.家蚕hsp23.7启动子瞬时表达载体的构建及活性检测.中国科技论文在线精品论文, 2009, 2(11): 1194-1202.
    114.赵越,李曦,曹广力,薛仁宇,贡成良.转基因家蚕丝腺组织和转化家蚕培养细胞表达hIGF-I.中国科学C辑:生命科学, 2009, 39(7): 677- 684.
    115.赵越.转基因家蚕丝腺生物反应器表达IGF-1的研究.苏州大学, 2009.
    116.中国新闻网.日本科研人员通过转基因蚕制出荧光丝[EB/OL]. 2008 -10 -25. http:∥w ww. Chinahews.com.cn / gilsjkj/news/2008 /10-25 /1425277. shtml.
    117.周文林,王崇龙,刘波,曹广力,薛仁宇,沈卫德,贡成良. piggyBac转座子介导的家蚕细胞转基因研究初探.蚕业科学, 2007, 33(1): 30-35.
    118.周秀娟,牛长缨,雷朝亮.转基因昆虫的应用研究进展.昆虫知识, 2008, 45(3):368-373.
    119.朱成钢,金勇丰,史锋,金荣仲,吴玉澄,张耀洲.用丝心蛋白轻链基因构建转基因家蚕基因打靶载体.农业生物技术学报, 2002, 10(2): 171-175.
    1. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid Guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162:156-159.
    2. DL斯佩克特著.黄培堂译.细胞实验指南.北京:科学出版社. 2001.
    3. Hossain M, Shimizu S, Matsuki M, Imamura M, Sakurai S, Iwami M. Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochemistry and Molecular Biology, 2008, 38: 1001–1007.
    4. Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fujino M, Kitada C. A monoclonal antibody against a synthetic fragment of bombyxin (4 K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol, 1987, 51(3):227-35.
    5. Sakurai S. Temporal organization of endocrine events underlying larval-pupal metamorphosis in the silkworm, Bombyx mori. J Insect Physiol, 1984, 30: 657-664.
    6. Sch?gger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem, 1987, 166: 368-379.
    7.程家安,唐振华.昆虫分子科学.北京:科学出版社. 2001.
    8.李永明,赵玉琪著.李电东,陈巍译.实用分子生物学方法手册.北京:科学出版社. 1998.
    9.吕鸿声.昆虫病毒分子生物学.北京:中国农业科学出版社. 1998.
    10.萨姆布鲁克著.黄培堂等译.分子克隆实验指南.北京:科学出版社. 1998.
    1. Arquier N, Géminard C, Bourouis M, et al. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab, 2008, 7(4):333-338.
    2. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol, 2001, 11: 213-221.
    3. Butler AA, Le Roith D. Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol, 2001, 63: 141-164.
    4. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid Guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162: 156-159.
    5. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol, 2002, 12(15): 1293-300.
    6. Ishizaki H. Molecular characterization of the brain secretory peptides, prothoracicotropic hormone (PTTH) and bombyxin, of the silkmoth Bombyx mori. Proceedings of the Japan Academy, Series B, 2004, 80, 5:195-203.
    7. Iwami M, Sakurai S, Nagasawa, H. Non-vertebrate's hormone. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    8. Iwami M, Tanaka A, Hano N, Sakurai S. Bombyxin gene expression in tissues other than brain detected by reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. Experientia, 1996, 52: 882- 887.
    9. Iwami M. Bombyxin, an insect brain peptide that belongs to the insulin family. Zoological Science, 2000, 17: 1035-1044.
    10. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-likegene that regulates longevity and diapause in Caenorhabditis elegans. Science, 1997, 277: 942-946.
    11. Kondo H, Ino M, Suzuki A, Ishizaki H, Iwami M. Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. J Molec Biol, 1996, 259: 926 - 937.
    12. Mizoguchi A, Hatta M, Sato S, Nagasawa H, Suzuki A, Ishizaki H. Developmental change of bombyxin content in the brain of the silkmoth Bombyx mori. J Insect Physiol, 1990, 36: 655- 664.
    13. Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fujino M, Kitada C.. A monoclonal antibody against a synthetic fragment of bombyxin (4 K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol, 1987, 51(3):227-35.
    14. Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Mizoguchi A, Fujiwara Y, Suzuki A, Takahashi S Y, and Ishizaki H. Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science, 1984,226: 1344 -1345.
    15. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 2002, 296: 1118-1120.
    16. Saegusa H, Mizoguchi A, kitahora H, Nagasawa H, Suzuki A, Ishizaki H. Changes in the titer of bombyxin-immunoreactive material in hemolymph during the postembryonic development of the silkmoth Bombyx mori. Develop Growth and Differ, 1992, 34(5): 595-605.
    17. Sakurai S. Temporal organization of endocrine events underlying larval-pupal metamorphosis in the silkworm, Bombyx mori. J Insect Physiol, 1984, 30: 657-664.
    18. Saltiel A R, Kahn C R. Insulin signaling and the regulation of glucose and lipid metabolism, Nature, 2001, 414: 799- 806.
    19. Sch?gger H, G. von jagow. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem, 1987, 166: 368-379.
    20. Sebastian G , Linda P, The functions of insulin-like peptides in insects// Clemmons D R,Robinson I C A F,Christen Y. IGFs: local repair and survival factors throughout life span. Berlin Heidelberg:Springer Publishing, 2010, 105-124.
    1. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev. 2008, 125(11-12): 984-995.
    2. Bai H, Palli SR. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi. Dev Biol. 2010, 344(1): 248- 258.
    3. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid Guanidinium thiocyanate-phenol-chloroform extraction. Anal.Biochem. 1987, 162:156-159.
    4. Dulcis D, Levine RB, Ewer J. Role of the neuropeptide CCAP in Drosophila cardiac function. J Neurobiol. 2005, 64(3): 259-74.
    5. Elbashir SM, Martinez J, Pakaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila Melanogaster embryolysate. EMBO J, 2001, 20: 6877- 6888.
    6. Fire A , XuS , Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature, 1998, 391: 744-745.
    7. Gui ZZ, Lee KS, Kim BY, Choi YS, Wei YD, Choo YM, Kang PD, Yoon HJ, Kim I, Je YH, Seo SJ, Lee SM, Guo X, Sohn HD, Jin BR. Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC developmental biology. 2006,6: 49.
    8. Holen T, Amarzguioui M, Wiiger M, Babaie E. Postional effect of short interferencing RNAs targeting the human coagulation trigger tissue factor. Nucleic Acid Research, 2002, 30(8): 1757-1766.
    9. Hossain M, Shimizu S, Matsuki M, Imamura M, Sakurai S, Iwami M. Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochemistry and Molecular Biology, 2008, 38: 1001-1007.
    10. Ishizaki H. Molecular characterization of the brain secretory peptides, prothoracicotropic hormone (PTTH) and bombyxin, of the silkmoth Bombyx mori. Proceedings of the Japan Academy, Series B, 2004, 80, 5: 195-203.
    11. Iwami M, Sakurai S, Nagasawa, H. Non-vertebrate's hormone. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    12. Kahsai L, Martin JR, Winther AM. Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol. 2010, 213(Pt 13): 2256-65.
    13. Lee KS, Kim BY, Choo YM, Yoon HJ, Kang PD, Woo SD, Sohn HD, Roh JY, Gui ZZ, Je YH, Jin BR. Expression profile of cathepsin B in the fat body of Bombyx mori during metamorphosis. Comp Biochem Physiol B Biochem Mol Biol. 2009, 154(2): 188-94.
    14. Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tater M, Yu K. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signal-ling. Nature Cell Biol, 2008, 10: 468-475.
    15. Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A,Fujino M, Kitada C. A monoclonal antibody against a synthetic fragment of bombyxin (4 K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol, 1987, 51(3): 227-35.
    16. Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Ishizaki H, Mizoguchi A, Fujiwara Y, Suzuki A. Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science, 1984, 226: 1344-1345.
    17. Ohnishi A, Hashimoto K, Imai K, Matsumoto S. Functional characterization of the Bombyx mori fatty acid trabsport protein(BmFATP) within the silkmoth pheromone gland. Journal of biological chemistry. 2009, 284(8): 5128-5136.
    18. Paddison P J, Caudy A, Hannon G J. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(3): 1443-148.
    19. Quan GX, KandaT, TamuraT. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Molecular Biology, 2002, 11 (3): 217-222.
    20. Saegusa H, Mizoguchi A, Kitahora H, Nagasawa H, Suzuki A, Ishizaki H. Changes in the titer of bombyxin-immunoreactive material in hemolymph during the postembryonic development of the silkmoth Bombyx mori. Develop Growth and Differ, 1992, 34(5): 595-605.
    21. Sch?gger H, G. von jagow. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem, 1987, 166: 368-379.
    22. Tabunoki H, Higurashi S, Ninagi O, Fujii H, Banno Y, Nozaki M, Kitajima M, Miura N, Atsumi S, Tsuchida K, Maekawa H, Sato R. A carotenoid-binding p rotein (CBP) plays a crucial role in cocoon p igmentation of silkworm (Bombyx mori) larvae. FEBS Letters, 2004, 567:175-178.
    23. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun. 2007, 352(2): 305-310.
    24.王根洪,刘春,杨远萍,吴雪峰,夏庆友. siRNA介导的家蚕ABC转运蛋白相关基因的干涉研究.蚕业科学, 2005, 31 (2): 117-120.
    25.夏庆友,帅小蓉,刘春,朱勇. RNA干涉及其在蚕功能基因组研究中的应用.蚕业科学, 2003, 29 (3): 213-216.
    26.杨广,尤民生,赵伊英,刘春辉.昆虫的RNA干扰.昆虫学报,2009, 52(10): 1156-1162.
    1. Dae Sung Hwangbo, Boris Gersham, Meng-Ping Tu, Michael Palmer and Marc Tatar. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature, 2004, 429: 562-566.
    2. David J. Clancy, David Gems, Lawrence G. Harshman, Sean Oldham, Hugo Stocker, Ernst Hafen, Sally J. Leevers, Linda Partridge. Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein, Science, 2001, 292(5514):104-106.
    3. H. Frederik Nijhout, Laura W. Grunert. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera, Developmental Biology, 2002, 99(24): 15446-15450.
    4. H. Frederik Nijhouta, Wendy A. Smith, Ira Schachar, Srikanth Subramanian, Alexandra Tobler and Laura W. Grunert. The control of growth and differentiationof the wing imaginal disks of Manduca sexta, Developmental Biology, 2007, 302:569-576.
    5. Ichikawa M, Ishizaki H. Brain hormone of the silkworm. Nature, 1961, 191:933-934.
    6. Ishizaki H, Molecular characterization of the brain secretory peptides, prothoracicotropic hormone (PTTH) and bombyxin, of the silkmoth Bombyx mori. Proceedings of the Japan Academy, Series B, 2004, 80, 5: 195-203.
    7. Iwami M, Sakurai S, Nagasawa, H. Non-vertebrate's hormone. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    8. Iwami M, Tanaka A, Hano N, Sakurai S. Bombyxin gene expression in tissues other than brain detected by reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. Experientia, 1996, 52: 882-887.
    9. Iwami M. Bombyxin, An Insect Brain Peptide that Belongs to the Insulin Family. Zoological Science. 2000, 17: 1035-1044.
    10. Julien Colombani, Laurence Bianchini, Sophie Layalle, Emilie Pondeville, Chantal Dauphin-Villemant, Christophe Antoniewski, Clément Carré, Stéphane Noselli, Pierre Léopold. Antagonistic Actions of Ecdysone and Insulins Determine Final Size in Drosophila. Science, 2005, 310: 667-670.
    11. Kondo H, Ino M, Suzuki A, Ishizaki H, Iwami M. Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. J Molec Biol, 1996, 259: 926-937.
    12. Koyama T, Iwami M, Sakurai S. Ecdysteroid control of cell cycle and cellular commitment in insect wing imaginal discs. Molecular and Cellular Endocrinology, 2004a, 213: 155-166.
    13. Koyama T, Obara Y, Iwami M, Sakurai S. Commencement of pupal commitment in late penultimate instar and its hormonal control in wing imaginal discs of the silkworm, Bombyx mori. Journal of Insect Physiology, 2004b, 50: 123-133.
    14. Kyung-Jin Min, Rochele Yamamoto, Susanne Buch, Michael Pankratz, Marc Tatar. Drosophila lifespan control by dietary restriction independent of insulin-like signaling, Aging Cell, 2008, 7(2): 199-206.
    15. Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, Kim AK, You KH, Tater M, Yu K. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signal-ling. Nature Cell Biol. 2008, 10: 468-475.
    16. Luc Swevers, Kostas Iatrou. The ecdysone regulatory cascade and ovarian development in lepidopteran insects: insights from the silkmoth paradigm. InsectBiochemistry and Molecular Biology, 2003, 33(12): 1285-1297.
    17. Manière G, Rondot I, Büllesbach E E, Gautron F, Vanhems E, Delbecque J P. Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina). Journal of Endocrinology, 2004, 181: 147-156.
    18. Mariam H. Orme and Sally J. Leevers. Flies on steroids: the interplay between ecdysone and insulin signaling. Cell Metab, 2005, 2(5): 277- 278.
    19. Mark R. Brown, Kevin D. Clark, Monika Gulia, Zhangwu Zhao, Stephen F. Garczynski, Joe W. Crim,Richard J. Suderman, and Michael R. Strand. An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti. biochemistry, 2008, 105(15): 5716-5721.
    20. Mizoguchi A, Hatta M, Sato S, Nagasawa H, Suzuki A, Ishizaki H. Developmental change of bombyxin content in the brain of the silkmoth Bombyx mori. J Insect Physiol, 1990, 36: 655-664.
    21. Nagasawa H, Kataoka H, Hori Y, Isogai A, Tamura S, Suzuki A, Guo F, Zhong XC, Mizoguchi A, Fujishita M, et al. Isolation and some characterization of the prothoracicotropic hormone from Bombyx mori. Gen. Comp. ndocrinol., 1984,53:143-152.
    22. Nakahara Y, Matsumoto H, Kanamori Y, Kataoka H, Mizoguchi A, Kiuchi M, Kamimura M. Insulin signaling is involved in hematopoietic regulation in an insect hematopoietic organ. Journal of Insect Physiology, 2006, 52: 105-111.
    23. Puig O, Marr MT, Ruhf ML, Tjian R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway, Genes & Development, 2003, 17(16): 2006-2020.
    24. Saito T, Iwabuchi K. Effect of bombyxin-II, an insulin-related peptide of insects, on Bombyx mori hemocyte division in single-cell culture, Appl. Entomol. Zool. 2003, 38 (4): 583-588.
    25. Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, Mizoguchi A,Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol. 1997, 118(2): 349-57.
    26. Sebastian G , Linda P. The functions of insulin-like peptides in insects. Clemmons D R, Robinson I C A F, Christen Y. IGFs: local repair and survival factors throughout life span. Berlin Heidelberg: Springer Publishing, 2010, 105-124.
    27. Sim C, Denlinger DL. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc Natl Acad Sci U S A. 2008, 105(18): 6777-6781.
    28. Susan J B, Matthew D W P, Ikeya T, Timothy M B, Jake J, Yasmine D, Pedro M,Ernst H, Dominic J W, Sally J L, Linda P. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. physiology, 2005, 102(8): 3105-3110..
    29. Wu Q, Brown M R. Signaling and function of insulin-like peptides in insects. Annual Review of Entomology, 2006, 51: 1-24.
    30. Xia Q Y, Wang J, Zhou Z Y, et al., The genome of a lepidopteran model insect, the silkworm Bombyx mori The International Silkworm. Insect Biochemistry and Molecular Biology, 2008, 38, 1036 -1045.
    31. Xia, Q., Zhou, Z., Lu, C et al. A draft sequence for the genome of the domesti-cated silkworm (Bombyx mori). Science, 2004, 306, 1937-1940.
    1. Beers R F, Sizers I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem, 1952, 133: 195.
    2. Candyd J, Kilbyb A. The biosynthesis of trehalose in the locust fat body. Biochem J, 1961, 78: 531-536.
    3. Elbein A D, Pan Y T, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13 (4) : 17 - 27.
    4. Fridovich I. Oxygen Is Toxic. Biosciences, 1977, 27 (7): 462-465.
    5. Géminard C, Arquier N, Layalle S, Bourouis M, Slaidina M, Delanoue R, Bjordal M, Ohanna M, Ma M, Colombani J, Léopold P. Control of Metabolism and Growth Through Insulin-Like Peptides in Drosophila. Diabetes, 2006, 55: S5-S8.
    6. Guarente, L. and Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature, 2000, 408, 255-262.
    7. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even P C, Cervera P, and Le Bouc, Y. IGF-I receptor regulates life span and resistance to oxidative stress in mice. Nature. 2003, 421, 182-187.
    8. Iwami M, Sakurai S, Nagasawa, H. Non-vertebrate's hormone. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    9. Lee R E. Principles of insect low temperature tolerance. In: Lee R E , Denlinger D L eds. Insect at Low Temperature. New York: Chapman & Hall, 1991: 17-46.
    10. Li Y P, Gong H, Park H Y. Characterization of the rapid cold-hardening response in overwintering mature larvae of the pine needle gall midge. Thecodiplosis japonensis. Cryo-Letters, 1999, 20: 383-392.
    11. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 1974, 47(3): 469- 474.
    12. Miao, Y., Gu, G.. guidebook of experiments for sericultural science. Zhejiang University Press, China, Hangzhou. 2001: 73-75.
    13. Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959. 31: 426 - 429.
    14. Mizoguchi A, Hatta M, Sato S, Nagasawa H, Suzuki A, Ishizaki H. Developmental change of bombyxin content in the brain of the silkmoth Bombyx mori. J Insect Physiol, 1990, 36: 655-664.
    15. Murphy TA, Wyatt G R. The enzymes of glycogen and trehalose and synthesis in silk moth fat body. J Biol Chem, 1965, 240: 1500-1508.
    16. Phillips J P, Parkes T L, Hilliker A J. Targeted neuronal gene expression and longevity in Drosophila. Exper. Gerontol., 2000, 35 (9): 1 157-1 164.
    17. Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, Mizoguchi A, Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol. 1997, 118(2): 349-57.
    18. Sebastian G , Linda P, The functions of insulin-like peptides in insects. Clemmons D R,Robinson I C A F,Christen Y. IGFs: local repair and survival factors throughout life span. Berlin Heidelberg: Springer Publishing, 2010, 105-124.
    19. Susan J B, Matthew D W P, Ikeya T, Timothy M B, Jake J, Yasmine D, Pedro M, Ernst H, Dominic J W, Sally J L, Linda P. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. physiology, 2005, 102(8): 3105-3110.
    20. Yasunori Oda, Masafumi Iwami, Minoru Osanai, Sho Sakurai. Dynamics of Haemolymph Sorbitol-6-Phosphate and its Control by Ecdysteroid in the Larvae of the Silkworm, Bombyx mori. Insect Biochem. Molec. BioL, 1997, 27(5): 461-468.
    21.胡家恕,张耀洲.家蚕血液中超氧化物岐化酶的研究.浙江农业大学学报, 1996, 22 (4): 338-340.
    22.鲁兴萌,吴忠长.家蚕微粒子虫(Nosemabombycis)感染家蚕的病理学研究.浙江大学学报,2000, 26(5): 547-550.
    23.任媛媛,刘景芳,戴秀玉,向华.海藻糖代谢途径相关基因及生物功能.微生物学报,2003, 43(6): 821-824.
    24.吴小峰,徐俊良,崔为政,徐杰.家蚕血淋巴过氧化物酶活力及其影响因素.蚕业科学,1998b, 24(1): 35-38.
    25.吴小锋,崔为政,徐俊良.家蚕血液超氧化物岐化酶及其影响因素.蚕业科学,1997,23 (1): 38-41.
    26.吴小锋,徐俊良,崔为政.家蚕血淋巴过氧化氢酶活力及其与蚕体抗逆性的关系.昆虫学报, 1998a, 41 (2): 124-129.
    27.杨唐斌,梅尚筠.热休克对家蚕幼虫抗氧化酶活性的影响.生物化学与生物物理进展,1996, 23(2): 153-156.
    28.赵洪喜,驯鹿狂蝇生物学特性及对机体抗氧化能力影响的研究.内蒙古农业大学硕士学位论文, 2006.
    1. Gao H, Wang Y, Li N, Peng WP, Sun Y, Tong GZ, Qiu HJ. Efficient gene delivery into mammalian cells mediated by a recombinant baculovirus containing a whispovirus ie1 promoter, a novel shuttle promoter between insect cells and mammalian cells. J Biotechnol, 2007,131(2):138-143.
    2. Higgins MK, Demir M, Tate CG: Calnexin co-expression and the use of weaker promoters increase the expression of correctly assembled shaker potassium channel in insect cells. Biochim Biophys Acta, 2003, 1610(1): 124-132.
    3. J. Kempf, L.A. Snook, J.L. Vonesch, T.E.S. Dahms, F. Pattus and D. Massotte. Expression of the humanμopioid receptor in a stable Sf9 cell line. J Biotechnol, 2002, 95: 181-187.
    4. Salvado JC, Bensaadi-Merchermek N, Mouches C. Transposable elements in mosquitoes and other insect species. Comparative Biochemistry. 1994, 109(B):531-544.
    5. Venken KJ, Bellen HJ. Transgenesis upgrades for Drosophila melanogaster. Development, 2007, 134(20): 3571-3584.
    6. Wang J, Bow H, Ding JL. Functional expression of full length Limulus Factor C instably transformed Sf9 cells. Biotechnol Lett, 2001, 23: 71-76.
    7.陈慧梅,曹广力,薛仁宇,贡成良.非转座子载体介导的稳定转化家蚕BmN细胞表达人粒细胞-巨噬细胞集落刺激因子.生物工程学报, 2010, 26(6): 830?836.
    8.李曦,赵越,周文林,曹广力,薛仁宇,贡成良.稳定转化家蚕BmN细胞表达人粒细胞一巨噬细胞集落刺激因子.蚕业科学, 2009, 35(2): 302-307.
    9.孙延波,李菁华,史红艳. mlL-4昆虫表达载体pIZT/V5-His的构建及其高效表达.吉林大学学报:医学版, 2006, 32(2): 194-198.
    10.赵越,李曦,曹广力,薛仁宇,贡成良.转基因家蚕丝腺组织和转化家蚕培养细胞表达hIGF-I.中国科学(C辑:生命科学), 2009, 39(7): 677-684.
    1. Anjang Tan, Hiromasa Tanaka, Toshiki Tamura, and Takahiro Shiotsuki. Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase, PNAS, 2005, 102 (33): 11751-11756.
    2. Fullbright G, Lacy ER, Bullesbach EE. The prothoracicotropic hormone bombyxin has specific receptors on insect ovarian cells. Eur J Biochem., 1997, 245: 774-780.
    3. Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol. 2008, 7: 10.
    4. Ichikawa M, Ishizaki H. Brain hormone of the silkworm. Nature, 1961, 191: 933-934.
    5. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol, 2002,12: 1293-1300.
    6. Imamura M, Nakai J, Inooue S, Quan GX, Kanda T, Tamura T. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics, 2003, 165: 1329-1340.
    7. Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T, Tamura T, Sahara K, Asano S I, Bando H. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Archives of Virology, 2004, 149(10): 1931-1940.
    8. Iwami M, Sakurai S, Nagasawa H. Non-vertebrate's hormone. Japanese Comparison Internal secretion Academic society Compilation. Academic society publication center, 1998, 12: 37-70.
    9. Iwami M, Tanaka A, Hano N, Sakurai S. Bombyxin gene expression in tissues other than brain detected by reverse transcriptionpolymerase chain reaction (RT-PCR) and in situ hybridization, Experientia, 1996, 52: 882- 887.
    10. Moto K, Eldin S, Salam A, Sakurai S, Iwami M. Gene transfer into insect brain and cell-specific expression of bombyxin gene. Dev Genes Evol, 1999, 209: 447- 450.
    11. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in ?ies: growth and diabetic phenotypes. Science, 2002, 296: 1118 -1120.
    12. UhlírováM, Asahina M, Riddiford LM, Jindra M. Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev. Genes Evol., 2002, 212(3): 145-151.
    13.曹广力,薛仁宇,何泽,郑小坚,沈卫德,贡成良.基于piggyBac转座子转hGM-CSF基因家蚕的研究.蚕业科学, 2006,32(3): 324-327.
    14.顾世红,陈建国.胰岛素信号转导、昆虫发育与老化.昆虫知识, 2009, 46(4):501-508.
    15.郭秀洋,周泽扬,冯丽春,汪琳,鲁成,向仲怀.利用精子介导法向家蚕导入外源基因的研究.生物化学与生物物理进展, 2001, 28(3): 423-425.
    16.刘春,徐汉福,陈玉琳,李春峰,张美蓉,夏庆友.家蚕转基因研究及肌动蛋白A3启动子的表达分析.蚕学通讯, 2007, 27(3): 1-6.
    17.向仲怀.蚕丝生物学.中国林业出版社,北京, 2005.
    18.郑小坚,陆叶,沈卫德,贡成良.家蚕类胰岛素肽BBX- B8的基因沉默及其对抗逆性的影响研究.蚕业科学, 2010, 36(4): 0590-0596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700