家蚕荧光茧色性连锁遗传机理及荧光色素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕茧的荧光色与性别有关,采用荧光选茧,定向培育等育种手段,已成功育成依据蚕茧荧光色可判别性别的荧光茧色性连锁中国系统蚕品种“荧限8417”、“荧光”和日本系统蚕品种“春玉”。组配的一代杂交组合“荧光×春玉”通过国家特殊蚕品种审定,这在国内外尚属首次。但,其性连锁遗传机理及雌雄间荧光色素代谢差异等,目前均尚不清楚。解明其遗传机理及雌雄荧光色素代谢差异,对丰富家蚕遗传学及荧光色素代谢理论、指导家蚕荧光茧色性连锁育种实践等,均有重大的学术和实用价值。
     本研究对蚕茧荧光色的特征特性,重点对荧光茧色性连锁蚕品种荧光色素的来源、雌雄代谢差异、遗传机理及分子标记等进行了系统的试验研究,主要结果如下。
     1.资源蚕品种蚕茧的荧光色可分为“黄白荧光茧色型”、“兰紫荧光茧色型”和“混合荧光茧色型”三大荧光茧色类型;同一品种的蚕茧荧光色,有明显的雄性偏黄白,雌性偏兰紫的趋向性;同品种高温干燥条件下上蔟,多营黄白荧光色茧,而在高温多湿条件下上蔟,则多营兰紫荧光色茧;黄白荧光色茧的丝胶的水溶性快于兰紫荧光色茧的水溶性;选雌性荧光兰色茧个体与雄性荧光黄色茧个体杂交,经历代选育,可育成荧光茧色性连锁蚕品种。
     2.从5龄起蚕或3日后开始用70%乙醇浸提过的桑叶粉和未经处理的桑叶粉配制的人工饲料饲育荧光茧色性连锁蚕品种,结果:饲以未经处理的桑叶粉配制的人工饲料所营的蚕茧紫外线下可判别雌雄;而饲以70%乙醇浸提过的桑叶粉配制的人工饲料所营蚕茧雌雄均为均匀的紫荧光色,利用蚕茧的荧光色已无法分辨雌雄。这一方面说明雌雄蚕茧荧光色差异的荧光色素基础物质来源于桑叶醇溶性物质;另一方面证明了雌雄荧光色的差别产生在5龄3日后;同时,也证明了荧光黄色素决定该类品种雌雄蚕茧荧光色的差异,为此将其作为荧光主色素研究。
     3.纸上色层分析和HPLC分析结果都证明,构成蚕茧荧光色的色素种类,雌雄间并不存在显著的差异。造成雌雄荧光茧色不同的原因主要是荧光黄色素的含量不同,是荧光色素量的差别,并非质的差别;雌雄中部丝腺相互移植的结果证实了中部丝腺的荧光色素直接来源于血液,中部丝腺对荧光色素无选择吸收、透过功能。
     4.蚕茧中除具有中部丝腺由来的荧光色素外,还有一种Rf值为0.77的紫荧光色素,血液和中部丝腺均未检出,说明蚕在吐丝营茧过程中荧光物质有新的变化,这也许是家蚕荧光茧色易受蔟中条件影响而发生变化的主要原因之一。
     5.在荧光茧色可判断性别中起决定性作用的荧光黄色素,雌雄出现显著差异是在5龄4日后。表现为: 4日后,随日龄的增加,与血液、中部丝腺、蚕茧雌性呈紫荧光色,雄性呈黄荧光色相反,雌性中肠的荧光黄色不断加深,5日后呈鲜艳的明黄色直至熟蚕,而雄性整个5龄期中肠的主要部分都呈褐色。说明雄性的荧光黄色素在中肠的形成、透过、释放到血液等过程都能顺利的进行,而雌性中肠虽能形成荧光黄色素,但不能顺利透过释放到血液中去,而是沉积于中肠内。可见,荧光黄色素不能顺利透过雌性中肠,导致雌性血液中荧光黄色物质总量减少,是雌雄荧光茧色产生差异的主要原因。因而,从理论上对雌茧荧光紫色、雄茧荧光黄色的荧光茧色性连锁现象和同一品种的蚕茧荧光色雌性偏兰紫雄性偏黄白现象,做出了合理的解释。
     6.该类荧光色素对中浓度醇类溶剂具有良好的溶解性,而对高浓度的醇溶剂溶解性较差。HPLC分析结果可见,以甲醇为流动相,他们早早被洗脱下来,吸收峰出现时间较早。说明这些成分的极性高,亲水性强。对荧光黄色素进行分离、纯化并做质谱分析,得该色素的分子量为453,分析其可能是含有一个5碳糖基的黄酮类色素。
     7.杂交遗传研究证明,对荧光茧色判断性别起绝对作用的荧光黄色素,为数量性状遗传,由多对基因控制,且控制该性状的基因主要存在于常染色体上;造成荧光茧色性连锁蚕品种雌雄荧光茧色不同的原因,是雄性蚕茧中的荧光黄色素显著多于雌茧。而这种差别是由于与雄性相比雌性中肠不能有效地透过该种色素,而是富集于中肠中。富集的原因有两种可能,一是缺少转运载体,二是与某种物质结合后,无法透过中肠。因雄性不存在这个问题,所以不论哪种原因都与决定雌性的W染色体有关,是由于存在于W染色体上的某种基因作用的结果。因此,虽表现差异在雄性,但根本原因在雌性,所以荧光茧色性连锁的遗传应属限性遗传类型。
     8.经大量分子标记引物的筛选,筛选出的ISSR-11引物的扩增条带,在大小为1541bp位点,“荧光”、“春玉”两个具有荧光茧色性连锁特性的蚕品种,雄性都扩增出一条特异性条带,而雌性在相同位点的特异性条带极浅。前面的研究已经证明了,造成荧光茧色性连锁蚕品种雌雄蚕茧荧光色不同的主要原因,是雌雄荧光黄色素的含量不同(雄性多,雌性少),ISSR-11引物雌雄扩增条带的差异,能合理解析荧光茧色性连锁的特性,可作荧光茧色性连锁类特殊蚕品种雌雄之间差异的ISSR标记。
The fluorescence color of silkworm cocoon is related to the sex, we have succeeded in breeding the sex-linked cocoon fluorescence color varieties, including Chinese strain“Yingguang”、“Yingxian 8417”and Japanese strain“Chunyu”, by the fluorescence sorting of cocoon and directive breeding etc methods. F1 cross combination "Yingguang×Chunyu" has passed varieties examination and been approved by the national special silkworm, this is the first time both at home and abroad. However, the genetic mechanism of the sex-linked and fluorescent pigment metabolism differences between male and female and so on are not clear yet. Solving these questions will have important academic and practical value both in richening silkworm fluorescent pigment metabolism genetics theory and guiding the breeding practice of the sex-linked cocoon fluorescence color variety and so on.
     We studied the cocoon fluorescence color characteristics, and focused on the sources of fluorescent pigment in the sex-linked cocoon fluorescence color varieties\male and female differences in metabolism\genetic mechanism and molecular markers etc, the main results were as follows.
     1. The cocoon fluorescence color of varieties keeping in our institute could be divided into the "yellowish white cocoon fluorescence color", " bluish purple cocoon fluorescence color" and " mixed cocoon fluorescence color " three types; for the same silkworm variety, the cocoon fluorescence color of male tended to yellowish white and female tended to bluish purple clearly; silkworms of the same variety cocooning under the environment of high temperature and low humidity, the cocoons with yellowish white fluorescence color were more, and under high temperature and humidity environment, the cocoons with bluish purple were more; the water solubility of sericin of cocoon with yellowish white fluorescent color was faster than the bluish purple; the sex-linked cocoon fluorescence color variety could be bred by hybridizing female with blue fluorescence color and male with yellow, and breeding for years.
     2. The sex-linked cocoon fluorescence color variety was reared by the artificial diets, which were prepared by mulberry leaf powder and mulberry leaf powder extracted with 70% ethanol respectively, from the newly molted silkworm or the third day of the fifth instar. The results showed: Feeding by the artificial diet with untreated mulberry leaf powder, the female and male cocoon could be distinguished under ultraviolet light; however both the fluorescence cocoon color of female and male were even purple when feeding by the artificial diet with mulberry leaf powder extracted with 70% ethanol, and it was unable to distinguish the female and male through cocoon fluorescence color. In one hand this showed that the basis material of fluorescent pigment resulting in the cocoon fluorescence color difference between male and female stemmed from the alcohol solubility material in mulberry leaf; on the other hand the difference between male and female cocoon fluorescence color might be appeared after the third day of the fifth instar. At the same time, it proved that such differences were determined by yellow pigment, so we decided to study it as the main fluorescent pigment.
     3. Both the results of the paper chromatography and HPLC analysis showed that the fluorescence pigment types had no significant difference between male and female. It was the different value, especially the yellow fluorescence color, causing the difference of female and male, the difference was in quantity not in quality; results of mutual transplanting the female and male silk gland confirmed that the fluorescence pigments of middle silk gland came from the blood directly, the middle silk gland had no selective absorption and permeability to the fluorescent pigment.
     4. In addition to the fluorescent pigment originated from middle silk gland, there was a kind of purple fluorescent pigment with the Rf value of 0.77 in the cocoon, both of the above didn’t test from blood and middle silk gland. It showed that there was new change of fluorescent material in cocooning process, this might be one of the main reasons of the silkworm cocoon fluorescence color was easy to be influenced by the mounting conditions.
     5. The yellow fluorescent pigment which played decisive role in distinguishing the female and male by cocoon fluorescence color would be appeared after the fourth day of fifth instar. As follows: after the fourth day of fifth instar, the fluorescence colors of female and male in blood, middle silk gland and cocoon were purple and yellow respectively with increasing days. On the contrary, yellow fluorescence color in the female midgut deepened continuously and it was bright yellow from the fifth day of fifth instar to mature silkworm, however the main part of male midgut was brown during the entire fifth instar. It showed that the yellow fluorescence color of male in midgut could be formed, penetrated and released into blood successfully. However in female the synthetic had no problem, it couldn’t be penetrated and released into the blood smoothly, accumulated in midgut instead. It was the main reasons for the difference between male and female cocoon fluorescence color that yellow fluorescent pigment could not be penetrated through the female midgut smoothly leading to the reduce of the total amount of yellow fluorescent material in the female blood clearly. We made a reasonable explanation on the theory to the cocoon fluorescence color sex-linked phenomena of purple in female and yellow in male and to another phenomena of the male tending to yellowish white and female tending to bluish purple in the same variety.
     6. This type of fluorescent pigment had good solubility in the solvent of moderate concentration of alcohol, but poor in the high concentration. The results of HPLC analysis were: using methanol as the mobile phase, it could be eluded down early, and the absorption peaks appeared earlier. The polarity of these components was high and hydrophilic. We knew the molecular weight of the pigment was 453 by the separation, purification and mass spectrometry analysis of fluorescent yellow pigment, and it might contain flavonoids pigment with a five-carbon sugar.
     7. Study on hybrid genetic indicated that the yellow fluorescent pigment, which played decisive role in distinguishing the female and male, were quantitative genetic, and controlled by multiple genes, the genes which controlled this character were mainly on regular chromosome; The reason that caused different cocoon fluorescence color between male and female of fluorescence sex-linked varieties was that the yellow fluorescent pigment in male silkworm cocoon was more than female significantly. This difference was that this kind of pigment in the female could not penetrate through the midgut effectively, compared to the male, but accumulated in the midgut. There were two possible reasons, the first might lack of small transporters, and the second might combine with a substance, so could not penetrate through the midgut. Because that male silkworm did not have this problem, so both reasons were related to the W chromosome which determined the female, it was one kind of gene on W chromosome brought the result. Therefore, although differences showed in the male, but the basic reason was on the female, so the genetic of the sex-linked cocoon fluorescence color should belong to the genetic type of sex-limited.
     8. With the large number of molecular markers, the results showed that molecular marker ISSR-11 was linked to the fluorescent sex-linked and amplified bands in the molecular weight of 1541 bp sites. "Yingguang", "Chunyu," the two silkworm varieties with the sex-linked cocoon fluorescence color had amplified a specific band in the male silkworm, but females in the same site with the specificity of the very shallow. Previous studies had proved, the main reason of causing differences between female and male of the sex-linked cocoon fluorescence color varieties was the different of yellow pigment quantity in female and male (more in male, less in female). ISSR-11 primers amplified bands of the male and female differences could analysis the characteristics of fluorescence cocoon color sex-linked reasonably. It could use ISSR marker for the difference between male and female of the sex-linked cocoon fluorescence color silkworm varieties.
引文
1.陈克平,李木旺,张泽伟.家蚕主要经济性状遗传规律(J).中国蚕业,2000,增刊:15-19
    2.陈克平.家蚕遗传育种回顾与展望(C).中国蚕学会面向21世纪蚕业振兴学术讨论会交流论文,2001.11,西安
    3.程道军,鲁成,周泽扬,等.几种绢丝昆虫遗传多样性的RAPD研究(J).蚕业科学,2002,28(4):277-282
    4.蚕学通讯编辑部.西南农业大学蚕桑学重点实验室家蚕基因组计划背景(J).蚕学通讯,2004,24(4):5-8
    5.常平安,宋方洲.家蚕原位杂交(FISH)技术在家蚕研究中的应用(J).蚕业科学,2000,26(增刊):36-41
    6.陈复生,鲍先巡,汪爱民.应用多倍体方法的家蚕遗传基因研究(J).中国蚕业,2001,22(4):52-54
    7.陈震古.激光诱变家蚕突变及其遗传育种的研究(J).激光生物学,1994,3(2): 433-440
    8.陈国珍.荧光分析法(M).科学出版社,1975,223-282
    9.戴亚民,徐烘馥.紫外线下不同荧光色茧的解舒试验(J).蚕业科学通讯,1957, (3):38-39
    10.冯家新主编.家蚕育种选集(M).浙江大学出版社,2002,1-616
    11.葛景贤,陆潜珍.用紫外线选除淡竹色茧初报(J).蚕业科学通讯,1956,(1) :41-42
    12.顾国达.印度蚕业的发展与现状(J).中国蚕业,1998,19(4):47-48
    13.华南农学院蚕桑系.茧荧光色判性品种东34的选育及其遗传学的研究(初报)(J).广东蚕丝学通讯,1979, (1):49-54
    14.华卫建,潘沈元,杨克合.家蚕的RAPD及其系统间差异初探(J).江苏蚕业,1997,(2):11-13
    15.黄亚东,邓小娟,庄楚雄,等.家蚕胚胎温敏性基因的RAPD标记筛选(J).农业生物技术学报,2001,2(2):11-13
    16.贺一原,何斯美.显性三眠蚕品种SG选育初报(J).蚕业科学,1997,23(1):24-27
    17.何斯美,严孝银,糜乙殿,等.夏秋用蚕品种丰1×54A的育成(J).蚕业科学,1989,15(2):79-87
    18.何斯美,严孝银,贺一原,等.强健性多丝量蚕品种871、872的育成(J).蚕业科学,1998,26(2):86-90
    19.侯成香,李木旺,张月华,等.利用SSR标记进行家蚕部分品种资源的指纹图谱分析(J).中国农业科学,2006,39(10):2124-2131
    20.金秀钰,虞晓华,郑小坚.蔟中环境对茧荧光色和解舒的影响(J).蚕业科学,1998, 24(3) :195-196
    21.贾仲伟,虞晓华,顾静怡,等.荧光茧色判性蚕品种荧苏、荧晓饲养初报(J).江苏蚕业,2004,(1):51-53
    22.晋晓春,毛盛贤.数量性状的遗传分析和产量的间接选择(J).北京师范大学学报,1994,30(1):134-138
    23.孔令汶.家蚕特殊品种的研究动态及发展趋势(C).山东蚕学会面向21世纪蚕业振兴学术研讨会交流论文,2001.3,山东省日照市
    24. K、R马卡姆.黄酮类化合物结构鉴定技术(M).科学出版社,1990,19-105
    25.刘仕贤,张美欢,梁润.紫外线荧光色型与家蚕多化性白茧种的雌雄和茧质的关系(初报)(J).蚕丝通报,1957,3 (4) :42-45
    26.刘敬全,崔玉梅,李树贞,等.荧光茧色限性蚕品种研究初报(J).蚕业科学,1988,14(2) :107-108
    27.刘敬全,崔玉梅,于振诚.荧光茧色判性蚕品种和后代杂交遗传表现(J).蚕业科学,1990,16(3) :180-182
    28.刘敬全,崔玉梅,于振诚,等.家蚕荧光茧色判性蚕品种选育的研究(J).蚕业科学,1992,18(4) :258-259
    29.刘敬全,于振诚,崔玉梅,等.家蚕荧光茧色判性蚕品种荧光、春玉的育成及其一代杂交种的选配(J).蚕业科学,1996,22(3) :155-159
    30.刘定富.数量性状基因数目估计的程序设计(J).湖北农学院学报,2002,14(4):47-53
    31.刘晓勇,姚琴,陈克平,等.家蚕耐氟基因RAPD分子标记的筛选及其克隆(J).动物学研究, 2004,25(1):69-72
    32.刘爱华,陈克平,姚琴.家蚕荧光茧色分子标记初探(J).安徽农业大学学报,2005,32(4):490-492
    33.鲁成,向仲怀,黄君霆.21世纪蚕业科学基础研究发展趋势(J).蚕业科学,2000, 26(2):105-114
    34.鲁成,余红仕,向仲怀.基于RAPD分析的中国野桑蚕和家蚕遗传多样性和系统发育关系研究(J).昆虫学报,2002, 45(2):198-203
    35.鲁成,程道军,向仲怀,等.中国野桑蚕和日本野桑蚕的RAPD研究(J).蚕业科学,2002,28(1):17-21
    36.林昌麒,姚琴,陈克平,等.家蚕血淋巴与丝腺内液状丝物质及茧层荧光性研究(J).蚕业科学,1994,20(1):43-44
    37.林昌麒,姚琴,陈克平,等.家蚕品种资源茧层丝胶溶失率及其相关分析(J).蚕业科学,1998,24(2):81-85
    38.吕鸿声.中国蚕业科学100年(J).中国蚕业,1998,(3):4-7
    39.梁秀玲.展望21世纪家蚕育种新动向(J).广西蚕业,2000,37(2):53-54
    40.李圣,林昌麒.家蚕春用新品种九·华×春·早的育成(J).蚕业科学,1999,25(3):144-148
    41.李斌,鲁成,周泽扬,等. RAPD标记构建家蚕分子连锁图(J).遗传学报,2000,27(2):127-132
    42.廖富频,林建荣,莫红丽,等. RAPD分子标记技术应用于家蚕品种纯度检测的研究(J).湖北农业科学,2002,28(3):56-58
    43.林孝三.植物色素(M).養賢堂,1991,80-111
    44.彭义交,刘宗林.大豆异黄酮双向纸层析分析方法的研究(J).食品科学,2004,25(4):141-144
    45.全国农作物品种审定委员会主编.中国80年代实用家蚕品种与繁育技术要览(M) .四川科学技术出版社,1992,3-255
    46. Robertk.daytom,山本大二郎訳.光と生物Ⅰ物理(M).編講談社,1972,54-78
    47.申屠仁华,徐俊良、吕顺霖,等.桑蚕茧荧光色素的理化学研究(J).蚕桑通报,1994,25(1):15-17
    48.司马杨虎,陈大霞,赵爱春,等.家蚕AFLP分子标记分离规律的研究(J).蚕业科学,2003,29(2):131-135
    49.沈兴家.夏秋蚕限性品种秋·西×夏7D的育成(J).蚕业科学,1999,25(4):212-215
    50.山本俊雄.顾家栋译.日本特殊用途蚕品种的选育(J).广西蚕业,1999,36(1):44~48
    51.萨姆布鲁克丁J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南(M).金冬雁等译.第二版.科学出版社,1992
    52.时连根主编.蚕学研究(M).中国农业出版社,2004,593-612
    53.田燕.紫外-可见光谱在黄酮类鉴定中的应用(J).大连医科大学学报,2002,24(2):213-214
    54.田中一行,霸井隆重三,长岛荣一.绢丝的构造-ⅠⅡ关于家蚕绢丝腺的生理和遗传(J).蚕学通讯,1994,(3):35-42
    55.唐旭东,陈克平,高贵田,等.家蚕抗浓核病毒分子标记筛选及分析(J):安徽农业大学学报. 2005,32(1):64-67
    56.吴莉宇,彭黎旭,汤建彪.黄酮类化合物的结构、理化学性质及分布(J).热带农业科学,1998,(5):73-79
    57.吴鹤龄,刘冠峰.关于荧光分级提高出丝率的研究(J).丝绸,1983,(3):12-16
    58.吴玉澄.世纪之交的蚕品种动向(J).蚕桑通报,1998,29(4):1-3
    59.吴玉澄.国内外家蚕种质资源和育种研究进展,蚕业发展与蚕丝研究(M).成都科技大学出版社,1999,49~55
    60.吴为人,李维明,方宣钧,等.植物基因分离方法及其评述(J).福建农业大学学报(自然科学版),2000,3:1-5
    61.王静,睢薇,藤冰,等.紫外-可见光分光光度法定量测定沙棘果实中水溶液色素(J).中国林木特产,2001,57(2):2-3
    62.王永强.特殊纤度蚕品种选育研究进展(J).蚕桑通报,2000,31(3):43-47
    63.王韵,周泽扬,朱勇,等. RAPD分析技术在家蚕品种鉴定实践中的应用(J).蚕学通讯,1998,18(1):57-59
    64.王慧超,朱勇.家蚕雌特异分子标记筛选、克隆及其序列分析(J).蚕业科学,2004,30(1):34-37
    65.汪琳,周泽扬,代方银,等.家蚕龙角突变基因RAPD分子标记筛选及其克隆(J).蚕业科学,2000,26(1):16-19
    66.夏庆友,周泽扬,鲁成,等.家蚕RAPD的扩增条件,重复性及遗传模型研究(J).蚕业科学,1996,22(1):20-25
    67.夏庆友,周泽扬,鲁成,等.家蚕不同地理品种分子系统学研究(J).昆虫学报, 1998, 41(1):32-40
    68.向仲怀,黄先智,夏庆友.家蚕茧层荧光色的遗传分析(J).蚕业科学,1997,23(2) :87-91
    69.向仲怀,周泽扬,鲁成,等.利用AFLP标记构建家蚕分子连锁图谱(J).中国农业科学,2001,34(3):338-341
    70.向仲怀主编.蚕丝生物学(M) .中国林业出版社,2005,126-129
    71.徐辉,封云芳.桑蚕茧的荧光色、结构和性能研究(J).丝绸,1990, (3) :19-21;(4):46-47
    72.谢大年,郭北贵.银杏叶提出物中黄酮类成分的高效液相色谱分析(J).色谱,1994,12(5):384-385
    73.谢辉,顾汉中,许宝宏,等.薄层扫描法测定杠板归糖浆中槲皮素的含量(J).南京中医药大学学报,1997,13(2):88-90
    74.徐孟奎,姜勇煌,陈玉银,等.家蚕粗纤度品种新苗×明日的育成(J).蚕业科学, 2000,26(4):214-218
    75.姚勤.荧光茧色的遗传规律研究(A).第四届全国家蚕遗传育种学术讨论会,1995.62~66
    76.姚陆松.春用新品种学613×春日性状介绍(J).蚕桑通报,1999,30(2):35
    77.虞晓华,郑小坚,黄国瑞,等.家蚕荧光色与解舒关系的研究(J).丝绸,1996, (6) :15-18
    78.虞晓华,谢立群.家蚕茧荧光色的遗传研究(J).蚕业科学,1997, 23(3) :147-151
    79.虞晓华.家蚕荧光茧色的遗传分析(J).江苏蚕业,1997, (3):1-7
    80.虞晓华,金秀钰,郑小坚.茧荧光色对茧质的影响(J).江苏蚕业,1998, (2):16-17
    81.虞晓华,金秀钰,郑小坚.荧光茧色对制丝原料茧质性状的影响(J).中国蚕业,1998, (2):21-22
    82.虞晓华,王开荣.蚕茧荧光对单蛾卵量的影响(J).江苏蚕业,1998, (4):7-10
    83.虞晓华,徐华美,管竟芳,等.荧光技术在蚕品种选育中的应用(J).江苏蚕业,2001, (4):8-10
    84.虞晓华.提供雄蚕茧的几种途径(J).江苏蚕业,2003, (3):20-21
    85.于振诚,刘敬全,李道义,等.荧光茧色判性蚕品种荧光色素的初步研究(J).蚕业科学,1997,23 (1):64
    86.于振诚,段兆祥,顾寅钰,等.家蚕荧光茧色判性遗传学研究(J).北方蚕业,1999,(1) :14-15
    87.于振诚,顾寅钰,张风林,等.荧光茧色判性蚕品种雌雄幼虫荧光色素差异的研究(J).蚕业科学,2000,26(2) :123-124
    88.于振诚,横山岳,田村泰盛,等.“荧光”蚕品种雌雄荧光色素的定性及相对量分析(J).蚕业科学,2002,28(2) :151-156
    89.杨春花.尽快推广“组合售茧缫丝计价”评茧法(J).丝绸,1988,(12) :25
    90.颜海燕,钟伯雄,汪方炜.分子标记技术与家蚕遗传育种(J).中国蚕业,2002,23(2):11-13
    91.阎英骥.基因互作与基因型判定的代数方法(J).生物学学报,1994,9(5):57-59
    92.殷浩.荧光光谱法快速评茧研究(J).光学仪器,1997,19 (3):18-22
    93.郑小坚,虞晓华,金秀钰.家蚕茧荧光色与茧丝质关系的研究(J).蚕业科学,1998, 24(4):250-252
    94.郑小坚,虞晓华.不同荧光色家蚕茧的茧丝质研究(J).纺织学报,2001, (4):221-223
    95.张胜利,陈延槐,周民雄.比值性状的遗传力与选择强度的关系(J).遗传学报,1994,21(2):112-117
    96.章佩祯.抗氟新蚕品种秋丰×白玉(J).蚕桑通报,1990,21(3):49-52
    97.周泽扬,李斌,G1Ravikumar,等.家蚕AFLP分子进化研究(J).西南农业学报,2004, 17(2):240-243
    98.周欣,钟世江,陈树林.高效液相色谱法测定银杏叶提出物中槲皮素的含量(J).中国中药杂志,1997,22(10):616-617
    99.朱祥瑞,蒋振东,唐孟成.蚕沙中黄酮类化合物的研究(J).蚕业科学,1996,22(2):90-92
    100.钟伯雄,吴玉澄,蒋振东.家蚕茧质性状性连锁遗传相关分析(J).浙江农业大学学报,1994,20(6):634-638
    101.钟伯雄,张金卫,丁农,等. RAPD技术在家蚕杂交率检验中的应用(J).浙江大学学报(农业与生命科学版),2003,29(3):321-324
    102.钟伯雄.转基因家蚕的研究现状与展望,蚕业发展与蚕丝研究(M).成都科技大学出版社,1999,60~65
    103.中国农业科学院蚕业研究所蚕品种研究室夏秋蚕品种选育组.夏秋用蚕品种苏3·秋3×苏4的育成及三元杂交种的选配(J).蚕业科学,1981,7(3):162~164
    104.中国农业科学院蚕业研究所主编.家蚕遗传育种学(M) .科学出版社,1981,37-131,268-314
    105.中国农业科学院蚕业研究所主编.中国家蚕品种志(M) .农业出版社,1987,267-277
    106.中国农业科学院蚕业研究所主编.中国养蚕学(M) .上海科学技术出版社,1991,184-290
    107.勒永年.家蚕斑纹限性品种实用化进展与选育技术(J).中国蚕业,1998,19(1):44-46
    108.浙江农业大学主编.蚕体解剖生理学(M) .农业出版社,1980,30-56
    109.浙江农业大学主编.家蚕良种繁育与育种学(M) .农业出版社,1982,218-271
    110.浙江农业大学主编.遗传学(M) .农业出版社,1983,6-96
    111.坂手荣.家蚕繭の蛍光性物質について(J).日本蚕糸学雑誌,1952,21(5.6):237-239
    112.浜野国勝,岡野俊彦.フラボノイド添加人工飼料における繭の着色素(J).日本蚕糸学雑誌,1989,58(2):140-144
    113.柴田村治,寺田喜久雄.ペーパークロマトグラフー法の実際(M).共立出版株式会社,1973,39-135
    114.C.N.R.RAO,中川正證訳.紫外-可視スペクトル(M).東京化学同人,1770,282-294
    115.大規良樹.新しい用途別蚕品種の育成(J).蚕糸科学と技術,1991,30(2):30-34
    116.大規良樹.新しく指定された蚕品種の性状(J).蚕糸科学と技術,1991,30(6):36-47
    117.G.eorg Schwedt,一濑典夫,Fran Michael Schnepel.蛍光分析化学(M).培風館,1987,10-77
    118.金子英雄.紫外线下呈黄、紫荧光色蚕茧水溶液的理化学性质的差异(J).日本蚕糸学雑誌,1931,3(3):186-190
    119.江口正治,鈴木康孝.家蚕中肠のアルカリ性フオスファターゼの多型(Ⅲ)2突然変異系統の酵素の比較(J).日本蚕糸学雑誌,1973,42(1):34-38
    120.江口正治,鈴木康孝.家蚕中肠のアルカリ性フオスファターゼの多型(Ⅳ)消化液や中肠のフイソザイムトの関係(J).日本蚕糸学雑誌,1973,42(1):39-44
    121.江口正治,吉武成美.カイコの種々の組織におけるnon-specificesteraseの関係(J).日本蚕糸学雑誌,1967,36(3):193-198
    122.江森康文,大山正.色その科学と文化(M).朝倉書店,1991,38-62
    123.井上柳吾.绢丝学(M).东京文印社,1933,52-62
    124.林屋慶三,杉本哲,藤本直正.繭の色素に関する研究(Ⅲ)緑繭色素の定性(J).日本蚕糸学雑誌,1959,28(1):27-29
    125.鈴木穆.紫外線に依る繭雌雄鑑別の実用価値(J).蚕業新報,1928,422:1004-1010
    126.奥正已.家蚕繭糸色素の化学の研究(第十報)紫外線による繭の蛍光色と繭糸色素との関係(J).日本農芸化学会誌,1934,10:1253-1257
    127.橋口勉,吉武成美.カイコにおける血液フエノールオキシダーゼ系の品種のにおける差異(J).日本蚕糸学雑誌,1966,35(6):381-392
    128.山崎壽.蚕繭の蛍光色に関する研究(Ⅱ)蛍光色の遺伝に就て(J).日本蚕糸学雑誌,1936,8(3):1-8
    129.山口定次郎.家蚕の紫外線蛍光に関する研究(J).日本蚕糸学雑誌,1935,8(12):196-206
    130.山本俊雄.新しい広食性蚕品種“ふりがね”の育成(N).蚕糸昆虫研ニュース,1993-08-13
    131.山本俊雄,間瀬啓介,長坂幸吉.極細繊度蚕品種“はくぎん”の育成(J).日本蚕糸学雑誌,1999,68(2):125-132
    132.山本俊雄.太繊度品種“ありあけ”及び細繊度品種“しんあけぼの”の性状(J).蚕糸科学と技術,1991,30(6):43-47
    133.山本俊雄,間瀬啓介,夏島守利.細繊度広食性蚕品種の選抜(J).蚕糸昆虫研報,1999,15:47-62
    134.山本俊雄,夏島守利.繭糸繊度特性を有する蚕品種育成(J).蚕糸試験場録報,1988,134:81-95
    135.藤本直正.蚕の絹糸腺の蛍光色発現(J).日本蚕糸学雑誌,1950,19(4):323-328
    136.藤本直正,杉本哲,河上清.繭の色素に関する研究(Ⅰ)緑繭および笹繭の色素とこれら色素に対しる絹糸腺の透過性(J).日本蚕糸学雑誌,1958,27(6):338-390
    137.藤本直正,林屋慶三,中岛計至.繭の色素に関する研究(Ⅳ)緑繭色素の造成および透過(J).日本蚕糸学雑誌,1959,28(1):30-32
    138.藤本直正,林屋慶三.繭の色素に関する研究(Ⅸ)家蚕緑繭色素の前駆物質について(J).日本蚕糸学雑誌,1972,42(5):383-386
    139.藤本直正.蚕繭々色の生理遺伝学的研究(J).日本蚕糸学雑誌,1965,34(3):179-180
    140.田島弥太郎.蚕の染色体突然変異に関する研究(Ⅱ)W染色体を含む転座に関する研究(J).蚕糸試験場録報,1994,12;109-181
    141.田島弥太郎.蚕の品種育成(M).株式会社サイエンスハウス,1993,7-183
    142.田中信彦,横山岳,蜷木理.ZZWW型4倍体雌蚕の性染色体対合に及ぼす転座染色体断片の影響(J).日本蚕糸学雑誌,1999,64(4):315-319
    143.味沢昭義.繭解舒に関する理化学の研究(Ⅱ)蛍光色繭層セリシン溶液の表面張力(J).日本蚕糸学雑誌,1968,37(2):123-126
    144.小針喜三郎.紫外線による家蚕形質の鑑識に就ての研究(J).片倉蚕業試験所報告,1932,1(1):1-37
    145.熊谷恒次.家蚕日107号に於ける繭の遺伝関係に就て(J).蚕丝,1932,(20):286
    146.西本吉助.色はどうして出るの(M).裳苹房,1991,125-173
    147.于振誠,横山岳,蜷木理,等.限性蚕品種“蛍光”の繭蛍光色素の由来(J).日本蚕糸学雑誌,2001,70(3):159-161
    148.有賀勲,田村昭雄.カイコにおけるマイトマイシンC誘発染色体組換え事象について(J).日本蚕糸学雑誌,1975,44(2):154-160
    149.原和二郎,小瀬川英一,間瀬啓介.cDNAクローンRFLPを用いる連関検索法の改良(J).日本蚕糸学雑誌,2002,71(2):95-100
    150.岩岡末彦.蚕繭の蛍光色に就ての研究(J).郡是製糸研究録報,1927,(1):115-146
    151.足立美佐男.繭の蛍光に就て(J).日本蚕糸学雑誌,1937,8(1):48-49
    152.Adensaya SA, O’Neill MJ, Roberts MF. Structure‐related fungitoxicity of isoflavonoids(J). Physiol Mol Plant Pathol, 1986, 29:95-103
    153.Barron D, Ibrahim RK. Isoprenylated flavonoids‐a survey(J). Phytochemistry, 1996, 43(5):921-982
    154.Chen H, Zuo Y G, Deng Y W. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by highperformance liquid chromatography(J). J. Chromatogr. A, 2001, 913:387-395
    155. Chi YS, Jong HG, Son KH, et al. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases(J). Biochemical Pharmacologyg, 2001, 62:1185-1191
    156. David H L , Stephen J B , Kathy E S. Flavonoid and carotenoid pigments in flower tissue of S andersonia aurantiaca(Hook. )(J) . Scientia Horticulturae ,1998 ,72 :179-192
    157.Devendra K. Occurrencd of 2-methglisoflavones in glycyrrhiza glabra (J). Phytochemistry, 1976,15(2):352
    158.Fox J L, Hsu P H, Legator M S, et al. Fluorescence in situ hybridization: powerful molecular tool for cancer prognosis(J). Clin Chem,1995,41(11):1554-1559
    159.Haberlein H, Tschiersch K-P. On the occurrence of methylated and methoxylated flavonoids in leptospermum scoparium(J). Biochemical Systematics and Ecology, 1998, 26:97-103
    160.Heppell-parton A C, Albertson D G, Fishpool R, et al. Multicolor fluorescence in situ hybridization to order small single copy probes on metaphase chromosomes. Cytogenetic Cell Genet(J). 1994,66(1):42-47
    161.Ha TJ, Yang MS, Jang DS, et al. Inhibitory activitied of flavanone derivatives isolated from Sophora flavescens for melanogenesis(J). Bull Korea Chem Soc, 2001, 22(1):97-99
    162.Harborne J B. Biochemical systhematics of flavonoids. In: Hardborne J B, Mabry T J, Mabry H (eds). The Flavonoids(M). London: Academic press, 1976,1056-1095
    163.Justesen U J, Knuthsen P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes(J). Food Chemistry, 2001, 73:245- 250
    164.Justesen U, Knuthsen P, Leth T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection(J). J. Chromatogr. A, 1998, 799:101-110
    165.Kaundun S S, Lebreton P, Fady B. Genetic variation in the needle flavonoid composition of Pinus brutia var. brutia populations(J). Biochemical Systematics and Ecology, 1998, 26:485-494
    166.Krauze- Baranowska M, Cisowski W. Flavonoids from some species of the genus Cucumis(J). Biochemical Systematics and Ecology, 2001, 29:321-324
    167.keinnen M, Julkunen-Tiitto M. High-performance liquid chromatographic determination of flavonoids in Betula pendula and Betula pubescens leaves(J). J. Chromatogr. A, 1998, 793:370-377
    168.Kyogoku K, Hatayama K, Komatsu M. Constituents of a Chinese crude drug Kushen (the root of Sophora flavescens). Isolation of five new flavonoids and formononetin(J). Chem Pharm Bull, 1973, 21(12):2733-2738
    169.Kuroyanagi M, Arakawa T, Hirayama Y, et al. Antibacte‐rial and antiandrogen flavonoids from Sopho a flavescens(J). J Nat Prod, 1999, 62(12):1595-1599
    170.Kang TH, Seong SJ, Ko WG, et al. Cyotoxic lavandulyl flavanones from Sophora flavescens(J). J Nat Prod, 2000, 63(5):680-681
    171.Ko WG, Kang TH, Kim NY, et al. Lavandulyl flavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens(J). Toxicology in Vitro, 2000, 14:429-433
    172.Kim DW, Chi YS, Son KH, et al. Effects of sophoraflavanone G, a prenylated flavonoid from Sophora flavescens, on cyclooxygenase‐2 and in vivo inflammatory response(J). Archives of Pharmacal Research, 2002, 25(3):329-335
    173.Kim SJ, Son KH, Chang HW. Tyrosinase inhibitory preny‐ lated flavonoids from Sophora flavescens(J). Biol Pharm Bull, 2003, 26(9):1348-1350
    174.Ko WG, Kang TH, Kim NY, et al. Lavandulylflavonoids: a new class of in vitro apoptogenic agents from Sophora flavescens(J). Toxicology in Vitro, 2000, 14:429-433
    175.Lane GA, Biggs DR, Russell GB, et al. Isoflavonoid feeding deterrents for Costelytra zealandica: structure‐ activity relations(J). J Chem Ecol, 1985, 11:1713-1735
    176.Lee HS, Ko HR, Ryu SY, et al. Inhibition of phospholipase Cγ1 by the prenylated flavonoids from Sophora flavescens(J). Planta Medica, 1997, 63(3):266-268
    177.Muehlbauer G J,Specht J E,Thomas—Compton M A,et a1.Near—isogenic lines A potential resource in the integration of con—ventional ahd molecular marker linkagemaps(J).Crop Sci,1988,28:729~735
    178.Michelmore R W,Paranand I,Kessali R V.Identification of makers linked to disease resistance gene by bulked segregant anal—ysis:a rapid method to detect markers in specific region using segregating population(J).Proc Natl Acad Sci USA,1991,88:9829~9832
    179.Merken H M,Beecher G B.Liquid chromatographic method for the separation and quantification of prominent flavonoides(J).J.Chromatogr. A, 2000, 897: 177-184
    180.Mitscher L A. Antimicrobial Agents from higher plants prenglated flavonoids and other phenols from Glycy rrhiza lepiota(J). Phytochemstry, 1983,22(2):573
    181.Muehlbauer G J,Specht J E,Thomas-Compton M A,et a1.Near—isogenic lines A potential resource in the integration of conventional ahd molecular marker linkage maps[J].Crop Sci,1988,28:729-735
    182.Michelmore R W,Paranand I,Kessali R V.Identification of makers linked to disease resistance gene by bulked segregant analysis:a rapid method to detect markers in specific region using segregating population[J].Proc Natl Acad Sci USA,1991,88:9829-9832
    183.Maabry TJ. The systematic identification of flavonoids [M]. Berlin:Springer- Verlag, 1970,55-58
    184.Markham KR. The flavonoids [M]. London: Chapman and Hall,1975,46-49
    185.Nuutila A M, Kammiovirta K, Oksman-Caldentey K-M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis(J). Food Chemistry, 2002, 76:519-525
    186.Nogueira M A, Queiroz S C N, Magalhes A F, et al. Flavonoids from lonchocarpus latifolius roots(J). Phytochemistry, 2000, 55:787-792
    187.Nielsen S E, Breinholt V, Cornett C, et al. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with in tact flavane nucleus(J). Food and Chemical Toxicology, 2000, 38:739-746
    188.Nagaoka A, Ogihara Y. Applicability of inter-simple sequence repeats polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers(J). Theoretical and Applied Genetics, 1997 ,95:597–602
    189.Ryu SY, Kim SK, No Z, et al. A novel flavonoid from Sophora flavescens(J). Planta Medica, 1996, 62(4):361-363
    190.Schittko U, Burghardt F, Fiedler K, et al. Sequestration and distribution of flavonoids in the common blue butterfly polyommatus icarus reared on trifolium repens(J). Phytochemistry, 1999, 51:609-614
    191.Schieber A, Keller P, Carle R. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography(J). J. Chromatogr. A, 2001,910:265-273
    192.Sato M, Tsuchiya H, Takase I. Antibacterial activity of plant flavonoid (sophoraflavanone G) against periodontopathic and opportunistic bacteria. Shika Yakubutsu Ryoho(J), 1996, 15(1):33-39
    193.Son JK, Park JS, Kim JA, et al. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity(J). Planta Medica, 2003, 69(6):559-561
    194.Shin JH, Kim HJ, Kwak JH, et al. Aprenylated flavonol, sophoflavescenol: A potent and selective inhibitor of cGMP phosphodiesterase(J). Bioorganic & Medicinal Chemistry Letters, 2002. 12:2313-2316
    195.Tashiro M, Suzuki F, Shirataki Y, et al. Effects of prenylflavanones from Sophora species on the growth and activation of a mouse macrophage‐l ike cell line(J). Anticancer Research, 2002, 22(1A):53-58
    196.Toshio Fukai, Yoshio Hano. Structures of a novel 2-arylbenzofuran derivarive and two flavone dericatives from the cultivated mulberry tree (Morus lhou Koidz)(J). Chemical & Pharmaceutical Bulletin, 1985, 33(10):4288-4295
    197.Toshio Fukai, Yue-Hupei. Isoprenylated flavonones from Morus cathayana(J). Phytochemistry, 1998, 47(2):273
    198.Tsuchiya H, Sato M, Miyazaki T, et al. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin‐ resistant Staphylococcus aureus(J). Journal of Ethnopharmacology, 1996, 50:27-34
    199.Tsuchiya H, Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora fexigua(J). Phytomedicine, 2000, 7(2):161-165
    200.Tsuchida K, Miyajima N, Kenwrick S, et al. Determining gene location on chromosome of Bombyx mori using Fluorescence in situ hybridization (FISH)(J). Appl Entomol Zool, 1995, 30: 225-230
    201.Tsumura Y, Ohba K, Strauss SH. Diversity and inheritance of inter-simple sequence polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica) (J). Theoretical and Applied Genetics, 1996,92:40–45
    202.Woo ER, Kwak JH, Kim HJ, et al. A new prenylated flavonol from the roots of Sophora flavescens(J). J Nat Prod, 1998, 61(12):1552-1554
    203.Ya-Qin shi, Toshio Fukai. Cytotoxic flavonoids with isoprenoid groups from Morus monglica(J). Journal of Natural Products, 2001, 64(2):181-188
    204.Yamamoto H, I chimura M, Ishikawa N, et al. Localization of prenylated flavonoids in Sophora flavescens var. angustifolia plants(J). Z Naturforsch, 1992, 47c:535-539
    205.Yamamoto H, Kawai S, Mayumi J, et al. Prenylated flavanone production in callus cultures of Sophora flavescens var. angustifolia(J). Z. Naturforsch, 1991, 46c:172-176
    206.Yamamoto H, Ichimura M, Inoue K. Stimulation of prenylated flavanone production by mannans and acidic polysaccharides in callus culture of Sophora flavescens(J). Phytochemistry, 1995, 40(1):77-81
    207.Yamamoto H, Yamaguchi M, Inoue K. Absorption and increase in the production of prenylated flavanones in Sophora flavescens cell suspension cultures by cork pieces(J). Phytochemistry, 1996, 43(3):603-608
    208.Yamamoto H, Senda M, Inoue K. Flavanone 8‐ dimethylal‐ l yltransferase in Sophora flavescens cell suspension cultures(J). Phytochemistry, 2000, 54(7):649-655
    209.Yamamoto H, Yatou A, Inoue K. 8‐ Dimethylally‐l naringenin 2’‐hydroxylase, the crucial cytochrome P450 mono‐ oxygenase for lavandulylated flavanone formation in Sophora flavescens cultured cells(J). Phytochemistry, 2001. 58(5):671-676
    210.Yamamoto H, Zhao P, Inoue K. Origin of two isoprenoid units in a lavandulyl moiety of sophoraflavanone G from Sophora flavescens cultured cells(J). Phytochemistry, 2002, 60(3):2632-67178
    211.Ying W, Matthias H, Joseph G, et al. Antimicrobial Flavonoids from Psiadia trinervia and their Methylated and Acetylated Derivatives(J). Phytochemitry, 1989, 28(9):2323
    212.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification(J). Genomics, 1994 ,20: 176– 183
    213.Zhao P, Inoue K, Kouno I, et al. Characterization of leachianone G 2’’‐ dimethylallyl‐t ransferase, a novel prenyl sidechain‐ elongation enzyme for the formation of the lavandulyl group of sophoraflavanone G in Sophora flavescens Ait(J). Cell suspension cultures. Plant Physiol, 2003, 133(3):1306-1313
    214.Zhao P,H amada C, Inoue K, et al. Efficient production and capture of 8‐ prenylnaringenin and leachianone G‐b iosynthetic intermediates of sophora flavanone G‐ by addition of cork tissueto cell suspension cultures of Sophora flavescens(J). Phytochemistry, 2003, 62(7):1093-1099
    215.Zhao YY, Wang B, LeiL M, et al. Constituents of the flavonoids from the roots of Sophora flavescens Ait(J). Zhi wu Xuebao, 1993, 35(4):304-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700