新型猪瘟黏膜疫苗及检测试剂盒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Hog Cholera, HC)是由猪瘟病毒(Classical swine fever virus,CSFV;又称Hog cholera virus,HCV)引起的猪的急性高度接触性传染病,对养猪业危害极大。虽然随着许多综合防治措施的实施,已控制了猪瘟的大规模流行,但该病仍在我国广大养猪地区不断发生和小规模流行,每年均使养猪业蒙受巨大的经济损失。我国每年有3%的饲养猪死于猪瘟,其中90%是仔猪。并且近年来,该病在美洲、亚洲、欧洲等国家和地区呈现广泛流行的趋势,一些宣布已消灭了猪瘟的国家如法国、荷兰、德国、比利时等又见猪瘟复发的报道。研制更为有效的猪瘟疫苗和治疗药物已成为养猪业的迫切需要。
     E2(gp55)蛋白是CSFV病毒主要的抗原蛋白,也是三个病毒糖蛋白(E0、E1、E2)中保守性最低,最易变异的分子。实验证明,E2蛋白在体内可诱导产生病毒的中和抗体并激发对CSFV的免疫保护,使猪能够抵抗致死量CSFV的攻击。E2蛋白作为CSFV囊膜糖蛋白中最重要的一个保护性抗原蛋白,一直是国内外学者的主要研究对象。
     本研究结合LTB的粘膜免疫佐剂特性,选择了猪瘟病毒囊膜糖蛋白E2的部分保守抗原决定簇以及公认的有效粘膜免疫佐剂——大肠杆菌肠毒素B亚单位(LTB)的基因作为研究对象,参考毕赤酵母的密码子偏好性,人工合成了编码E2蛋白保守抗原决定簇和编码LTB的融合蛋白(E2-LTB)的编码基因。将该基因克隆到毕赤酵母表达载体ppicZαa上,构建了重组表达载体ppicZaAE2-LTB,通过电转化使ppicZaA E2-LTB稳定整合到了P. pastoris宿主菌GS115中,成功构建了分泌表达工程菌ppicZaA E2-LTB/ GS115,诱导表达实验结果表明,目的蛋白E2-LTB能被毕赤酵母分泌到细胞外,通过western-blot分析表明该表达产物能与CSFV抗血清以及兔抗LTB血清反应,融合蛋白能与神经节苷脂受体结合,说明该融合蛋白具有良好的抗原性和生物学活性。
     在此基础上我们进一步对所构建融合蛋白酵母表达工程菌pPICαA-E2-LTB/ GS115的发酵参数进行了优化,以摇瓶培养方式探讨不同pH值,不同甲醇浓度,不同诱导时机以及不同诱导时间对外源蛋白表达的影响;以NBS BIOFLO 4500型30L发酵罐进行高密度发酵条件探索;利用硫酸铵分级分离、液相色谱对目的蛋白进行纯化。结果表明在pH=6.0的条件下以1%甲醇诱导表达96小时后,目的蛋白E2-LTB表达最优;在高密度发酵条件下,目的蛋白的理论表达量可以达到约1g/L,最终收率能够达到400mg/L发酵液,蛋白最终纯度达到95%以上。
     利用pPICαA-E2-LTB/ GS115工程菌分泌表达并经过纯化的E2-LTB融合蛋白作为一种粘膜免疫疫苗,采用口服和鼻饲两种方式对小鼠进行接种免疫实验,通过ELISA检测抗体水平、细胞因子水平对免疫学效力进行评估。结果表明:鼻饲、口服免疫途径都能激发产生IgA和IgG抗体,其中鼻饲产生的抗体效价高于口服免疫。使用融合蛋白产生的抗体明显高于单独使用E2蛋白组;无论是在免疫小鼠的血清中,还是在体外培养的小鼠脾细胞中,鼻饲E2-LTB都能增强IL-2、IL-5和INF-γ的分泌。对E2-LTB免疫3次的家兔接种100MID50剂量猪瘟兔化弱毒(HCLV)进行的免疫攻毒保护试验表明,空白对照组无保护作用,E2蛋白免疫组具有一定的免疫保护作用,而E2-LTB融合蛋白免疫组则完全能够抵抗猪瘟病毒的攻击。说明该黏膜免疫疫苗对实验动物具有良好的病毒保护能力。
     以纯化的E2蛋白为抗原包被酶标板,通过对ELISA各反应条件的优化,确定了最佳反应条件:重组E2蛋白的最佳包被浓度为2.5ug/ml,最适包被条件为4℃24h,封闭液为加入0.02%硫柳汞、2mMEDTA、1%BSA,PBS,最佳封闭条件为37℃1h;最佳血清稀释倍数为100倍,酶标兔抗猪IgG最适工作浓度为1:1200,用含有4%PEG 6000的稀释液稀释二抗,其最佳工作时间为20min。通过试剂盒的特异性和敏感性实验以及重复实验表明该试剂盒具有特异性好,敏感性高,稳定性强等特点,其阴阳性值临界点OD值为0.15,对60份检测样品检验结果表明与进口试剂盒符合率达到83.3%。
Hog Cholera (HC) is an acute and highly contagious disease that has been a great threat to the global swine industry. This disease is caused by classical swine fever virus (CSFV), which is also named as Hog cholera virus (HCV) infection. Large-scale epidemic spread of HC has been controlled due to various comprehensive measures taken in recent years. However, occasional sporadic HC prevalence occurs constantly in our country and results in significant economical lost. Statistical data indicates that annually 3% pigs, 90% of them are young pigs, are dead of HC in China. To make it even worse, extensive HC spreading tendency has been detected in some America, Asia, Europe countries or regions. HC cases were reported in even some countries such as France, Netherland, Germany and Belgium that had declared extinction of HC. Glycoprotein E2 of CSFV is the primary antigenic protein with high variability, which can induce virus-neutralizing antibodies against CSFV and resisted lethal CSFV challenge. This protein has been studied widely all the word as an important protective antigenic protein.
     The DNA sequence encoding swine fever disease virus (CSFV) glycoprotein E2 antigenic epitope and Escherichia coli Heat-labile Enterotoxin B subuint (LTB) gene with codons preferred by the methylotropic yeast pichia pastoris were synthesized and inserted into pPICZaA expression vector. After being linearized by digestion, the vector with AOX1 promoter and a -factor secretion signal sequence was transformated into Pichia pastoris (GS115) by electroporation to integrate with the genome. The transformants with high copies were screened by Zeocinn? and were induced with methonl to express the recombinant protein. SDS-PAGE and Western blot analysis showed that the fusion protein successfully secreted into the culture medium and retained the antigenicity associated with LTB and CSFV antibodies.
     The optimized expression conditions of the acquired positive recombinant yeast strains P. pastoris GS115- pPICαA-E2-LTB was established by studying the relations between expression yield and growth conditions with different induction time, strain density, pH value and dose of methanol, respectively. And the conditions that the strain zymolysised in fermenter (NBS BIOFLO 4500) with higher density was optimized, and then the recombinant protein was purified by stepwise precipitation with ammonium sulfate and HPLC. The optimal conditions of the recombinant protein expression were planted in medium with 30℃, pH 6.0 and incubated 96h with 1.0% methanol. After induction under optimal conditions with high density,the maximum yield of recombiant protein could reach to 1g/L theoretically. In this study, yield of E2-LTB protein was 400mg/L, and the concentration of E2-LTB was 95%. It indicated that the strain was character of good stability, higher output and adapt to product cosmically.
     A positive recombinant strain Pichia pastoris, expressing swine fever virus (CSFV) glycoprotein protein E2 epitopes and E. coil heat-labile enterotoxin B Subunit (LTB), was used to produces mucosal vaccine E2-LTB. The antibody and cytokines response to E2-LTB vaccine were evaluated by ELISA. Remarkably higher levels of antiviral IgA and IgG antibodies were induced in serum, nasal wash and lung wash by routes of intranasal and perorall vaccination, respectively. All antibodies induced by intranasal rout were higher than that induced by perorall rout. E2-LTB could directly enhance the expression of T-cell-mediated interleukin-2 (IL-2), IL-5 and IFN-γin both the serum of mouse and the cultured mouse spleen cells. In virus challenge experiments, all the rabbits were challenged with 100MID50 HCLV. E2 Eimmunized Rabbits showed a mild increase of body temperature, while no E2-LTB Eimmunized rabbit increased its body temperature. On the other hand, the body temperature of control rabbits increased, but then recovered normally. These results demonstrated that the E2-LTB could induce an efficient immune protection against HCLV infection, and might provide a new kind of vaccine for CSFV.
     An indirect ELISA Kit was constructed to detect antibody against CSFV by coating the wells of 96-well plate with purifted E2 protein.Various factors and conditions of ELISA were explored,and the optimal reaction conditions of ELISA were determined.The optimal concentration of recombinant E2 protein for plate coating was 2.5μg/mL,and the optimal coating condition of recombinant E2 protein for ELISA was at 4℃for 24h. The blocking agents were l% BSA, 0.02% thimerosal and 2mMEDTA, and the blocking time was 1 hours at 37℃. The dilution of serum sample was l:100,and the dilution of HRP-labeled rabbit anti-porcine lgG was l:1200. The samples for ELISA were incubated at 37℃for 20min before terminated with the stopping solution.The indirect ELISA Kit by the purified recombinant nucleoprotein had good specificity for the detection of CSFV antibody in serum.The difference value among wells in a plate and among plates for ELISA was both less than 6%,which showed the assay had a good retrievality.60 serum samples from swines were detected for the antibody to CSFV by using our developed ELISA and the IDEXX CSFV Antibody Test Kits simultaneously. It was found that our developed ELISA had the highly sensitivity and correspondence, and the Cut off value of the kit is 0.15 between positive serum and negative serum. The correspondence between the ELISA kit and the IDEXX kit was 83.3%
引文
[1] Moenning V. The bog cholera virus J. Comp Immun Microbiol Infect Dis. 1992,15 (3) :189 - 201.
    [2] Meyers G, Rumenapf T, Thie H J .Molecular cloning and nucleotide sequence of the genome of hog cholera virus Virology. 1989 , 171 :555 - 567.
    [3] Moomann R J M, Wamerdam P A M, Meer B V D ,et al. Molecular cloning and nucleotide sequence of hog cholera virus strain brescia and mapping of the genomic region encoding envelop protein E1. Virology ,1990 ,177 :184 - 198.
    [4] F. A. Murphy ,C. M. Fauquet ,D. H. L. Dishop ,et al. Virus taxonomy. Sixth report of the international committee on taxonomy of viruses. Arch. Virol. Suppl. ,1995 ,10 :415~427
    [5] Deng R. ,Brock K.. 5’and 3’untranslated regions Of pestivirus genome :primary and secondary structure analyses. Nucleic Acid Res. ,1993 ,21 :1949~1957
    [6] Kozak M. The scanning model for translation: an update. J.Cell.Biol. ,1989 ,108 :229~241
    [7]肖明,张楚瑜,祝志展等.猪瘟病毒基因组非编码区的定性、定量与结构分析.科学通报,2001 ,46 :544~550
    [8] Stark R. ,Rumenapf T. ,Meyers G. ,et al. Processing of pestivirus :cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J. Virol ,1993 ,67 :7088~7099
    [9] Thiel H. J . ,Stark R. ,Weiland E. ,et al. Hog cholera virus :molecular composition of virions from a pestvirus. J. Virol ,1991 ,65 :4705~4712
    [10] ELBER K. , Tautz P. ,Becher D. ,et al. Processing in the pestivirus E2 - NS2 region :identification of protein p7 and E2p7. Virol , 1996 , 70 :4131~4135
    [11] Rumenapf T. ,Ungher C. ,Strauss J . H. H. ,et al. Processing of the envelope glycoproteins of pestivirus. Virol , 1993 , 67 : 3288~3294
    [12] Elbers K. ,Tautz N. ,Becher P. ,et al. Processing in the pestivirus E2 - p7region : identification of protein p7 and E2p7.. Virol , 1996 , 70 : 4131~4135
    [13] Wensvoort G. ,Boonstra J . , Bodzinga B. G. . Immunoaffinity purification and characterization of the envelope protein E1 of hog cho1era virus.. Gen. Virol ,1990 ,71 :531~540
    [14] Stark R. , Rumenapf T. , G. Meyers ,et al. Genomic localization of hog cholera virus glyvoproteins. Virology ,1990 ,174 :286~289
    [15] Bruschke C J , Julst M M, Noormann R J ,et al. Glycoprotein Erns of pestiviruses induces apoptosis lymphocytes of several species. J Virol , 1997 ,71(9) :6692 - 6696.
    [16] Hust M. M. ,Himes G. ,Newbigin E. ,et al. Glycoprotein E2 of the classical swine fever virus :expression in insect cells and identification as a ribonuclease. Virology ,1994 ,200 :588~565
    [17] Wendisch J . M. , Schncider R. , Stark R. ,et al. RNase of classicalswine fever virus : biochemical characterization and inhibition byvirus—neutralizing monoclonal antibodies. . Virol , 1996 , 70 :352~358
    [18]韩雪清,刘湘涛,赵启祖.猪瘟病毒遗传发生关系分析.中国兽医科技,1999 ,29 :3~7
    [19] Hust M. M. , Pauoto F. E. ,Hoekman A. ,et al. Inactivation of the RNase activity of glycoprotein ERNSof classical swine fever virus results in a cytopathogenic virus. . Virol ,1998 ,729 :151~157
    [20] Wendisch J . M. , Schncider R. , Stark R. ,et al. RNase of classical swine fever virus : biochemical characterization and inhibition byvirus—neutralizing monoclonal antibodies. Virol , 1996 , 70 :352~358
    [21] Van Rijn P. A. ,Van Gennip H. G. P. ,Meijier E. J ,et al. Epitople mapping of envelope glycoprotein E1 of hog cholera virus strainBrescia. Gen. Virol ,1993 ,74 :2053~2060
    [22] Konig M,Lengsfeld T,Pauly T,et al. Classical swine fever virus :independent induction of protective immunity by two structural glycoproteins. J Virol , 1995 ,69 :6479 - 6486.
    [23] Van Rijn P A ,Miedema G K W,Wensvoort G,et al. Antigenic structure of envelop glycoprotein E1 of hog cholera virus. J Virol , 1994 ,68 :3934 - 3942.
    [24] Lowings P ,Ibata G,Nccdham J ,et al. Classical swine fever virus diversity and evoaution. J Gen Virol ,1996 ,77 :1311 - 1321.
    [25] Min L. ,Fang L. ,Mallery M. ,et al. Deletioin of structural glycoprotein E2 of classical swine fever virus strain Alfort/ 187 resolve alinear epitopes of monoclonal antibodies WH303 and N– terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. Virol ,2000 ,11619~11625
    [26] Yu M. ,Wang L. F. ,Shiell B. T. ,et al. Fine mapping of a C - terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestivirus. Virololgy ,1996 ,222 :289~292
    [27] Hust U. M. ,Moormann R. J . . Inhibition of pestivirus infection in cell culture by envelope proteins ERNS and E2 of classical swine fever virus : ERNS and E2 interact with different receptors. Gen. Virol ,1997 ,78 :2779~2787
    [28] Hulst MM., Himes G., Newbigin E., et al. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology. 1994, 200(2):558-65.
    [29] Joaing P., Bianchi A T, Kappe A L, et al. Distribution of lymphocyte subpopulations in thymus, spleen and peripheral blood of specific pathogen free pigs of 1 to 40 weeks of age. Vet Immunol Immunopathol, 1994, 40 :105 - 117.
    [30]王海震,李学仁,冯秀丽等.猪瘟病毒E2蛋白主要抗原域的高效表达及间接ELISA方法的初步建立.中国生物工程杂志,2005,25(1):81-85
    [31]刘建文,余兴龙,张丽颖,涂长春.单克隆抗体捕捉猪瘟病毒抗原ELISA方法的建立.畜牧兽医学报, 2006,37(5):474~479
    [32]孙书华,孙淑芳,蒋正军等.用PCR技术快速检测非洲猪瘟病毒.中国兽医学报, 1996 ,16(5) :447 - 448.
    [33] Haegemana A., Dewulf J., Vrancken R. et al. Characterisation of the discrepancy between PCR and virus isolation in relation to classical swine fever virus detection. Journal of Virological Methods. 2006,136: 44–50
    [34]傅烈振,朱燕,王宁.应用反转录-聚合酶链技术快速检测猪瘟病毒RNA的研究.中国兽医科技,1998, 28(6) :3 - 5.
    [35]赵耘,秦玉明,张广川等. RT- PCR和酶切方法区分猪瘟疫苗毒与野毒的研究.微生物学通报, 2006, 33(3): 82-87
    [36] Deregt D., Gilbert S. A. , Dudas S. , et al. A multiplex DNA suspension microarray for simultaneous detection and differentiation of classical swine fever virus and other pestiviruses. Journal of Virological Methods. 2006, 136: 17–23
    [37] Meyers C., Thiel HJ. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleo capsid protein of classical swine fever virus. J Virol. 1993, 67(12):7088-7095.
    [38]赵启祖,刘湘涛,刘卫,等.猪瘟病毒P80基因核酸探针的研制.谢庆阁,瞿中和.畜禽重大疫病免疫防制研究.北京:中国农业科技出版社, 1996. 1-7.
    [39]张永国,刘湘涛,韩雪清等.猪瘟病毒E2基因主要抗原区的克隆及原核表达.生物工程学报, 2002, 18(5):605-608
    [40]魏旭文,尚佑军,孙世琪,等.大肠埃希氏菌表达猪瘟病毒E2蛋白的纯化.中国兽医科技,2003,33(10):55-57
    [41]吴健敏,任兆钧,余兴龙,等.猪瘟病毒E2蛋白抗原多肽与T4噬菌体SOC蛋白的融合表达.中国兽医学报, 2003, 3 (1 ):14-17
    [42]刘伯华,余兴龙,张茂林,等.原核表达的猪瘟病毒E2蛋白抗原多肽的复性和纯化.中国兽医学报,2003,23(2):145-148
    [43]张青婵,刘思国,徐兴,等.猪瘟病毒E2蛋白4重复抗原表位的构建及抗原活性研究.高技术通讯, 2003, 10:41-45
    [44]王海震,杨松,苏小运,等.含双拷贝CSFV E2基因A和D片段原核表达载体的构建及表达.中国病毒学, 2004, 19(2):171—173
    [45]张永国,刘湘涛,韩雪清,等.猪瘟病毒E2基因抗原结构域A、B、C、D区在大肠杆菌中的表达.畜牧兽医学报, 2004,35(20:182-185
    [46]刘思国,涂长春,余兴龙,等.猪瘟病毒E2蛋白重复多表位基因的融合表达及其兔体免疫保护研究.中国免疫学杂志, 2005, 21(2):127-133
    [47]程晓盈,张彦明,王韡,等.猪瘟病毒E2基因的克隆及原核表达.西北农林科技大学学报(自然科学版),2005, 33(12):13-16
    [48]胡慧,邱昌庆,张彦明,等.猪瘟病毒E2重组蛋白纯化和复性条件的研究.中国兽医科技. 2005, 35(4):251-255
    [49]徐璐,范学政,王琴.猪瘟病毒石门株E2基因4个抗原结构域的原核表达.中国农业科学. 2006, 39(4):814-818
    [50] Siguo Liu, Changchun Tu, Chunlai Wang, et al. The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. Journal of Virological Methods. 2006, 134:125–129
    [51] Pauly T , Elbers K , KonigM , et al. Classical Swine Fever V irus-specific cyto-toxic T lymphocyte and dentification of a T cell ep itope . J Gen V iro logy, 1995, 76: 3039- 3049.
    [52]郑小坚,贡成良,曹广力,等.猪瘟病毒cF114株E2基因在家蚕杆状病毒表达系统中的融合表达.蚕业科学. 2006, 32 (3):340-344
    [53]韩雪清,刘湘涛,张涌,等.猪瘟病毒E2基因在Pichia pastoris中的表达及其免疫活性的初步研究.生物工程学报. 2002, 18(2):208-211
    [54]徐学清,张素芳,郑其升,等.猪瘟病毒E2蛋白A/D抗原区基因在酵母中的分泌表达与鉴定.中国病毒学. 2004, 19(6):598-601
    [55]徐学清,郑其升,曹瑞兵,等.猪瘟病毒E2蛋白B/C抗原区基因在毕赤酵母中的表达与鉴定.中国生物工程杂志. 2004, 24(9 ):53-57
    [56]徐学清,曹瑞兵,蔡梅红,等.猪瘟病毒E2蛋白A/D抗原域在毕赤酵母中的表达.西北农林科技大学学报(自然科学版). 2005, 33(3):11-15
    [57]于晓龙,张海峰,宋岩,等.猪瘟病毒HL -LY地方株E2基因在毕赤酵母中的高效表达.中国兽医杂志. 2006, 42(6):25-27
    [58] Moormann R JM , V an Gennip H G P,M iedema G K W, et al . Infections RNA transcribed from an Engineered Full Length cDNA Template of the Genome of a Pestivirus. Journal of V irology , 1996, 70 (2) : 763-770
    [59] Meyers G, Th iel H J , T ilM annrvM enapf. Classical Swine Fever virus : Recovery of infections viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. Journal of V irology , 1996, 70 (3) : 1588-1595.
    [60] Hodgman T C A. N ew superfam ily of rep locative proteins. N ature, 1988, 333 (5) : 22- 23.
    [61]周鹏程,陆宇,陈建,等.猪瘟病毒E2 (gp55)基因的克隆表达及其DNA疫苗的初步研究.微生物学报. 2000, 40 (3):243-251
    [62]余兴龙,涂长春,李红卫,等.猪瘟病毒E2基因真核表达质粒的构建及基因疫苗的研究.中国病毒学. 2000, 15(3):264-271
    [63]陈创夫,余兴龙,马正海,等.细胞因子与猪瘟病毒E2基因真核双表达载体的构建及其免疫增强作用.中国农业科学. 2002, 35 (11) :1406-1410
    [64]涂亦娴,张馨玉,金华利,等.猪瘟病毒E2基因真核表达载体表达效率和免疫效果的比较.中国农业大学学报. 2005, 10 (6) :37-41
    [65]刘建玲,张彦明,苏正元,等.逆转录病毒载体介导的猪瘟病毒E2基因的真核表达.中国病毒学. 2006, 21(3):249-252
    [66] Ganges L., Barrera M., N′u?nez J. I. et al. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine. 2005, 23: 3741–3752
    [67] Wienhold D, Armengol E, Marquardt A, et al. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. 2005,36(4):571-87
    [68] Xiao-Nan Donga, Ke Weia, Zu-Qiang Liu, et al. Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine. 2002,21:167–173
    [69] Xiao-Nan Dong, Yun Qi, Jian Ying, et al.Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine. 2006, 24:426–434
    [70] Xiao-Nan Dong, Ying-Hua Chen. Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine. 2006, 24: 4029–4034
    [71] van Rijn PA, van Gennip HG, Moormann RJ. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV). Vaccine. 1999, 17(5):433-440
    [72] Moormann RJ, Bouma A, Kramps JA, et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol. 2000, 73(2-3):209-219.
    [73] Ahrens U, Kaden V, Drexler C, et al. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows. Vet Microbiol. 2000, 77(1-2):83-97.
    [74] de Smit AJ, Bouma A, van Gennip HG, et al. Chimeric (marker) C-strain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs. Vaccine. 2001, 19(11-12):1467-76
    [75] De Smit AJ, Bouma A, de Kluijver EP, et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol. 2001, 78(4):307-17.
    [76] Uttenthal A, Le Potier MF, Romero L, et al. Classical swine fever (CSF) marker vaccine. Trial I. Challenge studies in weaner pigs. Vet Microbiol. 2001, 83(2):85-106.
    [77] Floegel-Niesmann G. Classical swine fever (CSF) marker vaccine. Trial III. Evaluation of discriminatory ELISAs. Vet Microbiol. 2001,83(2):121-36
    [78] Van Gennip HG, Bouma A, van Rijn PA, et al. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine. 2002, 20(11-12):1544-56
    [79] Dong XN, Chen Y, Wu Y, et al. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine. 2005, 23(28):3630-3.
    [80] Dallas, W. S., Falkow, S. Amino acid sequence homologybetween cholera toxin and Escherichia coli heat-labiletoxin. Nature. 1980, 288, 499- SO1.
    [81]程芳大肠埃希菌不耐热肠毒素作为新型粘膜佐剂的研究进展国外医学:微生物学分册2000, 23, 30-32
    [82]王星,覃宗华.大肠杆菌不耐热肠毒素的分子生物学及粘膜免疫佐剂效应。广东畜牧兽医科技2005, 4 18-21
    [83]王学林,陈受霓,大肠杆菌不耐热肠毒素突变体LTR72增进肤抗原诱生CD4十T细胞和分泌丫干扰素的能力:国外医学:预防.诊断.治疗用生物制品分册2003, 4, 183-184
    [84]全胜,严杰.重组大肠杆菌不耐热肠毒素B亚单位基因表达系统构建.微生物学杂志2003, 2, 14-15
    [85]. Richards CM, Aman A工Hirst TR,et al. Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J Virol. 2001,75(4):1664-71.
    [86]. Giuliani MM, Del Giudice G, Giannelli V, et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J Exp Med, 1998; 187(7) :1123- 1132
    [87]. De Haan L, Verweij WR, Feil IK, et al.Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit.Immunology, 1998 ;94(3):424-430
    [88]. Lycke N, Tsuji T, Holmgren J.The adjuvant effect of Vibrio cholerae and Escherichia coliheat-labile enterotoxins is finked to their ADP-ribosyltransferase activity. Eur J Immunol. 1992; 22(9): 2277-81
    [89] Fingerut E, Gutter B, Meir R, et al. Vaccine and adjuvant activity of recombinant subunit B of E. coli enterotoxin produced in yeast. Vaccine. 2005, 23 (38): 4685- 4696.
    [90]冯强,蔡绍哲,杨珑大肠杆菌不耐热肠毒素的表达及其纯化保存策略.生物工程学报,2003, 5, 532-537
    [91]. Ge-Chandy A, Eriksson K, Lebens M, et al.Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells.Infect Immun , 2001 ; 69(9): 5716-5725
    [92] Beil W, Obst B, Sewing KF, et al.Helicobacter pylori reduces intracellular glutathione in gastric epithelial cells. Dig Dis Sci 2000; 45:1769-73 [PMID: 11052318]
    [93]. McCluskie MJ, Weeratna RD, Clements JD, et a1.Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants. Vaccine. 2001;19(27): 3759-68.
    [94]. Willem R. Verwei j, Lolke de Haan, et a1.Musosal immunoadjuvant activity of recombinant Escherichia coli heat-labile enterotoxin and its B subunit: Induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine ,1998; 16(20): 2069 -2076.
    [95] E. Fingerut, B. Gutter, M. Goldway, D. Eliahoo, J. Pitcovski B subunit of E. coli enterotoxin as adjuvant and carrier in oral and skin vaccination Veterinary Immunology and Immunopathology 112 (2006) 253–263
    [96] SUN Ju yun,TAN Pan li HU Ye, MAO Ya fei ,Reconstruction of the heat–labile enterotoxin subunit B gene of Escherichiacoli and its immune adjuvant activity on mucosa Chinese Journal of Zoo nose 2006, 22 (5) 385–390
    [97]. Weltzin R,Kleanthous H, Guirakhoo F, et al. Novel intranasal immunization techniques forantibody induction and protection of mice against gastric Helicobacter felis infection. Vaccine. 1997, 15(4):370-376.
    [98]. Turcanu V, Hirst TR, Williams NA, et al. Modulation of human monocytes by Escherichia coli heat-labile enterotoxin B-subunit; altered cytokine production and its functional consequences. Immunology. 2002; 106(3): 316-25.、
    [99] Romamos M A. Scorer C A. Clare J J. Foreign gene expression in yeast:a review.Yeast, 1992, 8 (6):423-488.
    [100] Cereghino J L,Cregg J M. Heterologous.protein expression in the methylotrophic yeast Pichia pastoris . FEMS Microbiol rev, 2000, 24 (1): 45-66.
    [101] Subramani S. Protein import into peroxisomes and biogenesis of the organelle .Ann Rev Cell Biol,1993, 9: 445-478.
    [102] Cregg J M,Cereghino J L, et al. Recombinant protein expression in Pichia pastoris. Mol Biotechnol, 2000, 16 (1) :23-52.
    [103] Titorenko V I,Waterham H R,Cregg J M. Peroxisome biogenesis in the yeast Hansenula polymorpha is controlled by a complex set of interacting gene products. Proc Natl Acad Sci USA, 1993, 90 (16):7470-7474.
    [104] Cregg J M, Madden I R, Barringer K J, et a1. Functional characterization of the two alcohol oxidase genes from the yeast Pichis pastoris. Mol Cell Bio1, 1989 , 9 : 1316-1323.
    [105] Tschopp J F,Brust P F. Cregg J k, et a1. Expression of the lacZ gene from tyro methanol-regulated promoters in Pichia pastoris . Nucleic Acids Res. 1987,15: 3859-3876.
    [106]赵翔,报克克,李育阳.毕赤酵母的密码子用法分析.生物工程学报,2000,16 (3) :308 311.
    [107] Kobayashik, KuwaeS,OhyaT,et a1.High'level expression of recombinant human serumal bumin in the methylotrophic yeast pichia pastoris with minimal protease production and activation.Bilsci Bioeng,2000,89:55-61.
    [108] Cregg J M, Vedvick T S, Raschke W C. Recent advances in the expression of foreigngenes inPichia pastoris.Biotechnology (N Y), 1993,11(8):905-910.
    [109] Hollenberg C P. Gelliss} G.Productiai of recombinant piroteins by methylotrophic yeasts . Curr Opin Biotechnol. 199?: 8 (5 ): 544- 560.
    [110] Hollenberg C P,Gellissen G. Production of recombinant proteins by methylotrophic yeasts.Currj in Biotechnol, 1997, 8(5):554-560.
    [111] Gemmill T R. Trimble R S. Overvie}r of N- and 0-linked oligosaccharide structures found in various yeast species .Biochimica Biophysica Acta. 1999, 1426 (2 ): 227-237.
    [112] Sreekrishna K,secretion of Brankamp R G,Kropp K E, et a1. Strategies for optimal synthosis and heterologous proteins in themethty-lotrophic yeast pichia psstorls. Uene, 1997,190 (1) : 55.
    [113] Clare J J, Rayment F B, Ballantine S P, et al. High-level expression of tetanus toxin fragment C in pichi.r pastoris strains containing multiple tandend integrations of gene. Biotechn- ology (N Y),1991, 9:455.
    [114] Despreaux C,,Manning R F. The dac^gene of Bacillussthear other mophilus coding for D-alanine carboxy peptidase: clone, structure and expression in Bscherichis Coli and Pichis Pastoris.Gene, 1993, 131(1) :35.
    [115] Clare J J, Romanos M A, Rayment F B, et al. Production of mouse epidermal grovrth factor in yeast:high-level secretion using Pichis Pastoris strains containing multiple gene copies.Gene, 1991, 105 (2) :205.
    [116] Wood C R, Boss M A, Kenten J H, et al. The synthesis and in vivo assembly of functional antibodies in yeast. Nature, 1985, 314 (6010) : 446. 12
    [117]辛利,张励,徐韧,等.人血管抑素在毕赤酵母中的表达及其活性测定.生物化学与生物物理学报,2001, ;33 (3) :291-295.
    [118] Sharp P M, Tuohy T M, Mosmaski K P.Codon usage in yeast:cluster analysis clearly differentaties highly and slowly expressed gegens Nucleic Acid Research. 1986, 14(3): 5142-5143.
    [119] Zhang S, Zubay G, Goldman E. Low usage codons in Escherichis coli, yeast. Fruit and primates.Gene, 1991, 105:61-72.
    [120] Zhang Y J, Jin N Y, Jiang V Z. Cloning and expression of the external glycoprotein gene mutant from HIV2 in the methylotrophhic yeast Pichia Pastoris and identification of the glycoprotein.Biotechnol Appl Biochem,2001,34:14-17.
    [121] C1areJ J,Scorer C A,Buchholz R G. Expression of EGF and HIV envelope glycoprotein. Methods Mol bio,1998, 103: 209-225.
    [122] Score C A, Buckholz R G. Clare J J. The intracellular production and secretion of HIV1 envelope protein in the methylotzaphic yeast Pidtia Pastoris,Gene, 1993, 136:111-119.
    [123] Mc Grew J T,Leiske D, Dell B, et a1. Expression of trimeric CD4+ ligand in Pichia Pastoris: use of a rapid method to detect high level expressing transformants. Gene, 1997,187 (2):193.
    [124] Hasslacher M, Schall M, Hacn M. High-level intracellu lar expression of hydroxynitrile lyase from the tropical rubber tree Hebea brasiliensis in microbial hosts. protein Expr Prif,1997.11:61
    [125] Clare.JJ,Rayment FB,Ballantine SP,et al.High-level expression of tetanus toxin fragment C in Pichia psatoris strains containing multiple tandem integrations of the gene BIO/Technology 1991,9:455
    [126] Werten MM, van den Bosch TJ,Wind RD,et al.high-yield secretion of recombinant gelatins by Pichia pastoris.Yeast, 1999,15:1087
    [127] Dale C,Allen A,Fogerly S. Pichia pastoris:a eukarvotic system for the largescale production of biopharmacctical.Biopharm,1999,11:36
    [128] Clare JJ,Romanos MA,Rayment FB,et al Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies 1991.105:205
    [129] Wenhi W,Mark AB, Bradley AP,et al.MOD600eling Pichia pastoris growth on methanol andoptimizing the prOD600uction of a recombinant protein ,the heavy-chain fragment C of Botulinum neurotoxin Serotype A .Bioengineeting,2000,20(1) :1
    [130] Chiruvolu V,Cregg JM, Meagher MM.Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbatch fermentations .Enzyme Microbial Technol,1997,21:277
    [131]张永国,刘湘涛,韩雪清等.猪瘟病毒E2基因主要抗原区的克隆及原核表达.生物工程学报, 2002, 18(5):605-608
    [132]魏旭文,尚佑军,孙世琪,等.大肠埃希氏菌表达猪瘟病毒E2蛋白的纯化.中国兽医科技,2003,33(10):55-57
    [133]吴健敏,任兆钧,余兴龙,等.猪瘟病毒E2蛋白抗原多肽与T4噬菌体SOC蛋白的融合表达.中国兽医学报, 2003, 3 (1 ):14-17
    [127]刘伯华,余兴龙,张茂林,等.原核表达的猪瘟病毒E2蛋白抗原多肽的复性和纯化.中国兽医学报,2003,23(2):145-148
    [128]张青婵,刘思国,徐兴,等.猪瘟病毒E2蛋白4重复抗原表位的构建及抗原活性研究.高技术通讯, 2003, 10:41-45
    [134]王海震,杨松,苏小运,等.含双拷贝CSFV E2基因A和D片段原核表达载体的构建及表达.中国病毒学, 2004, 19(2):171—173
    [135]张永国,刘湘涛,韩雪清,等.猪瘟病毒E2基因抗原结构域A、B、C、D区在大肠杆菌中的表达.畜牧兽医学报, 2004,35(20:182-185
    [136]刘思国,涂长春,余兴龙,等.猪瘟病毒E2蛋白重复多表位基因的融合表达及其兔体免疫保护研究.中国免疫学杂志, 2005, 21(2):127-133
    [137]程晓盈,张彦明,王韡,等.猪瘟病毒E2基因的克隆及原核表达.西北农林科技大学学报(自然科学版),2005, 33(12):13-16
    [138]胡慧,邱昌庆,张彦明,等.猪瘟病毒E2重组蛋白纯化和复性条件的研究.中国兽医科技. 2005, 35(4):251-255
    [139]徐璐,范学政,王琴.猪瘟病毒石门株E2基因4个抗原结构域的原核表达.中国农业科学. 2006, 39(4):814-818
    [140] Siguo Liu, Changchun Tu, Chunlai Wang, et al. The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. Journal of Virological Methods. 2006, 134:125–129
    [141] Hulst MM., Himes G., Newbigin E., et al. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology. 1994, 200(2):558-65.
    [142] Pauly T , Elbers K , KonigM , et al. Classical Swine Fever V irus-specific cyto-toxic T lymphocyte and dentification of a T cell ep itope . J Gen V iro logy, 1995, 76: 3039- 3049.
    [143]郑小坚,贡成良,曹广力,等.猪瘟病毒cF114株E2基因在家蚕杆状病毒表达系统中的融合表达.蚕业科学. 2006, 32 (3):340-344
    [144]韩雪清,刘湘涛,张涌,等.猪瘟病毒E2基因在Pichia pastoris中的表达及其免疫活性的初步研究.生物工程学报. 2002, 18(2):208-211
    [145]徐学清,张素芳,郑其升,等.猪瘟病毒E2蛋白A/D抗原区基因在酵母中的分泌表达与鉴定.中国病毒学. 2004, 19(6):598-601
    [146]徐学清,郑其升,曹瑞,等.猪瘟病毒E2蛋白B/C抗原区基因在毕赤酵母中的表达与鉴定.中国生物工程杂志. 2004, 24(9 ):53-57
    [147]徐学清,曹瑞兵,蔡梅红,等.猪瘟病毒E2蛋白A/D抗原域在毕赤酵母中的表达.西北农林科技大学学报(自然科学版). 2005, 33(3):11-15
    [148]于晓龙,张海峰,宋岩,等.猪瘟病毒HL -LY地方株E2基因在毕赤酵母中的高效表达.中国兽医杂志. 2006, 42(6):25-27
    [149] Jani D, Meena L S, Rizwan-ul-Haq Q M, Singh Y, Sharma A K, Tya- giA K (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res 11: 447-454.
    [150] Ogata K, Nishikawa H, Ohsugi M. A yeast capable of utilizing methanol. Agric Biol Chem, 1969,33: 1519-1520.
    [151] Wegnar G. Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev, 1990. 7:279-283.
    [152] Cereghion J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 2000, 24: 45-66.
    [153] Roggenkamp R, Janowicz Z, Stanikowski B, et al. Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha. Mol Gen Genet, 1984, 194: 489-493.
    [154] Khosla C, Curtis JE, De Modena J, et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology, 1990.8(9):849-853.
    [155] Wang HH, Kim YC, Lee SY, et al. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng. 1998,60(3):271-276.
    [156] Pauly T , Elbers K , KonigM , et al. Classical Swine Fever V irus-specific cyto-toxic T lymphocyte and dentification of a T cell ep itope . J Gen V iro logy, 1995, 76: 3039- 3049.
    [157] Hulst MM., Himes G., Newbigin E., et al. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology. 1994, 200(2):558-65.
    [158]王静,郑谨,扬莜凤,孔令洪,来宝长,司履生,王一理热不稳定大肠杆菌肠毒素B亚单位免疫调节作用的实验研究。细胞与分子免疫学杂志2002期:32 - 33
    [159] SUNJuyun,TANPanli,HUYe,MAOYa Reconstruction of the heat labile enterotoxin subunit B gene of Escherichia coli and its immune adjuvant activity on mucosa . Chinese Journal of Zoonoses 2006,22(5) 385-390
    [160] Sanchez J, Wallerstrom G, Fredriksson M, et al. Detoxification of chol-era toxin without removal of its immunoadjuvanticity by the addition of (STa-related) peptides to the cataltic subunit. A potential,strategy to generate immunostimulants for vaccination. J Biol Chem, 2002, 277 (36):33369-33377.
    [161]毛旭虎,邹全明,许霖水.大肠杆菌不耐热肠毒素的分子生物学特性.国外医学—临床生物化学与检验学分册,2000,21(5):228-236.
    [162] Verweij WR, De Haan L, Holtrop M, et al. Mucosal itnmunoadjuvant se-tivity of recombinant Escherichia wli heat-labile enteroto>on and its B subunit:induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen.vaccine 1998, 16: 2069-2076.
    [163] E. Fingerut B. Gutter, M. Goldway , D. Eliahoo , J. Pitcovski B subunit of E. coli enterotoxin as adjuvant and carrier in oral and skin vaccination Veterinary Immunology and Immunopathology 112 (2006) 253–263
    [164] Song H, Zhou L, Fang W, Li Y, Wang X, Fang H, Li X, Wu M, Qiu B (2004) High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and cholera toxin B subunit chimera in Hansenula polymorpha. Biochem Biophys Res Commun 315:235-239.
    [165]中华人民共和国农业部编.中华人民共和国兽用生物制品质量标准.北京:中国农业科技出版社,2001:1172~120.
    [166]张茂林,刘红丽,余兴龙,涂长春,扈荣良,邹啸环,郭学军,殷震大肠杆菌不耐热肠毒素对狂犬病病毒减毒疫苗株粘膜免疫效应的增强作用。中国兽医学报2004年1月第24卷第1期39-42
    [167] Douce GTurcotte C,Cropley I,et al.Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants .Proc Natl Acad Sci USA. 1995, 92(5):1 644-1648
    [168]余兴龙,涂长春,李作生等,以重组mEZ蛋白为抗原建立检测猪瘟病毒抗体间接ELISA方法的研究;中国预防兽医学报,1999,21(3):220-22
    [169] MoserC,RuggliN,Tratsehinetal.,Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using reeombinant envelope glycoprotein. VetMierobiol,1996,51:41-53.
    [170] PeterfiZ,Koesis B,Comparison of blocking agents for an ELISA for LPS.J Immunoassay2000,l(4):341-54,
    [171] Morenkov OS,indirect ELISA based on recombinant and affinity- Purified glyeoProtein E of Aujeszky’s disease virus to differentiate between vaccinated and infectedanimals. Acta VetHung 1999,47(l):137-50.
    [172] Nunez-TorresED,Sensitivity and specifieity of an ELISA as a screening test for the diagnosis of Brucella ovis in sheep. Rev Latinoam Microbiol 1997,39(3-4):123-8,
    [173] Vanzini VR,AguirreN.Evaluation of an indireet ELISA for the diagnosis of bovine brucellosis in milk and serum samples in dairy cattle in Argentina. Prev Vet Med1998,36(3):211-7.
    [174] NemzekJA , NeweombDE , eal]DR , etal. , Plasma interference in an enzyme-linked immunosorbant assay using a commercial matched antibody Pair. Immunol Invest1999,28(4):209~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700