砂梨果皮性状形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨果皮性状主要由表皮色泽、果点大小与密度、果面蜡质、表皮锈斑等因素构成。早熟砂梨主栽品种‘翠冠’果实表面易发生果锈,外观品质受到严重影响。为揭示砂梨果皮性状形成机制,本研究以‘翠冠’等不同皮色砂梨品种为试材,研究了果实生长发育过程中果皮色素含量的动态变化特点、果实表皮组织显微和超微结构特征;利用BSA分类法筛选与果实皮色相关基因连锁的AFLP标记;探讨了苹果基因序列在砂梨同源基因克隆中的应用,在此基础上开展了砂梨果实木质素形成调控分子基础的初步研究,主要结果如下:
     1、以‘西子绿’和‘清香’为试材,对乙醇和丙酮2种有机溶剂浸提法提取果皮和果肉中叶绿素及类胡萝卜素的效果进行了比较分析,结果表明:80%丙酮浸提法和95%乙醇浸提法的效果相似,虽然应用95%乙醇浸提法的各种色素测定结果略偏低,但除了叶绿素a之外,2种提取方法间的差异不显著。并发现4个绿皮品种和4个褐皮品种果实发育过程中果实表皮及果肉中叶绿素、类胡萝卜素的含量与果实皮色表型无关。同时,以‘翠冠’与‘玉冠’为试材,测定了果实发育进程中纵横径、果皮与果肉色素含量的动态变化,以及在成熟前期可滴定酸、可溶性固形物、糖含量的变化特性。结果显示,两品种果实膨大过程均呈单“s”型曲线动态变化。在成熟前14d(翠冠)、28d(玉冠)至采收,果实糖、酸含量急剧变化,且两品种间的变化特性不同,生产上应依据不同品种果实糖、酸形成特性,确定适宜采收时期。
     2、以绿皮品种‘翠冠’、‘翠玉’与褐皮品种‘清香’、‘玉冠’为试材,进行了果实表皮组织结构显微和超微水平观察,结果表明:避雨栽培能显著减小‘翠冠’果点的大小,而对‘翠玉’的果点大小没有显著影响。‘翠冠’果实表皮细胞的形状和排列方式与‘翠玉’不同,且角质膜分布厚薄不均,厚度仅为‘翠玉’的一半;两品种果实表皮的角质膜均出现破裂,并形成网状结构,但‘翠玉’龟裂产生的裂纹均匀且浅,而‘翠冠’龟裂产生的裂纹紊乱,且深及表皮层内部。‘玉冠’和‘清香’的果点形成时期要比‘翠冠’和‘翠玉’早50d左右。‘翠冠’果锈是由单层木栓化的表皮细胞构成,‘玉冠’褐皮则由多层木栓化的细胞构成,上层细胞片状分布。表皮细胞超微结构观察结果显示,在角质膜下第1-2层细胞的细胞质稠密,且含丰富的脂质体,脂质体内含圆形小脂滴。这一结构特征表明,梨果实表皮角质膜下第1-2层细胞具有旺盛的分泌蜡脂的能力,但品种间存在差异,‘翠玉’脂质体中的脂滴密集,而‘翠冠’中脂滴稀少。研究还表明,‘翠冠’的果锈形成期主要在果实发育中后期;水分是诱发果锈形成的主要外因。
     3、以‘秋荣’ב初夏绿’的杂交后代群体为试材,通过64对AFLP标记引物在亲本和分离群体中的筛选和验证,获得与梨果实皮色相关基因连锁的标记2个,即E-AAG/M-CAG和E-ACT/M-CTT,前者在74%的非纯绿材料中扩增出目标带,在80%的纯绿皮材料中表现为缺失带型;在89%的非纯褐材料中扩增出了目标带,后者在77%的纯褐材料中表现为缺失带型。
     4、选取苹果3种类型的8个基因(液泡质子泵焦磷酸水解酶基因、液泡质子泵三磷酸腺苷酶A亚基基因、生长素受体基因、脱落酸受体基因、乙烯受体基因、果重基因、抗病相关基因),分别在起始密码子上游区、终止密码子下游区、外显子区和内含子区设计引物,分别对苹果和砂梨的基因组DNA进行PCR扩增。结果显示,除了抗病相关基因,其余的7个基因均有引物在砂梨基因组DNA中扩增出特异条带。与基因其它区域扩增产物相比,起始密码子上游区扩增产物在不同砂梨材料间多态性较丰富,外显子和内含子区扩增产物在不同砂梨材料间的保守性更高。外显子区扩增产物测序结果表明:砂梨和苹果在该区对应基因片段具有89.6%-97.5%的核苷酸序列同源性。应用同源克隆方法从砂梨(Pyrus pyrifolia)中获得4个长度分别为821bp,874bp,972bp和914bp木质素合成调控因子MYB基因的启动子序列,GenBank登录号分别为JF900710、JF900709、JF900707和JF900708。生物信息学预测发现,这些序列具有典型的启动子序列特征。各启动子序列在果皮褐与绿的砂梨品种间的等位变异分析发现,PpMYBx2启动子区的一个SNP (A/G)位点与砂梨果皮褐、绿色性状间存在相关性。本研究为进一步开展砂梨MYB基因的表达分析、遗传定位,以及探明砂梨果实木质素形成的分子机制奠定了基础。
Appearance quality of pear fruits is mainly composed of skin color, size and density of fruit dot, the fruit surface waxiness, epidermal rust and other factors. The sand pear 'Cuiguan' is a cultivar with early maturity. It usually generates surface rust, which largely damages the fruit appearance quality. In order to reveal the mechanism of the appearance quality formation, we used 'Cuiguan' and other cultivars with different fruit peel color as materials and studied fruit peel pigment content dynamic changes and microscopic and ultrastructural features of epidermal tissue during different developmental stages of fruits; screened the AFLP markers linkage with fruit color genes using BSA classification; analyzed the application of apple fruit peel color related genes in pear homologues cloning, and based on which the preliminary study of molecular regulation of sand pear lignin biosynthesis was carried out. The major results are as follows:
     1. Using 'Xizilv' and 'Qingxiang' as materials, we compared the efficiency of ethanol and acetone in chlorophyll and carotenoid extracting in peel and pulp. The results showed that the extracting efficiency of80%acetone is nearly similar with that of95%ethanol. Compared with80%acetone,95%ethanol resulted slightly lower pigment extraction, but there was no significant difference in the statistic analysis (except for chlorophyll a). The comparison of chlorophyll and carotenoid content in peel and pulp between the four green and four russet varieties at different development stages showed that the content of the pigments has no relation with the fruit skin color phenotype.'Cuiguan' and 'Yuguan' were used as materials to measure the dynamics changes of fruit vertical and horizontal diameter, pigments content in peel and pulp during the fruit development, and to measure titratable acid, soluble solids, and sugar contents during fruit maturing and harvest stage. The results showed that the development of fruit size of two varieties presented "S" curve; there was no significant differences of total chlorophyll and carotenoid content in peel and pulp between russet and green pear. During maturation (14days before harvest of'Cuiguan',28days before harvest of'Yuguan') and havest stage, fruit growth rate decreased, and the contents of titratable acid and sugars dramatically increased. The properties of these were difference between the two cultivars. Different harvest date should be determined according to the character of fruit inner quality formation for certain cultivar.
     2. The epidermis structure observation was carried out at microscopic and ultra-microscopic levels using green-skin fruit sand pear cultivars'Cuiguan' and 'Cuiyu' and russet-skin fruit sand pear cultivars 'Qingxiang' and 'Yuguan'. The results showed that rain shelter cultivation could significantly reduce'Cuiguan'fruit dot size, while the'Cuiyu 'the fruit dot size does not significantly affect.the epidermal cell shape and arrangement of 'Cuiguan' is different with that of'Cuiyu'. The distribution of cuticle thickness in 'Cuiguan' is uneven, and its cuticle thickness is half of that of'Cuiyu'; the cuticle of both two cultivars ruptured and formed netted texture. But 'Cuiyu' generated uniform and shallow cracks,'Cuiguan' generated disorder cracks and deep into the inner epidermis.'Yu Guan' and 'Qingxiang' fruit formation period than 'Cuiguan' and 'Cuiyu' early about50d.'Cuiguan' fruit rust is composed of single-layer corky epidermal cells that constitute the 'Yu Guan' brown leather by multilayer corky consists of cells, the cell patchy distribution. The ultra-structure of epidermal cells showed that the1-2layer cells under the cuticle had dense cytoplasm, and rich of liposomes. The liposomes contain small lipid droplets. The structural feature indicates that the1-2layer cells under the cuticle had strong ability to secrete waxes, but the ability differed with cultivars. The fatty granule was intensive in 'Cuiyu' liposomes, but'Cuiguan'lacked of liposomes. The research also showed that the fruit rust of 'Cuiguan' mainly formed in the latter period of fruit development; moisture is a main external factor resulted in the rust formation.
     3. Two markers linked with fruit skin color were obtained through screening64pairs of AFLP primers using 'Akibae'×'Chuxialu' hybrid offspring. One of the markers (E-AAG/M-CAG) amplified missing band in80%green-skin-fruit offspring, and amplified the target band in74%of non-green materials; the other maker (E-ACT/M-CTT) amplified missing band in77%russet-skin-fruit offspring, and amplified the target band in89%non-pure-russett-skin-fruit materials.
     4. Eight of three types genes including vacuolar proton pump PPase, subunit A of ATPase, auxin receptor gene, ABA receptor gene, ethylene receptor gene and the genes involved in fruit weight and disease resistance were selected for PCR analysis of apple (Malus domestica Borkh) and pear (Pyrus pyrifolia). For each gene, the primers were designed in exon and intron regions as well as in the regions upstream of start codon and downstream of stop codon, respectively. These primers were used to amplify apple and sand pear genomic DNA. It was found that all the genes have at least one pair of primers amplifying specific bands in pear genome DNA except the disease-resistant gene. Compared to the products amplified at gene other regions, the PCR products at upstream of start codon were more polymorphics, and the PCR products at exon and intron regions showed higher conservation, among different sand pear genotypes. Results of exon PCR product sequencing showed that the fragments of sand pear and apple corresponding genes in the area shared89.6%to97.5%homology. Four putative promoter sequences of lignin biosynthetic regulatory factor gene MYB were cloned from the sand pear (P. pyrifolia) with homology method. The four clones have the length of821bp,874bp,972bp and914bp, and their GenBank accession number was JF900710, JF900709, JF900707and JF900708, respectively. These sequences have the typical characteristics of gene promoters. The allelic analysis of the promoter sequences between green-and russet-skin fruit sand pear genotypes revealed that a SNP (A/G) site in PpMYBx2promoter region may have correlation with the fruit skin character.
引文
阿拉木萨,李宝江.梨品种果实组织结构研究[J].哲里木畜牧学院学报,1999(2):5-10.
    本杰明·卢因.第四章:成簇与重复,基因Ⅷ[M].余龙,江松敏,赵寿元主译.北京:科学出版社,2005:95-96.
    曹玉芬,刘凤芝,胡红菊,张冰冰等.梨种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:23.
    陈永忠,谭晓风,Clapham D.木质素生物合成及其基因调控研究综述[J].江西农业大学学报,2003,25(4):613-617.
    丛郁,刘洪,李慧,颜志梅,俞明亮,常有宏.成熟砂梨果实木葡聚糖转移酶基因PpXTHl的克隆及其在夏季货架期的表达规律[J].江苏农业学报,2010,26(1):143-151.
    邓继光,刘国成,李进辉,殷广春.苹果品种果实组织结构研究[J].果树科学,1995,12(2):71-74.
    杜玉虎,蒋锦标,曹玉芬,施泽彬,张立飞,翟力普.翠冠梨在辽宁营口的日光温室栽培技术[J].中国果树,2010(6):49-51.
    冯甫.梨果锈发生严重的原因及对策[J].河北果树,2009(3):39-40.
    冯少菲.黄金梨果皮发育、锈斑形成及套袋对其影响的研究.[D].保定:河北农业大学;2006.
    冯月秀,徐凌飞,王琨,王云莲,黄礼森.中熟梨优良新品种——八月红[J].中国果树,1995(4):1-2.
    高海燕,王善广,廖小军,胡小松.不同品种梨汁中糖和有机酸含量测定及相关性分析[J].华北农学报,2004(02):104-107.
    郭鹏飞,胡长鹰.番木瓜中类胡萝卜素的提取[J].中国调味品,2009,34(1):95-99.
    韩明丽,刘永立,郑小艳,杨健,王龙,王苏珂,李秀根,滕元文.梨遗传连锁图谱的构建及部分果实性状QTL的定位[J].果树学报,2010,27(4):495-503.
    黄春辉,柴明良,潘芝梅,俞波,蒋张明,胡金龙,滕元文.套袋对翠冠梨果皮特征及品质的影响[J].果树学报,2007,24(6):747-751.
    黄春辉,波俞,俊苏,群舒,滕元文.‘美人酥’和‘云红梨1号’红皮砂梨果实的着色生理[J].中国农业科学,2010,43(7):1433-1440.
    姬小明,邵惠芳,刘金霞,赵铭钦.类胡萝卜素的提取及分离方法研究进展[J].河南科学,2008,26(11):1337-1339.
    李俊才,李宝江,于丹,刘成.2个西洋梨红色芽变品种与原品种果实发育期果皮色素变化比较研 究[J].中国果树,2010(1):27-31.
    李其林,魏朝富,王显军,黄昀,谢德体.重庆农业生态系统中酸雨因子的特点及其影响[J].中国环境监测,2008,24(04):70-74.
    李秀根.改革开放30年我国梨产业的发展回顾[J].烟台果树,2008(04):4-6.
    李秀珍,马慧丽,刘保国,张益民,蔺合华,郭利静.梨果实性状遗传研究进展[J].河南科技大学学报(农学版),2004,24(2):59-62.
    李学强,李秀珍,李作轩.套袋时间对梨果皮色素和果实品质的影响[J].河南科技大学学报(农学版),2004(1):40-43.
    李学强,李作轩,李秀珍.南果梨果实外观品质的形成[J].果树学报,2003,20(1):27-30.
    李扬汉主编.植物学[M].上海:上海科技出版社,1984:133,240-241.
    李正理.植物组织制片学[M].北京:北京科学出版社,1978.
    李志丹,韩瑞宏,廖桂兰,张美华.植物叶片中叶绿素提取方法的比较研究[J].广东第二师范学院学报,2011,31(3):80-83.
    林真二.梨[M].吴耕民译,北京:农业出版社,1979:293-305.
    刘庆华,周启河,王奎玲,刘庆芳,吕志宁.莱阳往梨果实斑痕的解剖学研究[J].莱阳农学院学报,1992,9(2):104-108.
    刘旭,廖明安.南方黄金梨果锈产生原因及防范措施[J].中国南方果树,2004,33(5):90-91.
    龙淑珍,何永群.荔枝可滴定酸与维生素C的测定及其相关性[J].广西农业科学,2002,4:188-189.
    吕均良,李三玉,黄寿波.模拟酸雨对桃梨叶片和果实的影响[J].浙江农业大学学报,1998,24(06):603-607.
    马克元,程福厚,傅玉瑚,贾永祥,陈敬谊.鸭梨果实果点和锈斑的发育[J].园艺学报,1995,22(3):295-296.
    马克元,傅玉瑚,程福厚,苏艳英,王海星,苏春季.鸭梨果点发育的解剖观察[J].山西果树,1990,4:12-15.
    孟庆廷.叶绿素提取方法及稳定性研究进展[J].河北化工,2009,32(3):2-3.
    彭宜本,张大鹏.发育过程中苹果果皮和果肉细胞的超微结构[J].植物学报,2000,42(8):794-802.
    乔勇进,张绍铃,陶书田,张振铭,刘招龙.梨果实石细胞发育机理的研究进展[J].果树科学,2005,22(4):367-371.
    秦巧平,张上隆,谢鸣,陈俊伟.果实糖含量及成分调控的分子生物学研究进展[J].果树学报,2005,22(5):519-525.
    沈德绪.果树育种学[M].上海:上海科学技术出版社,1982:258-274.
    宋伟,王彩虹,田义轲,田伟,殷豪.梨果实褐皮性状的SSR标记[J].园艺学报,2010(08):1325-1328.
    孙钧.浙江省梨业发展现状与对策探讨[J].柑桔与亚热带果树信息,2005,21(2):11-13.
    孙敏,戴洪义,李培环,王然,林振海.茌梨砀山酥梨等果点的形成[J].落叶果树,1983(3):1-5.
    孙明奇,胡建中,潘思轶.柑橘皮类胡萝卜素提取物稳定性研究[J].食品科学,2007,28(10):46-49.
    陶世蓉.梨果实结构与耐贮性及品质关系的研究[J].西北植物学报,2000,20(4):544-548.
    滕元文,沈玉英,周先章.砂梨果皮锈斑成因及解决对策[J].中国南方果树,2005,34(3):52-56.
    王家珍.晚熟耐贮梨新品种-新苹梨选育[J].果树学报,2004,21(04):391-392.
    王少敏,高华君,张骁兵.梨果实套袋研究进展[J].中国果树,2002(6):47-50.
    王涛,房经贵,冯先桔,蔡美艳,林媚,黄雪燕,章镇.大棚和套袋栽培对翠冠梨果实品质和营养成分的影响[J].中国农学通报,2009,25(02):148-151.
    王迎涛,李晓,李勇,李六林,张绍铃,王心慈.套袋黄冠梨果实花斑病发生与其组织结构变化的关系[J].西北植物学报,2011,31(6):1180-1187.
    王宇霖,魏闻东,李秀根.梨杂种后代亲本性状遗传倾向的研究[J].果树学报,1991,8(2):75-82.
    王宇霖.红皮梨育种研究报告[J].果树科学,1997(02):71-76.
    魏钦平,叶宝兴,张继祥,毛志泉,李嘉瑞.不同生态区富士苹果果皮解剖结构的特征与差异[J].果树学报,2001(04):243-245.
    吴耕民.中国温带落叶果树栽培学[M].杭州:浙江科学技术出版社,1993:144-145.
    吴厚玖,陈荣柱,李育农.金冠苹果果锈发生时期与锈化过程的研究[J].园艺学报,1984,]1(1):51-56.
    夏春森,周萍.影响‘金冠’苹果果锈形成的因子[J].园艺学报,1988,15(、2):139-142.
    肖艳,黄建昌.13种果树对酸雨抗性的研究[J].果树学报,2004,21(03):191-195.
    辛华,陶世蓉,张秀芬.黄县长把梨果实发育的解剖研究[J].莱阳农学院学报,1997(2):138-141.
    阎伟,吴国良,刘和,侯计华,冀爱青.韩国梨幼果外果皮生长观察研究[J].山西农业大学学报(自然科学版),2009(1):32-36.
    杨健,李秀根.我国红皮梨的研究进展[J].中国农学通报,2002(4):87-89.
    杨彦青.黄金梨果锈的成因及防治[J].河北林果研究,2003(4):355-358+363.
    尹玲,王长林,王迎杰,王艳玲.西葫芦叶片叶绿素提取方法的初步研究[J].北方园艺,2011,12:14-17.
    应铁进,芳席,边其均,钱冬梅,郑永华.枇杷和葡萄果实的表面微细结构及其发育过程[J].浙江农业大学学报,1994,20(2):173-177.
    于丹,李宝江,李俊才,刘晶.梨果皮色素种类和理化性质的研究[J].北方果树,2008(3):11-13.
    于海宁,田英,方媛,彭励;.植物角质膜的结构、组成和生物学功能研究进展[J].生命科学,2010,22(8):729-735.
    俞宏,贾湘汴.梨幼果表皮果点形成的组织解剖观察[J].果树学报,2002(1):62-63+71.
    张大生,崔丽洁,王景明,吴少华.红巴梨f3h基因的克隆及植物表达载体的构建[J].南京林业大学学报(自然科学版),2005,29(2):65-68.
    张洪磊,张朝红,王跃进.早酥梨抗黑星病相关新基因Vnpl的克隆及其表达分析[J].农业生物技术学报,2010,18(2):239-245.
    张华云,王善广,牟其芸,姜明星,孙凤兰.套袋对莱阳茌梨果皮结构和PPO, POD活性的影响[J].园艺学报,1996,23(1):23-26.
    张金云,武红霞,邢姗姗,王松标,马蔚红,詹儒林.杧果类胡萝卜素提取条件研究[J].中国南方果树,2010,39(4):14-16,19.
    张敏,杨彬,高爱农,高秀岩,谢重新.金冠果皮结构和致锈关系研究初报[J].果树,1987(04):4-6+2.
    张秀君,孙钱钱,乔双,朱海,孙丹,江丕文.菠菜叶绿素提取方法的比较研究[J].作物杂志,2011(3):57-59,60.
    张玉星主编.果树栽培学各论[M].北京:中国农业出版社,2003:56-60.
    佐藤公一,森英男,松井修,北岛博,千葉勉.果树园芸大事典[M].东京:新日本印刷株式会社,养贤堂,1984:533.
    Allan AC, Hellens RP, Laing WA. MYB transcription factors that colour our fruit[J]. Trends in plant science,2008,13(3):99-102.
    Ames RM, Lovell SC. Diversification at transcription factor binding sites within a species and the implications for environmental adaptation[J]. Molecular Biology and Evolution,2011:doi: 10.1093/molbev/msrl67 [Epub ahead of print]
    Bao W, Song F, Li X, Rong S, Yang W, Wang D, Xu J, Fu J, Zhao Y, Liu L. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus:a huge review and meta-analysis[J]. American Journal of Epidemiology,2010,172(6):631-636.
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003,54(1): 519-546.
    Booi S, Van-Dyk MM, Du-Preez MG. Molecular typing of red and green phenotypes of 'BonRouge' pear tree, with the use of microsatellites. Acta Horticulturae.2005,671:293-296.
    Borovsky Y, Oren-Shamir M, Ovadia R, Jong W, Paran I. The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia [J]. Theoretical and Applied Genetics,2004,109(1):23-29.
    Campbell MM, Sederoff RR. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants)[J]. Plant Physiology,1996,110(1):3-13.
    Clewley J, Arnold C. MEGALIGN. The multiple alignment module of LASERGENE[J]. Methods in molecular biology (Clifton, NJ),1997,70:119.
    Conn S, Zhang W, Franco C. Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture[J]. Biotechnology Letters.2003. 25(11):835-839.
    Cui T, Nakamura K, Ma L, Li J-Z, Kayahara H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in oriental pear[J]. Journal of Agricultural and Food Chemistry,2005,53(10): 3882-3887.
    Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB 10[J]. The Plant Journal.2007, 49(3):414-427.
    Feng S, Wang Y, Yang S, Xu Y, Chen X. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10 [J]. Planta,2010,232(1):245-255.
    Fischer TC, Halbwirth H, Meisel B, Stich K, Forkmann G Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism[J]. Archives of Biochemistry and Biophysics,2003,412(2):223-230.
    Francis FJ. Anthocyanins in pears. HortScience,1970,5:42
    Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet Gigot N. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis[J]. The Plant Journal,2005,43(4):553-567.
    Goodman CD, Casati P, Walbot V. A multidrug resistance associated protein involved in anthocyanin transport in zea mays[J]. The Plant Cell,2004,16(7):1812-1826.
    Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R[J]. Proceedings of the National Academy of Sciences,2000,97(25):13579-13584.
    Grotewold E. The challenges of moving chemicals within and out of cells:insights into the transport of plant natural products[J]. Planta,2004,219(5):906-909.
    Hartmut K., L.. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J],1987,148: 350-382.
    Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis[J]. The Plant Cell, 1995,7(7):1071-1083.
    Huang JX, Qu LJ, Yang J, Yin H, Gu HY. A preliminary study on the origin and evolution of chalcone synthase (CHS) gene in angiosperms[J]. Acta Botanica Sinica,2004,46(1):10-19.
    Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H. Identification of RAPD marker linked to fruit skin color in Japanese pear (P. pyrifolia Nakai)[J]. Scientia Horticulturae,2006.107(3): 254-258.
    Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family[J]. Plant molecular biology,1999,41(5):577-585.
    Kim D, Hwang J, Shin Y, Shin I, Lee H, Hong S, Kang S. Development of molecular markers linked to several fruit traits in oriental pear[J]. Acta Horticulturae,2005,671:315-321.
    Kobayashi SK, Ishimaru MI, Hiraoka KH, Honda CH. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis[J]. Planta,2002,215(6):924-933.
    Koes R, Verweij W, Quattrocchio F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in plant science,2005,10(5):236-242.
    Kogawa K, Kato N, Kazuma K, Noda N, Suzuki M. Purification and characterization of UDP-glucose: anthocyanin 3',5'-O-glucosyltransferase from Clitoria ternatea[J]. Planta,2007,226(6):1501-1509.
    Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C. Towards functional characterisation of the members of theR2R3 MYB gene family from Arabidopsis thaliana[J]. The Plant Journal,1998,16(2):263-276.
    Kuang H, Woo S-S, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce[J]. The Plant Cell,2004,16(11):2870-2894.
    Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima Pettenati J. Characterization of cis elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein-DNA complex formation[J]. The Plant Journal,2000,23(5):663-676.
    Lancaster JE, Grant JE, Lister CE, Taylor MC. Skin color in apples:influence of copigmentation and plastid pigments on shade and darkness of red color in five genotypes[J]. Journal of the American Society for Horticultural Science,1994,119(1):63-69.
    Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics,1990,124(3):743-756.
    Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J. The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species[J]. Plant molecular biology,2002, 50(3):497-509.
    Li L, Popko JL, Umezawa T, Chiang VL.5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms[J].Journal of Biological Chemistry,2000,275(9):6537-6545.
    Liu L, Ma X, Liu S, Zhu C, Jiang L, Wang Y, Shen Y, Ren Y, Dong H, Chen L, Liu X, Zhao Z, Zhai H, Wan J. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace[J]. Plant Molecular Biology,2009,71(6):609-626.
    Lopes MH, Barros AS, Pascoal Neto C, Rutledge D, Delgadillo I, Gil AM. Variability of cork from portuguese quercus suber studied by solid-state 13C-NMR and FTIR spectroscopies[J]. Biopolymers,2001,62(5):268-277.
    Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P, Parr A, Michael AJ, Saito K, Martin C. Convergent evolution in the BAHD family of acyl transferases:identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana[J]. The Plant Journal,2007,50(4):678-695.
    McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant and Cell Physiology,2009, 50(11):1950.
    Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Michelmore RW. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases[J]. The Plant Cell,1998,10(11):1817-1832.
    Mol J, Grotewold E, Koes R. How genes paint flowers and seeds[J]. Trends in plant science,1998,3(6): 212-217.
    Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K. Analyses of expressed sequence tags from apple[J]. Plant Physiology,2006, 141(1):147-166.
    Newman LJ, Perazza DE, Juda L, Campbell MM. Involvement of the R2R3 MYB, AtMYB61, in the ectopic lignification and dark photomorphogenic components of the det3 mutant phenotype[J]. The Plant Journal,2004,37(2):239-250.
    Ngo T, Zhao Y. Stabilization of anthocyanins on thermally processed red D'Anjou pears through complexation and polymerization[J]. LWT-Food Science and Technology,2009,42(6):1144-1152.
    Nozue M, Baba S, Kitamura Y, Xu W, Kubo H, Nogawa M, Shioiri H, Kojima M. VP24 found in anthocyanic vacuolar inclusions (AVIs) of sweet potato cells is a member of a metalloprotease family[J]. Biochemical Engineering Journal,2003,14(3):199-205.
    Onyilagha JC, Grotewold E. The biology and structural distribution of surface flavonoids[J]. Recent Research Developments in Plant Science (2),2004:53-71.
    Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S. Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags[J]. Plant Physiology,2006,141(3):811-824.
    Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM. Characterisation of a pine MYB that regulates lignification[J]. The Plant Journal,2003,36(6):743-754.
    Pereira H. Chemical composition and variability of cork from Quercus suber L[J]. Wood Science and Technology,1988,22(3):211-218.
    Pierre B. Transcription factors as tools for metabolic engineering in plants[J]. Current Opinion in Plant Biology,2004,7(2):202-209.
    Ramsay NA, Walker AR, Mooney M, Gray JC. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant[J]. Plant Molecular Biology,2003,52(3):679-688.
    Sainz MB, Grotewold E, Chandler VL. Evidence for direct activation of an anthocyanin promoter by the maize C1 Protein and comparison of DNA binding by related Myb domain proteins[J].The Plant Cell,1997,9(4):611-625.
    Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K, Nakayama M. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia[J]. Plant Science, 2006,170(4):828-834.
    Sanzol J. Dating and functional characterization of duplicated genes in the apple (Malus×domestica Borkh.) by analyzing EST data[J]. BMC Plant Biology,2010,10(1):87.
    Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus antirrhinum[J]. The Plant Cell,2006,18(4):831-851.
    Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M. A Genomic Approach to Suberin Biosynthesis and Cork Differentiation[J]. Plant Physiology,2007,144(1):419-431.
    Spelt C, Quattrocchio F, Mol JNM, Koes R. Anthocyaninl of petunia encodes a basic Helix-Loop-Helix protein that directly activates transcription of structural anthocyanin genes[J]. The Plant Cell,2000, 12(9):1619-1632.
    Springob K, Nakajima J-i, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports,2003,20(3):288-303.
    Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Current Opinion in Plant Biology,2001,4(5):447-456.
    Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker of TaGW2; associated with grain weight in bread wheat (Triticum aestivum L)[J]. Theoretical and Applied Genetics,2011,122(1):211-223.
    Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J]. Plant Physiology,2006,142(3): 1216-1232.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research,1994,22(22):4673-4680.
    Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis[J]. The Journal of Biological Chemistry,2007,282(21):15812-15822.
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus×domestica Borkh.)[J]. Nature Genetics,2010, 42(10):833-839.
    Vogt T, Grimm R, Strack D. Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin-and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae[J]. The Plant Journal,1999,19(5):509-519.
    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP-A new technique for DNA-fingerprinting [J]. Nucleic Acids Research.1995, 23(21):4407-4414.
    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP-A new technique for DNA-fingerprinting [J]. Nucleic Acids Research,1995, 23(21):4407-4414.
    Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP. White grapes arose through the mutation of two similar and adjacent regulatory genes[J]. The Plant Journal,2007.49(5):772-785.
    Winkel-Shirley B. Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology,2001,126(2):485-493.
    Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Van de Weg W, Hayashi T. Genetic linkage maps of Japanese and European pears aligned to the apple consensus map[J]. Acta Horticulturae,2004,663:51-56.
    Yang J, Gu H, Yang Z. Likelihood Analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea)[J]. Journal of Molecular Evolution,2004,58(1):54-63.
    Yao L, Zheng X, Cai D, Gao Y, Wang K, Cao Y, Teng Y. Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and P. [J]. Genetic Resources and Crop Evolution,2010, 57(6):841-851.
    Zhong R, Richardson EA, Ye Z-H. The MYB46 Transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. The Plant Cell,2007,19(9):2776-2792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700