中华恐龙塔抗震性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华恐龙塔拟建于黑龙江省嘉荫县恐龙地质公园,建成后为我国当代建设最高的无筋石砌体结构建筑,属于超限建筑。砖石古塔是中国古代高层建筑的杰出代表和建筑艺术瑰宝,并且具有卓越的抗震性能,屹立千年而不倒。中华恐龙塔为仿古石塔建筑,是发扬中国古代特色建筑风格、延续民族建筑结构内涵的重要媒介,填补我国对新建石结构塔体设计和其抗震性能研究的空白,具有重要的理论意义和工程价值。
     论文通过对设计原型塔的技术调研,详细分析了石塔结构的现状、受灾损伤情况,进行了中华恐龙塔的结构设计,在此基础上,进行了拟建石塔的1/12比例模型的地震模拟振动台试验,结合模型塔和拟建石塔的数值模拟分析,对石塔结构的动力特性和地震反应进行了系统研究。通过上述研究,对中华恐龙塔的抗震能力和建设的技术可行性进行了全面的技术评价。
     论文介绍了中华恐龙塔模型结构振动台的试验设计、施工和试验工况及过程,并进行了试验结果分析,观察模型结构在地震作用下的薄弱环节及破坏机制,研究了模型结构的动力特性和地震反应。结论是模型结构在弹性范围内具有良好的抗震性能,未有明显的薄弱层,满足现行规范中的抗震设防要求。
     建立类似于振动台试验模型简化的SAP2000有限元软件分析模型,得到了结构的动力特性和在振型分解反应谱法、弹性时程分析下的模型结构地震反应,对有限元分析结果和试验结果进行了对比分析,两者符合良好。
     采用有限元软件SAP2000对中华恐龙塔进行重力作用下计算和抗震性能的计算,利用模态分析得出结构的动力特性,分别用振型分解反应谱法和弹性时程分析法对中华恐龙塔计算结构的动力反应。结论是结构满足6度多遇和相当于6度罕遇地震的设防指标,和按照设计基准期为100年设计时,相当于6度罕遇地震作用的对应于设计基准期为50年的9度多遇地震下,结构安全,7度罕遇地震作用下弹性计算结构会出现较大的损伤不能满足承载力设计要求。
The China Dinosaur Pagoda will be built in Jiayin County Dinosaur Geological Park, Heilongjiang Province. It is the highest overrun unreinforced buildings of stone structure in China modern time when completed. Masonry pagoda is a kind of outstanding representative of ancient high-rise buildings and architectural art treasures, which has excellent seismic performance and stands down for thousands of years. The China Dinosaur Pagoda is modeled on the antique stone pagoda building. It is the national media to develop Chinese architectural style of ancient characteristics, continue the important content of building structures, and fill the blank of the stone structure of the tower on the new design and the seismic properties, which has important theoretical significance and engineering value.
     The study on the technology investigation of prototype pagoda is to analysis its present situation after earthquake and damage, making structural design on the China Dinosaur Pagoda. Thus starting a 1/12 model shaking table test, in combination with effective numerical simulation based on finite element method on the model and full scale of the China Dinosaur Pagoda, researching its dynamic properties and seismic responses. What have done above is to conclude comprehensive evaluation of resisting seismic capacity and construction feasibility on China Dinosaur Pagoda.
     This paper introduces the model shaking table test design, construction and test conditions and procedures of the China Dinosaur Pagoda structure, and analyses the test results. This research observes the weaknesses and failure mechanism and studies the dynamic properties of the model and seismic response under earthquake. The results indicate that the model structure has a good seismic performance in the elastic range, there is no obvious weak layer in this structure and it can meet the current specification requirements to resist seismic.
     A simplified model similar to shaking table tests is established by commercial finite element software SAP2000. The dynamic characteristics and structural seismic response are obtained by the spectrum method, elastic time history analysis, respectively. The finite element analysis results are agreed with the experimental results.
     This research calculates the gravity and seismic performance on the Chinese Dinosaur Pagoda by SAP2000. The dynamic characteristics are obtained from modal analysis and the dynamic responses on the China Dinosaur Pagoda are calculated by the modal response spectrum method and the elastic time history analysis method. It is concluded that the structure meets the opportunities and the equivalent of more than 6 degrees fortified targets, when the design base period is 100 years, with the equivalent of 6 degrees rare earthquake design basis corresponding to a period of 50 years 9 multi-degree earthquake, the structure is safe. The structural elastic calculating cannot meet the capacity design requirements when encounter the rare earthquake of 7 degrees.
引文
[1]宋树恢.中国现存古塔的分布及鉴赏利用[J].合肥工业大学学报(社会科学版).2001,15(1):82-89.
    [2]刘木忠.地震作用下泉州古塔结构反应分析[J].古建园林技术,1986,(04):35-40.
    [3]姚谦峰,卢俊龙,张荫.砖石古塔抗震加固对策探讨[J].工业建筑,,2007, 37(9):115-118.
    [4]中华人民共和国国家标准.砌体结构设计规范GB50003-2001.
    [5]蔡辉腾,郑师春,张颖.泉州仁寿塔抗震能力研究[J].防灾减灾工程学报.2010,4(27):163-168.
    [6]蔡辉腾,郑师春,李云珠,黄莉菁.泉州镇国塔抗震能力探讨[J].建筑结构学报. 2007,(S1):84-89.
    [7]中华人民共和国国家标准.烟囱设计规范GB50051-2002.
    [8]姚道平,张艺峰,谢志招等.石结构古塔抗震性能研究[J].世界地震工程. 2009,25(1):111-116.
    [9]林丽伟.宜宾地区砖石古塔建筑材料强度与抗震性能研究.西南交通大学硕士论文. 2007:1-7.
    [10]何志榕.结合现代技术建筑传统石塔[J].福建建筑. 2007, (10)112:11-14.
    [11]李德虎,魏琏.砖石古塔的历史震害与抗震机制[J].建筑科学.1990(,1):13-18.
    [12]中华人民共和国国家标准.建筑抗震设计规范GB50011-2001.
    [13]李德虎,李得民.石结构房屋抗震性能的振动台试验研究[J].建筑科学. 1992,(04):31-36.
    [14]林建华,王全凤,施养杭.石砌体结构抗震性能及模糊抗震可靠度研究[J].土木工程学报. 1998,31(6):40-48.
    [15]刘木忠.料石结构建筑抗震性能研究[J].工程抗震. 1992,(01):19-23.
    [16]袁建力.砖石古塔的震害特征与抗震鉴定方法[C]. 2008年汶川地震建筑震害分析与重建研讨会会议论文.北京:中国建筑工业出版社,2008:396-403.
    [17]李德虎,何江.砖石古塔动力特性的试验研究[J].工程抗震. 1990,10(3):27-29.
    [18]刘木忠.泉州古塔抗震性能的探讨[J],华侨大学学报, 1982(1):80-88
    [19] Bathe, K. J. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs (1982).
    [20] Bathe, K. J. Finite Element Procedures. Prentice-Hall, Inc. 1996.
    [21]袁建力,李胜才,陆启玉,刘大奇.砖石古塔动力特性建模方法的研究[J],工程抗震, 1998(1):22-25
    [22]袁建力,樊华,陈汉斌,姚玲, Donato Abruzzese.虎丘塔动力特性的试验研究[J], 2005, 22(5):158-164
    [23]阎旭,魏德敏.古代砖塔有限元分析[J],工程力学增刊, 1999(3):
    [24] Kim J, Ryu H. Seismic Test of A Full-Scale Model of A Five-Storey Stone Pagoda[J]. Earthquake Engineering and Structural Dynamics. 2003:32:731-750.
    [25] Jaishi B, Wei-Xin Ren, Zhou-Hong Zong, Maskey P. Dynamic and seismic performance of old multi-tiered temples in Nepal[J]. Engineering Structure.2003,,25(14):1827-1839.
    [26] 26.K. Fujita, T. Hanazato, I.Sakamoto. EARTHQUAKE RESPONSE MONITORING AND SEISMIC PERFORMANCEOF FIVE-STORIED TIMBER PAGODA[C]. 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada. 2004. Paper No. 54.
    [27] Hanazato T, Theofanopoulos N, Watabe M. Seismic response analysis of parthenon columns[J]. Proceedings of STREMA89, Florence, Italy, 1989; 339–348.
    [28] Erdik, M., 1990. The earthquake performance or rural stone-masonry buildings in Turkey, and, Earthquake damage evaluation vulnerability analysis of building structures, A. Koridze(ed.) INEEC Series of Engineering Aspects of Earthquake Phenomena, V3, Omega Scientific.
    [29] S.E.Chidiac. Seismic Guidelines for Stone-Masonry Components and Structures[C]. the 37th Commission Meeting in Penn State, USA, August 2000
    [30] National Research Council of Canada, 1995. National Building Code of Canada, Ottawa,Ontario, Canada.
    [31] Kahraman, S., Fener, M., Gunaydin, O.– Predicting the Schmidt hammer values of in-situ intact rock from core samples values[J], International Journal of Rock Mechanics and Mining Sciences, 39 (3), 395-399, 2002.
    [32] Akkaya, Y., Voigt, T., Subramaniam, K.V., Shah, S.P.– Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method[J], Materials and Structures,36, 507-514, 2003.
    [33] Vasconcelos, G. experimental investigations on the mechanics of stone masonry. the University of Minho for the degree paper of Doctor of Civil Engineering. 2005.
    [34] Miha Tomazevic, Earthquake Resistant Design of Masonry Buildings, Imperial College Press 1999
    [35] International recommendations for design and erection of unreinforced and reinforced masonry structures, CIB Recommendations, Publication 94, CIB, 1987
    [36] Elmenshawi A, Sorour M, Mufti A, Jaeger L, Shrive N. Damping Mechanisms and Damping Ratios in Vibrating Unreinforced Stone Masonry[J]. Engineering Structures. 2010(32): 3269-3278.
    [37] Elmenshawi A, Sorour M, Mufti A, Jaeger L, Shrive N. In-Plane Seismic Behaviour of Historic Stone Masonry[J]. Can J Civ Eng, CJCE 2007(34):1403-1412
    [38] Pegon P, Pinto A, Geradin M. Numerical Modelling of Stone-Block Monumental Structures[J]. Computers and Structures. 2001(79):2165-2181.
    [39]马骁.中国古代建筑中的石技术[J].华中建筑. 2006,(24):54-57.
    [40]中华人民共和国国家标准.构筑物抗震设计规范GB50191-1993.
    [41]魏俊亚.古塔建筑的抗震保护研究.西安建筑科技大学硕士学位论文.2005.
    [42]国家地震局全国地震烈度区划组汇编.中国地震等烈度线图集.地震出版社. 1979.
    [43]中华人民共和国行业标准.建筑桩基技术规范. JGJ94-2008.
    [44]朱彤.结构动力模型相似问题及结构动力试验技术研究.大连理工大学博士论文. 2004.
    [45]中华人民共和国行业标准.建筑抗震试验方法规程. JGJ1001-96.
    [46] Anil K.Chopra. Dynamics of Structures–Theory and application to Earthquake Engineering(Second Edition). Prentice Hall, 1995:2.
    [47] R.W. Clough, Penzien J. Dynamics of Structure. Computers & Structures, Inc, 2003.
    [48]辛高伟.基于Pushover方法的砌体结构中小学建筑抗震性能评估.西安建筑科技大学硕士学位论文.2009.
    [49]蔡辉腾,李强.福建泉州古石塔结构动力特性测试与分析[J].地震研究,2009,32(1):51-55.
    [50]中国建筑标准设计研究院,SAP2000中文版使用指南.人民交通出版社,2006:9.
    [51]陈茂义.料石砌体试验研究[J].建筑结构. 1981,(4):31-37.
    [52]季文玉,许克宾.砌石圬工弹性模量的试验研究[J].北方交通大学学报. 1996,20(5):545-549.
    [53]中华人民共和国行业标准.建筑结构荷载规范. GB 50009-2001.
    [54]中华人民共和国行业标准.金属与石材幕墙工程技术规范. JGJ133-2001
    [55]母剑平,白学霜,孙建华.不同设计使用年限下地震作用的确定方法[J],工程抗震, 2003(2):36-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700