厌氧氨氧化工艺运行性能及微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,废水排放量不断增加,其中,许多工业废水、农业废水和生活污水中均有含氮污染物。氮素污染已严重威胁到人类的生存环境和身心健康,氮素污染的治理迫在眉睫。在众多废水脱氮工艺中,厌氧氨氧化(anaerobic ammonium oxidation, ANAMMOX)工艺以其经济高效受到了环境工程界的广泛关注,但厌氧氨氧化菌(anaerobic ammonium oxidizing bacteria, AAOB)生长缓慢,严重制约了ANAMMOX工艺的工程应用。本课题以不同浓度的废水作为处理对象,考察了ANAMMOX-EGSB (expanded granular sludge bed)反应器的运行性能;从ANAMMOX富集培养物(以下简称“富集培养物”)的菌群组成和生长代谢切入,揭示了AAOB及其伴生菌的工作机制。主要研究结果如下:
     (1)考察了高、低基质浓度下ANAMMOX-EGSB反应器的运行性能。
     ①考察了高基质浓度下ANAMMOX-EGSB反应器的运行性能。ANAMMOX-EGSB反应器适合处理高浓度含氨废水。当进水总氮浓度为1429.1mgN/L时,反应器容积负荷可达22.87kgN/(m3·d),容积去除负荷可达18.65kgN/(m3·d),且容积去除负荷仍呈上升趋势,反应器运行性能良好。反应器内富集培养物具有很高的比转化速率,对氨氮、亚硝氮、总氮的理论转化速率分别为381.2、304.7、731.7mgN/(gVSS·d);富集培养物具有很高的基质亲和力和很强的基质耐受性,对氨氮、亚硝氮、总氮的半饱和常数分别为36.75、0.657、29.26mgN/L,抑制常数分别为887.1、13942.1、1779.6mgN/L。
     ②考察了低基质浓度下ANAMMOX-EGSB反应器的运行性能。ANAMMOX-EGSB反应器具有优良的达标性能。在出水达标(15mg/L)的情况下,反应器容积负荷为27.31kgN/(m3·d),容积去除负荷为25.86kgN/(m3·d),总氮转化率为94.68%。富集培养物具有很高的比转化速率,对氨氮、亚硝氮、总氮的最大比转化速率分别为907.13、841.76、1810.10mgN/(gVSS·d);富集培养物具有很高的基质亲和力,对氨氮、亚硝氮、总氮的半饱和常数分别为2.69、0.44、3.11mgN/L,基质亲和力显著高于同类研究报道值。
     (2)揭示了ANAMMOX富集培养物的微生物特性。
     ①探明了不同容积负荷下ANAMMOX富集培养物的生长-代谢性能。研究发现,在富集培养物连续培养过程中,随着容积负荷的提高,富集培养物依次呈现饥饿、适宜和中毒状态。在饥饿、适宜和中毒期,生物量[以VSS (volatile suspended solid,挥发性悬浮固体)表征]的变化速率分别为-6.1×10-3gVSS/(gVSS·d)、1.45×10-2gVSS/(gVSS·d)和-5.78×10-2gVSS/(gVSS·d);用于提供维持能的基质消耗速率为0.05kgNH4+-N/(kgVSS·d)、0.07kgNO2-N/(kgVSS·d)、0.12kgN/(kgVSS·d);用于支持最大生长速率的基质消耗速率为0.21kgNH4+-N/(kgVSS·d)、0.24kgNO2--N/(kgVSS·d)、0.45kgN/(kgVSS·d)。在不同时期富集培养物的比氨氮转化活性、比亚硝氮转化活性、比氮转化活性分别为:饥饿期-0.03、0.04、0.07kgN/(kgVSS·d);适宜期—0.22、0.23、0.45kgN/(kgVSS·d);中毒期-0.08、0.10、0.18kgN/(kgVSS·d)。研究发现,在适宜期,富集培养物的VSS增长速率与氨氮、亚硝氮、总氮消耗速率以及硝氮生成速率都呈线性相关,相关系数分别为0.94、0.92、0.93、0.90。富集培养物得率为0.14gVSS/(gNH4+-N),0.12gVSS/(gNO2--N),0.70gVSS/(gNO3--N)。胞外多聚物(extracellular polymeric substances,EPS)得率为0.11gEPS/(gNH4+-N),0.09gEPS/(gNO2--N),0.55gEPS/(gNO3--N)。
     ②揭示了高基质浓度对ANAMMOX富集培养物颗粒化的影响。氨氮、亚硝氮均为AAOB的基质,但超过一定浓度,氨氮、亚硝氮也会对AAOB产生抑制作用。高基质浓度(超过抑制浓度)会引起富集培养物(颗粒污泥)解体,其中以高浓度亚硝氮的抑制作用更大,对AAOB的抑制浓度阂为100mgN/L。颗粒污泥解体导致沉降性能变差,沉降速度由73.73m/h降低至16.49m/h,污泥被洗出反应器,最终引起反应器性能下降,反应器容积去除率由21.81kgN/(m3·d)降低至16.97kgN/(m3·d)。通过洗出反应器中剩余基质并重新从低浓度开始运行反应器,富集培养物可重新形成颗粒污泥,沉降速度重新升高至60.59m/h,反应器容积总氮去除率也恢复至22.51kgN/(m3·d),反应器性能得到恢复。
     ③研究了高浓度低流量及高流量低浓度两种不同运行模式下两种富集培养物的菌群组成。研究发现,高浓度低流量(R1)及高流量低浓度(R2)两种不同运行模式下富集培养物的菌群组成各不相同。R1中富集培养物颜色偏白略带红色,内部菌体形态多样,微生物以球菌、丝状菌和杆菌为主,菌体细胞内含物形状多样且不规则;R2中富集培养物颜色鲜红,内部菌体形态相对统一,以球菌和杆菌为主,甚少观察到丝状菌,菌体细胞内含物形态相对一致但也不规则;运用PCR-DGGE手段分析表明,两种富集培养物的特征性条带差异显著,R2中富集培养物的条带明显多于R1中富集培养物的条带,即R2富集培养物中的微生物种群更丰富。两种富集培养物中的微生物数量差异显著。采用定量PCR对富集培养物中的细菌及AAOB进行定量分析,结果表明富集培养物(R2)中的细菌基因拷贝数与AAOB hzs基因拷贝数均大于富集培养物(R1)中的细菌基因拷贝数与AAOB hzs基因拷贝数,但是富集培养物(R1)中AAOB所占总细菌的比例(61.10士6.5%)高于富集培养物(R2)中AAOB所占的比例(34.27+3.7%)。从FISH结果可知,在两种富集培养物的所有AAOB中,Candidatus Kuenenia stuttgartiensis, Candidatus Brocadia anammoxidans为优势种。
     ④分离研究了ANAMMOX富集培养物中的伴生菌。从富集培养物中分离获得了菌株ZU-H、ZU-I经形态观察、生理生化试验、(G+C)%(mol/mol)含量测定和16S rRNA系统发育分析,两者均归入Proteobacteria门、Burkholderiales目、Alcaligenaceae科,Castellaniella属,ZU-H与Castellaniella defragrans进化距离最近,ZU-I与Castellaniella denitrificans进化距离最近。试验证明,ZU-I具有显著的反硝化活性,无ANAMMOX活性。在反硝化培养基中,菌株ZU-I的反硝化速率为3.94x10-2mgC/(mg protein·h)和1.08×10-2mgN/(mg protein·h),反硝化消耗的COD/N为5.47:1。作为伴生菌,菌株ZU-I能形成荚膜,有助于ANAMMOX团聚体(如:颗粒污泥、生物膜)的形成。菌株ZU-I革兰氏阴性,异养菌,兼性厌氧,具有丰富的基质多样性。以分子生物学技术检测发现分离源中包含Burkholderiales目细菌,即菌株ZU-I能存在于ANAMMOX富集培养物中,并具有很强的有机物利用能力。
With the rapid development of economy, large amount of wastewaters are emitted, in which a large number of industrial wastewater, agricultural wastewater and domestic sewage contain nitrogen. Nitrogen pollution has already seriously threated the living environment and the physical and mental health of human beings. It is urgent that nitrogenous pollutants should be removed from wastewaters. Due to the high efficiency and cost effectiveness, anaerobic ammonium oxidation (ANAMMOX) process has drawn much attention in the field of environmental engineering. However, the slow growth of anaerobic ammonium oxidizing bacteria (AAOB) severly restricted the full-scale application of ANAMMOX process. Using the wastewaters with different nitrogen concentrations as the treatment objects, this study revealed the performance of ANAMMOX-EGSB (expanded granular sludge bed) reactor. Commencing from the microbial consortium and the characteristics of growth and metabolism of ANAMMOX enrichment culture (hereafter referred as enrichment culture), this study revealed the working mechanisms of AAOB and associated bacteria. The main results are as follows:
     (1) The performances of ANAMMOX-EGSB reactors at high and low substrate concentrations were revealed.
     ①The performance of ANAMMOX-EGSB reactor at high substrate concentrations was revealed. The ANAMMOX-EGSB reactor was suitable to treat strong ammonium-containing wastewaters. When the influent nitrogen concentrations were up to1429.1mgN/L, the nitrogen loading rate (NLR) and nitrogen removal rate (NRR) were as high as22.87kgN/(m3·d) and18.65kgN/(m3·d), respectively, moreover, the NRR was still on the rise. The enrichment culture in the reactor had high substrate conversion rates. The theoretical ammonium, nitrite and nitrogen specific conversion rates were381.2,304.7and731.7mgN/(gVSS·d), respectively. The enrichment culture possessed great substrate affinity and excellent substrate tolerance. The half-saturation constant (KS) values for ammonium, nitrite and nitrogen were36.75,0.657and29.26mg N/L and the inhibition constant (Ki) values for ammonium, nitrite and nitrogen were887.1,13942.1and1779.6mg N/L.
     ②The performance of ANAMMOX-EGSB reactor at low substrate concentrations was revealed. The ANAMMOX-EGSB reactor had an excellent performance to meet the Chinese integrated wastewater discharge standard (GB8978-1996) in which the ammonium concentration should be lower than15mg/L. When the effluent ammonium concentrations was11.90mgN/L which was lower than15mgN/L, the NLR, NRR and nitrogen remove efficiency (NRE) were27.31kgN/(m3·d),25.86kgN/(m3·d) and94.68%, respectively. The enrichment culture had high specific substrate conversion rate (qmax) and great substrate affinity. The qmax for ammonium, nitrite and nitrogen were907.13,841.76and1810.10mg N/(g VSS-d), the KS for ammonium, nitrite and nitrogen were2.69,0.44and3.11mg N/L which were significantly stronger than those reported in the similar studies.
     (2) The microbial characteristics of ANAMMOX enrichment culture were investigated.
     ①The growth and metabolism characteristics of ANAMMOX enrichment culture at different NLRs were explored. The results showed that the enrichment culture presented starved, suitable and inhibitory phase along with the increase of substrate supply. The change rates of biomass in the starved, suitable and inhibitory phase were-6.1×10-3gVSS/(gVSS·d),1.45×10-2gVSS/(gVSS·d) and-5.78×10-2gVSS/(gVSS·d), respectively. The substrate conversion rates for survival were0.05kgNH4+-N/(kgVSS·d),0.07kgNO2--N/(kgVSS·d) and0.12kgN/(kgVSS·d); the substrate conversion rates for maximum growth were0.21kgNH4+-N/(kgVSS·d),0.24kgNO2--N/(kgVSS·d) and0.45kgN/(kgVSS·d), respectively. In different phase, the specific ammonium, nitrite and nitrogen conversion rates were as follows:starved phase-0.03,0.04,0.07kgN/(kgVSS·d); suitable phase-0.22,0.23,0.45kgN/(kgVSS·d); inhibitory phase-0.08,0.10,0.18kgN/(kgVSS·d). In suitable phase, the VSS accumulation rate showed a linear correlation with the substrate (ammonium, nitrite and nitrogen) removal rate and product (nitrate) formation rate, the correlation coefficients were0.94,0.92,0.93and0.90, the yield of enrichment culture was0.14gVSS/(gNH4+-N),0.12gVSS/(gNO2--N) and0.70gVSS/(gNO3--N), the yield of EPS was0.11gEPS/(gNH4+-N),0.09gEPS/(gNO2--N) and0.55gEPS/(gNO3--N).
     ②The effects of high substrate concentration on the granulation of ANAMMOX enrichment culture were revealed. The ammonium and nitrite are both substrates of AAOB, but they will become inhibitors when their concentrations exceed a certain level. The substrate concentrations exceeded the inhibitory threshold concentration could result in the physiological changes of AAOB which were an important factor for enrichment culture (granular sludge) dispersal. The inhibitory effects of nitrite were greater than those of ammonium, the inhibitory threshold concentration of nitrite to AAOB was around100mgN/L. The dispersal of granular sludge directly resulted in poor settleability (the settling velocity decreased form73.73m/h to16.49m/h), some sludge were washed-out which lead to the deterioration of reactor performance [the NRR decreased from21.81kgN/(mj-d) to16.97kgN/(m3·d)]. By rinsing out the residual substrate from the reactor and then re-running the reactor from low substrate concentrations, the enrichment culture could reform granular sludge (the settling velocity increased to60.59m/h) and reactor performance also could recover [the NRR went up to22.51kgN/(m3·d)].
     ③The microbial consortia of two different enrichment cultures were studied. The two enrichment cultures were derived from two ANAMMOX-EGSB reactors which were operated with two different operation modes-high concentration with low flow rate (R1) and high flow rate with low concentration (R2). The microbial populations of enrichment cultures in R1and R2were different. The enrichment culture in R1was white and reddish, in which the cell morphology was various, the predominant bacteria were cocci, filamentous bacteria and bacilli, and the shape of cell inclusion was various and irregular. The enrichment culture in R2was red. Compared to the enrichment culture in R1, the cell morphology of enrichment culture in R2was more consistent, predominant bacteria were cocci and bacilli, rarely filamentous bacteria were observed, and shape of cell inclusion was consistent but irregular. The results from PCR-DGGE analysis showed that the fingerprints of the two enrichment cultures were significantly different. The bands of enrichment cultures in R2were more than the bands of enrichment culture in R1, which meant the microbial species of enrichment culture in R2were more than those of enrichment culture in R1. The number of bacteria in two enrichment cultures was obviously different. By using quantitative PCR to analyze the number of bacteria and AAOB in enrichment cultures, it was found that both of the bacterial gene copies and AAOB hzs gene copies in enrichment culture (R2) were more than those in enrichment culture (R1). However, the proportion of AAOB to the total bacteria in enrichment culture (R1)(61.10±6.5%) was higher than the proportion of AAOB to the total bacteria in enrichment culture (R2)(34.27±3.7%). The results from the fluorescence in situ hybridization (FISH) showed that, in the two enrichment cultures, the predominant AAOB were Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia anammoxidans.
     ④Two associated bacteria in the ANAMMOX enrichment culture were isolated and studied. The strains ZU-H and ZU-I were isolated from the enrichment culture and were identified as Castellaniella defragrans and Castellaniella denitrificans in phylum Proteobacteria. Strain ZU-I had denitrification activity but no ANAMMOX activity. The denitrification rates of strain ZU-I were3.94×10-2mgC/(mg protein-h) and1.08×10-2mgN/(mg protein-h), the consumed COD/N in denitrification was5.47:1. As an associated bacterium, stain ZU-I was able to form capsule, which was helpful to the formation of ANAMMOX aggregates. Strain ZU-I was Gram-negative, heterotrophic, facultatively anaerobic and had rich diversity of carbon source. It was found from the study of microbial consortium that the isolation source contained the bacteria in Burkholderiales, which meant strain ZU-I was able to live in the enrichment culture and could use organic matters very well.
引文
Abma W R, Schultz C E, Mulder J W, van der Star W R, Strous M, Tokutomi T, van Loosdrecht M C. Full-scale granular sludge Anammox process[J]. Water Sci Technol,2007 (8-9):27-33.
    Ahlersa B, Koniga W, Bock E. Nitrite reductase activity in Nitrobacter vulgaris[J]. FEMS Microbiology Letters,1990 (1-2):121-126.
    Almeida J S, Julio S M, Reis M A, Carrondo M J. Nitrite inhibition of denitrification by Pseudomonas fluorescens[J]. Biotechnol Bioeng,1995 (3):194-201.
    Anthonisen A C, Loehr R C, Prakasam T B, Srinath E G. Inhibition of nitrification by ammonia and nitrous acid[J]. J Water Pollut Control Fed,1976 (5):835-52.
    Arp D J, Stein L Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria[J]. Crit Rev Biochem Mol Biol,2003 (6):471-95.
    Arrojo B, Figueroa M, Mosquera-Corral A, Campos J L, Mendez R. Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR[J]. Chemosphere,2008 (11):1687-93.
    Arrojo B, Mosquera-Corral A, Campos J L, Mendez R. Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR)[J]. J Biotechnol, 2006 (4):453-63.
    Bae H, Park K S, Chung Y C, Jung J Y. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR[J]. Process Biochem,2010:323-334.
    Baek S H, Kim K H, Yin C R, Jeon C O, Im W T, Kim K K, Lee S T. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions[J]. Curr Microbiol,2003 (6):462-6.
    Bartosch S, Hartwig C, Spieck E, Bock E. Immunological detection of Nitrospira-like bacteria in various soils[J]. Microbial Ecology 2002 (1):26-33.
    Bartossek R, Spang A, Weidler G, Lanzen A, Schleper C. Metagenomic analysis of ammonia-oxidizing archaea affiliated with the soil group[J]. Front Microbiol, 2012:208.
    Berry E A, Trumpower B L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra[J]. Anal Biochem,1987 (1):1-15.
    Bettazzia E, Caffazb S, Vanninic C, Lubelloa C. Nitrite inhibition and intermediates effects on Anammox bacteria:A batch-scale experimental study[J]. Process Biochem,2010 (4):573-580.
    Blok J, Strays J. Measurement and validation of kinetic parameter values for prediction of biodegradation rates in sewage treatment[J]. Ecotoxicol Environ Saf,1996 (3):217-27.
    Bock E, Koops H P, Harm H. Cell biology of nitrifiers. Washington, D.C.:In J. I. Prosser,1986.
    Bock E, Sundermeyer-Klinger h, Stackebrandt E. New facultative lithoautotrophic nitrite-oxidizing bacteria[J]. Archives of Microbiology 1983 (4):281-284.
    Bock E, Wilderer P A, Freitag A. Growth of nitrobacter in the absence of dissolved oxygen[J]. Water Research,1988 (2):245-250.
    Butler C S, Richardson D J. The emerging molecular structure of the nitrogen cycle: an introduction to the proceedings of the 10th annual N-cycle meeting. The 10th Nitrogen Cycle Meeting 2004. Biochemical Society Transactions,2005: 113-118.
    Castellani A, Chalmers A J. Manual of tropical medicine. New York:Williams Wood and Co.,1919.
    Chen J, Zheng P, Yu Y, Tang C, Mahmood Q. Promoting sludge quantity and activity results in high loading rates in Anammox UBF[J]. Bioresour Technol,2010 (8): 2700-5.
    Chen T, Zheng P, Shen L, Ding S, Mahmood Q. Kinetic characteristics and microbial community of Anammox-EGSB reactor[J]. J Hazard Mater,2011 (1-3):28-35.
    Chen T T, Zheng P, Shen L D. Growth and metabolism characteristics of anaerobic ammonium-oxidizing bacteria aggregates [J]. Appl Microbiol Biotechnol, 2012.
    Cho S, Takahashi Y, Fujii N, Yamada Y, Satoh H, Okabe S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor[J]. Chemosphere,2010 (9):1129-35.
    Cirpus I E, Geerts W, Hermans J H, Op den Camp H J, Strous M, Kuenen J G, Jetten M S. Challenging protein purification from anammox bacteria[J]. Int J Biol Macromol,2006 (1-3):88-94.
    Collman J P, Yang Y, Dey A, Decreau R A, Ghosh S, Ohta T, Solomon E I. A functional nitric oxide reductase model[J]. Proc Natl Acad Sci U S A,2008 (41):15660-5.
    Dapena-Mora A, Campos J L, Mosquera-Corral A, Jetten M S, Mendez R. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. J Biotechnol,2004 (2):159-70.
    Dapena-Mora A, Fernandeza I, Camposa J L, Mosquera-Corrala A, Mendeza R, M.S.M. J. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology,2007 (4):859-865.
    DeLong E F, Taylor L T, Marsh T L, Preston C M. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybrid ization[J]. Applied and Environmental Microbiology,1999 (12):5554-5563.
    Denger K, Laue H, Cook A M. Anaerobic taurine oxidation:a novel reaction by a nitrate-reducing Alcaligenes sp[J]. Microbiology,1997:1919-24.
    Dietrich G, Weiss N, Fiedler F, Winter J. Acetofilamentum rigidum gen, nov., sp. nov., a Strictly Anaerobic Bacterium from Sewage Sludge[J]. Systematic and Applied Microbiology,1988 (3):273-278.
    Edwards V H. The influence of high substrate concentrations on microbial kinetics[J]. Biotechnol Bioeng,1970 (5):679-712.
    Egli K, Fanger U, Alvarez P J, Siegrist H, van der Meer J R, Zehnder A J. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Arch Microbiol,2001 (3): 198-207.
    EPA. Nitrogen control. Inc., Lancaster, Pennsylvania 17604, USA:Technomic Publishing Company,1991.
    Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, Campos J L, Mendez R. Biofilm and granular systems to improve Anammox biomass retention[J]. Biochemical Engineering Journal,2008 (3):308-313.
    Fernandez I, Dosta J, Fajardo C, Campos J L, Mosquera-Corral A, Mendez R. Short-and long-term effects of ammonium and nitrite on the Anammox process[J]. J Environ Manage,2012:S170-4.
    Frolund B, Palmgren R, Keiding K, Nielsen P H. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research,1996 (8):1749-1758.
    Francis C A, Beman J M, Kuypers M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. ISME J,2007 (1):19-27.
    Freitag A, Rudert M, Bock E. Growth of Nitrobacter by dissimilatoric nitrate reduction[J]. FEMS Microbiology Letters,1987 (1-2):105-109.
    French E, Kozlowski J A, Mukherjee M, Bullerjahn G, Bollmann A. Enrichment and characterization of three ammonia-oxidizing Archaea from freshwater environments[J]. Appl. Environ. Microbiol.,2012.
    Fuerst J A, Sagulenko E. Beyond the bacterium:planctomycetes challenge our concepts of microbial structure and function[J]. Nat Rev Microbiol.,2011 (6): 403-413.
    Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Two ways to achieve an anammox influent from real reject water treatment at lab-scale:Partial SBR nitrification and SHARON process[J]. Process Biochem,2007 (4):715-720.
    Garrity M G, Bell J A, Lilburn T G. Bergey's manual of systematic bacteriology. New York:Springer,2004.
    Gee C, Suidan M, Pfeffer J. Modeling of Nitrification Under Substrate-Inhibiting Conditions[J]. J. Environ. Eng.,1990 (1):18-31.
    Gong Z, Yang F, Liu S, Bao H, Hu S, Furukawa K. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox[J]. Chemosphere,2007 (5):776-84.
    Gori F, Tringe S G, Kartal B, Marchiori E, Jetten M S. The metagenomic basis of anammox metabolism in Candidatus' Brocadia fulgida'[J]. Biochem Soc Trans, 2011 (6):1799-804.
    Goudar C T, Ellis T G. Explicit oxygen concentration expression for estimating extant biodegradation kinetics from respirometric experiments[J]. Biotechnol Bioeng, 2001(1):74-81.
    Green S J, Michel F C, Jr., Hadar Y, Minz D. Similarity of bacterial communities in sawdust-and straw-amended cow manure composts[J]. FEMS Microbiol Lett, 2004(1):115-23.
    Gupta R S. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes[J]. Crit Rev Microbiol,2004 (2):123-43.
    Gut L, Plaza E, Trela J, Hultman B, Bosander J. Combined partial nitritation/Anammox system for treatment of digester supernatant[J]. Water Sci Technol,2006 (12):149-59.
    Harhangi H R, Le Roy M, van Alen T, Hu B L, Groen J, Kartal B, Tringe S G, Quan Z X, Jetten M S, Op den Camp H J. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria[J]. Appl Environ Microbiol,2012 (3):752-8.
    Harms G, Layton A C, Dionisi H M, Gregory I R, Garrett V M, Hawkins S A, Robinson K G, Sayler G S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant[J]. Environ Sci Technol,2003 (2): 343-51.
    Hellinga C, Schellen A A J C, Mulder J W, van Loosdrecht M C M, Heijnen J J. The SHARON process:An innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology,1998 (9): 135-142.
    Hira D, Toh H, Migita C T, Okubo H, Nishiyama T, Hattori M, Furukawa K, Fujii T. Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1[J]. FEBS Lett,2012 (11):1658-63.
    Hommes N G, Sayavedra-Soto L A, Arp D J. Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose[J]. J Bacteriol,2003 (23):6809-14.
    Hong Y G, Li M, Cao H, Gu J D. Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China Sea:analyses of marker gene abundance with physical chemical parameters[J]. Microb Ecol,2011 (1): 36-47.
    Hu B, Shen L, Du P, Zheng P, Xu X, Zeng J. The influence of intense chemical pollution on the community composition, diversity and abundance of anammox bacteria in the Jiaojiang Estuary (China)[J]. PLoS One,2012a (3): e33826.
    Hu B, Zheng P, Li J, Xu X, Jin R. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability[J]. Sci China C Life Sci,2006 (5):460-6.
    Hu B L, Shen L D, Liu S, Cai C, Chen T T, Kartal B, Harhangi H R, Op den Camp H J M, Lou L P, Xu X Y, Zheng P, Jetten M S M. Enrichment of an anammox bacterial community from a flooded paddy soil[J]. Environmental Microbiology Reports,2013.
    Hu B L, Shen L D, Zheng P, Hu A H, Chen T T, Cai C, Liu S, Lou L P. Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River[J]. Environ Microbiol Reports,2012b (5):540-547.
    Hu B L, Zheng P, Tang C J, Chen J W, van der Biezen E, Zhang L, Ni B J, Jetten M S, Yan J, Yu H Q, Kartal B. Identification and quantification of anammox bacteria in eight nitrogen removal reactors[J]. Water Res,2010 (17):5014-20.
    Isaka K, Sumino T, Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J]. J Biosci Bioeng,2007 (5):486-490.
    Jetten M S, Cirpus I, Kartal B, van Niftrik L, van de Pas-Schoonen K T, Sliekers O, Haaijer S, van der Star W, Schmid M, van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Gijs Kuenen J, Op den Camp H, Strous M. 1994-2004:10 years of research on the anaerobic oxidation of ammonium[J]. Biochem Soc Trans,2005 (Pt 1):119-23.
    Jetten M S, Niftrik L, Strous M, Kartal B, Keltjens J T, Op den Camp H J. Biochemistry and molecular biology of anammox bacteria[J]. Crit Rev Biochem Mol Biol,2009 (2-3):65-84.
    Jetten M S, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process[J]. Curr Opin Biotechnol,2001 (3):283-8.
    Jin R C, Zheng P. Kinetics of nitrogen removal in high rate anammox upflow filter[J]. J Hazard Mater,2009 (2-3):652-6.
    Jin R C, Zheng P, Hu A H, Mahmood Q, Hu B L. Performance comparison of two anammox reactors:SBR and UBF [J]. CHEMICAL ENGINEERING JOURNAL 2008 (1-3):224-230.
    Kampfer P, Denger K, Cook A M, Lee S T, Jackel U, Denner E B, Busse H J. Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov[J]. Int J Syst Evol Microbiol,2006 (Pt 4):815-9.
    Karlsson R, Karlsson A, Backman O, Johansson B R, Hulth S. Identification of key proteins involved in the anammox reaction [J]. FEMS Microbiol Lett,2009 (1): 87-94.
    Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S, Strous M. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature,2011 (7371):127-30.
    Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damste J S, Jetten M S, Strous M. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Syst Appl Microbiol,2007 (1): 39-49.
    Kartal B, van Niftrik L, Rattray J, van de Vossenberg J L, Schmid M C, Sinninghe Damste J, Jetten M S, Strous M. Candidatus' Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiol Ecol,2008 (1):46-55.
    Kartal B, van Niftrik L, Sliekers O, Schmid M C, Schmidt I, van de Pas-Schoonen K, Cirpus I, van der Star W, van Loosdrecht M, Abma W, Kuenen J G, Mulder J W, Jetten M S M, Op den Camp H, Strous M, van de Vossenberg J. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria[J]. Reviews in Environmental Science& Bio/Technology,2004 (3):255-264.
    Kim M K, Srinivasan S, Kim Y J, Yang D C. Castellaniella ginsengisoli sp. nov., a beta-glucosidase-producing bacterium[J]. Int J Syst Evol Microbiol,2009 (Pt 9):2191-4.
    Konneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005 (7058):543-6.
    Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria:a model for molecular microbial ecology [J]. Annu Rev Microbiol,2001:485-529.
    Kuypers M M, Sliekers A O, Lavik G, Schmid M, Jorgensen B B, Kuenen J G, Sinninghe Damste J S, Strous M, Jetten M S. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature,2003 (6932):608-11.
    Lam P, Lavik G, Jensen M M, van de Vossenberg J, Schmid M, Woebken D, Gutierrez D, Amann R, Jetten M S, Kuypers M M. Revising the nitrogen cycle in the Peruvian oxygen minimum zone[J]. Proc Natl Acad Sci U S A,2009 (12): 4752-7.
    Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Res,2002 (11):2711-20.
    Lee M, Jung H M, Woo S G, Yoo S A, Ten L N. Castellaniella daejeonensis sp. nov., isolated from soil[J]. Int J Syst Evol Microbiol,2010 (Pt 9):2056-60.
    Lek Noophan P, Sripiboon S, Damrongsri M, Munakata-Marr J. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor[J]. J Environ Manage,2009 (2):967-72.
    Li-dong S, An-hui H, Ren-cun J, Dong-qing C, Ping Z, Xiang-yang X, Bao-lan H. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system[J]. J Hazard Mater,2012:193-9.
    Li M, Ford T, Li X, Gu J D. Cytochrome cdl-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.[J]. Environ Sci Technol,2011a (8): 3547-3553.
    Li X, Xiao Y, Liao D, Zheng W, Yi T, Yang Q, Zeng G. Granulation of simultaneous partial nitrification and anammox biomass in one single SBR system [J]. Appl Biochem Biotechnol,2011b (8):1053-1065.
    Li X R, Du B, Fu H X, Wang R F, Shi J H, Wang Y, Jetten M S, Quan Z X. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community [J]. Syst Appl Microbiol,2009 (4):278-89.
    Li X Y, Yang S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Res,2007 (5):1022-30.
    Lindsay M R, Webb R I, Strous M, Jetten M S, Butler M K, Forde R J, Fuerst J A. Cell compartmentalisation in planctomycetes:novel types of structural organisation for the bacterial cell[J]. Arch Microbiol,2001 (6):413-29.
    Liu D, Zhang S, Zheng Y, Shoun H. Denitrification by the mix-culturing of fungi and bacteria with shell[J]. Microbiol Res,2006 (2):132-7.
    Liu Q M, Ten L N, Im W T, Lee S T. Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a leachate treatment plant[J]. Int J Syst Evol Microbiol,2008 (Pt 9):2141-6.
    Liu S T. The enhancement by electrical/magnetic field and multi-species coupling of Anammox technology for autotrophic nitrogen removal[D]. Environmental Engineering, Dalian:Dalian Univ. Technol.,2009.
    Lotti T, van der Star W R, Kleerebezem R, Lubello C, van Loosdrecht M C. The effect of nitrite inhibition on the anammox process[J]. Water Res,2012 (8):2559-69.
    Madigan M T, Martinko J M, Parker J. Brock biology of microorganisms. Prentic Hall: Pearson Education, Inc.,2002.
    Marchesi J R, Sato T, Weightman A J, Martin T A, Fry J C, Hiom S J, Dymock D, Wade W G. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA[J]. Appl Environ Microbiol, 1998 (2):795-799.
    Matsumoto Y, Tosha T, Pisliakov A V, Hino T, Sugimoto H, Nagano S, Sugita Y, Shiro Y. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus[J]. Nat Struct Mol Biol,2012 (2):238-45.
    Mesbah M, Premachandran U, Whitman W B. Precise Measurement of the G+C Content of Deoxyribonucleic-Acid by High-Performance Liquid-Chromatography[J]. Int J Syst Bacteriol 1989 (2):159-167.
    Miyahara M, Kim S W, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants[J]. Appl Environ Microbiol,2010 (14):4619-25.
    Morgan J W, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research,1990 (6): 743-750.
    Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993 (3):695-700.
    Natcheva M, Beschkov V. Denitrification Performance of a Culture of Thermophilic Aerobic Bacteria NBIMCC 3729[J]. Chem. Biochem. Eng. Q.,2003 (2): 123-129.
    Nazina T N, Tourova T P, Poltaraus A B, Novikova E V, Grigoryan A A, Ivanova A E, Lysenko A M, Petrunyaka V V, Osipov G A, Belyaev S S, Ivanov M V. Taxonomic study of aerobic thermophilic bacilli:descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th[J]. Int J Syst Evol Microbiol,2001 (Pt 2):433-46.
    Neef A, Amann R, Schlesner H, Schleifer K H. Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes[J]. Microbiology,1998:3257-66.
    Ni B J, Hu B L, Fang F, Xie W M, Kartal B, Liu X W, Sheng G P, Jetten M, Zheng P, Yu H Q. Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor[J]. Appl Environ Microbiol,2010 (8):2652-6.
    Ni S Q, Gao B Y, Wang C C, Lin J G, Sung S. Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules[J]. Bioresour Technol,2011 (3):2448-54.
    Okabe S, Oshiki M, Takahashi Y, Satoh H. Development of long-term stable partial nitrification and subsequent anammox process[J]. Bioresour Technol,2011 (13):6801-7.
    Painter H A. A review of literature on inorganic nitrogen metabolism in microorganisms[J]. Water Res,1970 (6):393-450.
    Preston C M, Wu K Y, Molinski T F, DeLong E F.A psychrophilic crenarchaeon inhabits a marine sponge:Cenarchaeum symbiosum gen. nov., sp. nov[J]. Proc Natl Acad Sci U S A,1996 (13):6241-6.
    Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environ Microbiol,2008 (11): 2931-41.
    Quan Z X, Rhee S K, Zuo J E, Yang Y, Bae J W, Park J R, Lee S T, Park Y H. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environ Microbiol,2008 (11): 3130-9.
    Rittmann B E, McCarty P L. Environmental biotechnology:principles and applications. McGraw-Hill companies,2001.
    Sangolkar L N, Maske S S, Chakrabarti T. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria[J]. Water Res, 2006 (19):3485-96.
    Satoh K, Takizawa R, Sarai M, Sato N, Takahashi R, Tokuyama T. Two kinds of ammonia-oxidizing bacteria isolated from biologically deodorizing plants in cold district[J]. J Biosci Bioeng,2004 (3):207-10.
    Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea[J]. Nat Rev Microbiol,2005 (6):479-88.
    Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger J W, Schleifer K H, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Syst Appl Microbiol,2000 (1):93-106.
    Schmid M, Walsh K, Webb R, Rijpstra W I, van de Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Damste J S, Harris J, Shaw P, Jetten M, Strous M. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Syst Appl Microbiol,2003a (4):529-38.
    Schmid M, Walsh K, Webb R, Rijpstra W I C, van de Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Damste J S S, Harris J, Shaw P, Jetten M, Strous M. Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology,2003b (4): 529-538.
    Schmidt I I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J]. Arch Microbiol,1997 (2/3):106-11.
    Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors[J]. Biotechnol Bioeng,1996 (3):229-46.
    Schouten S, Strous M, Kuypers M M, Rijpstra W I, Baas M, Schubert C J, Jetten M S, Sinninghe Damste J S. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria[J]. Appl Environ Microbiol,2004 (6):3785-8.
    Shen C F, Kosaric N, Blaszczyk R. The effect of selectedheavy metals (Ni, Co and Fe) on anaerobicgranules and their Extracellular Polymeric Substance (EPS)[J]. Water Res,1993 (1):25-33.
    Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnol Adv,2010 (6):882-94.
    Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, Fujii T. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture[J]. Appl Environ Microbiol,2007 (4):1065-72.
    Shoun H, Fushinobu S, Jiang L, Kim S W, Wakagi T. Fungal denitrification and nitric oxide reductase cytochrome P450nor[J]. Philos Trans R Soc Lond B Biol Sci, 2012(1593):1186-94.
    Shoun H, Kim D H, Uchiyama H, Sugiyama J. Denitrification by fungi[J]. FEMS Microbiol Lett,1992 (3):277-81.
    Shrestha N K, Hadano S, Kamachi T, Okura I. Dinitrogen production from ammonia by Nitrosomonas europaea[J]. Applied Catalysis A:General,2002 (1-2): 33-39.
    Sinclair P R, Gorman N, Jacobs J M. Measurement of heme concentration [J]. Curr Protoc Toxicol,2001:Unit 83.
    Sinninghe Damste J S, Rijpstra W I, Geenevasen J A, Strous M, Jetten M S. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. FEBS J,2005 (16): 4270-83.
    Sinninghe Damste J S, Rijpstra W I, Strous M, Jetten M S, David O R, Geenevasen J A, van Maarseveen J H. A mixed ladderane/n-alkyl glycerol diether membrane lipid in an anaerobic ammonium-oxidizing bacterium[J]. Chem Commun (Camb),2004 (22):2590-1.
    Sinninghe Damste J S, Strous M, Rijpstra W I, Hopmans E C, Geenevasen J A, van Duin A C, van Niftrik L A, Jetten M S. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature,2002 (6908):708-12.
    Sobieszuk P, Szewczyk K W. Estimation of (C/N) ratio for microbial denitrification[J]. Environ Technol,2006 (1):103-8.
    Song B, Palleroni N J, Haggblom M M. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments[J]. Appl Environ Microbiol,2000 (8):3446-53.
    Starkenburg S R, Arp D J, Bottomley P J. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255[J]. Environ Microbiol,2008 (11):3036-42.
    Starkenburg S R, Chain P S, Sayavedra-Soto L A, Hauser L, Land M L, Larimer F W, Malfatti S A, Klotz M G, Bottomley P J, Arp D J, Hickey W J. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255[J]. Appl Environ Microbiol,2006 (3):2050-63.
    Stein L Y, Yung Y L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide[J]. Annual Review of Earth and Planetary Sciences,2003:329-356.
    Stouthamer A H, de Boer A P, van der Oost J, van Spanning R J. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria[J]. Antonie Van Leeuwenhoek,1997 (1-2):33-41.
    Strous M, Fuerst J A, Kramer E H M, Logemann S, Muyzer G, van de Pas-Schoonen K T, Webb R, Kuenen J G, Jetten M S M. Missing lithotroph identified as new planctomycete[J]. Nature,1999a (6473):446-449.
    Strous M, Heijnen J, Kuenen J G, Jetten M S M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Appl Microbiol Biotechnol,1998a (5):589-596.
    Strous M, Heijnen J J, Kuenen J G, Jetten M S M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol,1998b (5):589-596.
    Strous M, Kuenen J G, Jetten M S. Key physiology of anaerobic ammonium oxidation[J]. Appl Environ Microbiol,1999b (7):3248-50.
    Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor M W, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh B E, Op den Camp H J, van der Drift C, Cirpus I, van de Pas-Schoonen K T, Harhangi H R, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen M A, Mewes H W, Weissenbach J, Jetten M S, Wagner M, Le Paslier D. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature,2006 (7085): 790-4.
    Sutherland I W. The biofilm matrix--an immobilized but dynamic microbial environment[J]. Trends Microbiol,2001 (5):222-7.
    Tang C J, Zheng P, Hu B L, Chen J W, Wang C H. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels[J]. J Hazard Mater,2010a (1-3):19-26.
    Tang C J, Zheng P, Mahmood Q, Chen J W. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge[J]. J Ind Microbiol Biotechnol,2009 (8):1093-100.
    Tang C J, Zheng P, Wang C H, Mahmood Q. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor[J]. Bioresour Technol,2010b (6):1762-8.
    Tang C J, Zheng P, Wang C H, Mahmood Q, Zhang J Q, Chen X G, Zhang L, Chen J W. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Res,2011 (1):135-44.
    Tang C J, Zheng P, Zhang L, Chen J W, Mahmood Q, Chen X G, Hu B L, Wang C H, Yu Y. Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents[J]. Chemosphere,2010c (6): 613-9.
    Tao T S, Yang R F, Dong X Z. Systematics of Prokaryotes. Beijing:Chemical Industry Press,2007.
    Teske A, Alm E, Regan J M, Toze S, Rittmann B E, Stahl D A. Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria[J]. J Bacteriol., 1994 (21):6623-6630.
    Trigo C, Campos J L, Garrido J M, Mendez R. Start-up of the Anammox process in a membrane bioreactor[J]. J Biotechnol,2006 (4):475-87.
    Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR[J]. Water Res,2007a (4): 785-94.
    Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Res, 2007b (8):1623-34.
    van de Graaf A A, de Bruijn P, Robertson L A, Jetten M S M, Kuenen J G. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology,1997 (7):2415-2421.
    van de Graaf A A, deBruijn P, Robertson L A, Jetten M S M, Kuenen J G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiol-Uk 1996 (8):2187-2196.
    van de Vossenberg J, Rattray J E, Geerts W, Kartal B, van Niftrik L, van Donselaar E G, Sinninghe Damste J S, Strous M, Jetten M S. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J]. Environ Microbiol,2008 (11):3120-9.
    van de Vossenberg J, Woebken D, Maalcke W J, Wessels H J, Dutilh B E, Kartal B, Janssen-Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, van der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C, Op den Camp H J, Stunnenberg H G, Amann R, Kuypers M M, Jetten M S. The metagenome of the marine anammox bacterium 'Candidates Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium[J]. Environ Microbiol,2012.
    van der Star W R, Abma W R, Blommers D, Mulder J W, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht M C. Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Res,2007 (18):4149-63.
    van der Star W R L, Miclea A I, van Dongen U G J M, Muyzer G, Picioreanu C, van Loosdrecht M C M. The membrane bioreactor:A novel tool to grow anammox bacteria as free cells[J]. Biotechnol Bioeng,2008 (2):286-294.
    van Dongen U, Jetten M S, van Loosdrecht M C. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Water Sci Technol,2001 (1): 153-60.
    van Niftrik L, Geerts W J, van Donselaar E G, Humbel B M, Webb R I, Fuerst J A, Verkleij A J, Jetten M S, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:cell plan, glycogen storage, and localization of cytochrome C proteins[J]. J Bacteriol,2008 (2):708-17.
    van Niftrik L, van Helden M, Kirchen S, van Donselaar E G, Harhangi H R, Webb R I, Fuerst J A, Op den Camp H J, Jetten M S, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'[J]. Mol Microbiol,2010 (3):701-15.
    Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusch D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science,2004 (5667):66-74.
    Viancelli A, Kunz A, Esteves P A, Bauermann F V, Furukawa K, Fujii T, Antonio R V, Vanotti M. Bacterial Biodiversity from an Anaerobic up Flow Bioreactor with ANAMMOX Activity Inoculated with Swine Sludge[J]. Braz Arch of Biol Technol,2011 (5):1027-1034.
    Wett B. Solved upscaling problems for implementing deammonification of rejection water[J]. Water Sci Technol,2006 (12):121-8.
    Wintera J, Braun E, Zabel H P. Acetomicrobium faecalis spec, nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses[J]. Systematic and Applied Microbiology,1987 (1-2):71-76.
    Woebken D, Lam P, Kuypers M M, Naqvi S W, Kartal B, Strous M, Jetten M S, Fuchs B M, Amann R. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environ Microbiol,2008 (11):3106-19.
    Wu J, Zhou H M, Li H Z, Zhang P C, Jiang J. Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor[J]. Water Res,2009 (12):3029-36.
    Xia S, Li J, He S, Xie K, Wang X, Zhang Y, Duan L, Zhang Z. The effect of organic loading on bacterial community composition of membrane biofilms in a submerged poly vinyl chloride membrane bioreactor[J]. Bioresour Technol, 2010 (17):6601-9.
    Yamamoto T, Takaki K, Koyama T, Furukawa K. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox[J]. Bioresource Technology,2008 (14):6419-6425.
    Yamamoto T, Wakamatsu S, Qiao S, Hira D, Fujii T, Furukawa K. Partial nitritation and anammox of a livestock manure digester liquor and analysis of its microbial community[J]. Bioresour Technol,2011 (3):2342-7.
    Yang J, Zhang L, Hira D, Fukuzaki Y, Furukawa K. High-rate nitrogen removal by the anammox process at ambient temperature [J]. Bioresour Technol,2011 (2): 672-6.
    Yao H Y, Huang C Y. Soil microbial ecology and its experimental technique. Beijing Science Press,2006.
    Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction[J]. Biotechnol Bioeng,2005 (6):670-9.
    Zheng P, Hu B L. [Kinetics of anaerobic ammonia oxidation] [J]. Sheng Wu Gong Cheng Xue Bao,2001 (2):193-8.
    Zheng P, Xu X Y, Hu B L. Novel theories and technologies for biological nitrogen removal. Beijing:Science press,2004.
    Zu B, Zhang D J, Yan Q. [Effect of trace NO2 and kinetic characteristics for anaerobic ammonium oxidation of granular sludge][J]. Huan Jing Ke Xue,2008 (3): 683-7.
    Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiol Mol Biol Rev,1997 (4):533-616.
    蔡靖.同步厌氧脱氮除硫工艺及微生物学特性的研究[D].环境工程,杭州:浙江大学,2010.
    蔡靖,郑平,胡宝兰,Mahmood Q脱氮除硫菌株的分离鉴定和功能确认[J].微生物学报,2007(6):1027-1031.
    陈婷婷,郑平.硝化基质和产物对发光细菌的急性毒性[J].微生物学报,2009(6):759-765.
    陈婷婷,郑平,胡宝兰.厌氧氨氧化菌的物种多样性与生态分布[J].应用生态学报,2009(5):1229-1235.
    陈月开,黄登宇,强玉丰,王美素.细胞色素c的快速测定研究[J].山西大学学报(自然科学版),2003(1):64-66.
    国家环境保护总局.水和废水监测分析方法.北京:中国环境科学出版社,2005.
    胡宝兰,郑平,管丽莉Anammox反应器中氨氧化菌的分离鉴定及特性研究[J].浙江大学学报(农业与生命科学版),2001(3):314-316.
    陆慧锋,丁爽,郑平.厌氧氨氧化的中心代谢研究进展[J].微生物学报,2011(8):1014-1022.
    沈李东,胡宝兰,郑平,钱轶超,陈婷婷,胡安辉,楼菊青.西湖底泥中厌氧氨氧化菌的分子生物学检测[J].环境科学学报,2011(8):1609-1615.
    孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003.
    唐崇俭.厌氧氨氧化工艺特性与控制技术研究[D].环境工程,杭州:浙江大学,2011.
    唐崇俭,郑平,陈婷婷.厌氧氨氧化工艺的菌种、启动与效能[J].化工学报,2010(10):2510-2516.
    徐庆云,黄勇,袁怡.厌氧氨氧化细菌的富集及不同温度下动力学研究[J].苏州科技学院学报(工程技术版),2007(2):49-53.
    张蕾.厌氧氨氧化性能的研究[D].环境工程,杭州:浙江大学,2009.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004.
    郑平,张蕾.厌氧氨氧化菌的特性与分类[J].浙江大学学报(农业与生命科学版),2009(5):473-481.
    中华人民共和国环境保护部.中国环境状况公报.2011.
    周卫民,杨世忠,Nazina T N,牟柏中.Geobacillus研究进展[J].微生物学杂志,2005(3):46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700