微观组织对铸造NZ30K镁合金室温拉压疲劳行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金较高的比强度、比刚度和良好的力学性能促使人们在镁合金新材料领域开展了大量的研究工作,试图开发出新型高强度镁合金材料。最近的研究表明Mg-3.0Nd-0.2Zn-Zr(wt.%)(NZ30K)合金是一种强度较高低稀土含量同时成型性能良好的镁稀土合金,该合金室温与高温力学性能、耐腐蚀性能显著优于常规商用AZ91D合金,有望在航空航天、汽车等领域得到应用。然而,作为材料关键应用特性之一,NZ30K镁合金的疲劳性能并没有进行过系统深入的研究,本文将展开这方面的研究工作。
     本文主要研究晶粒度大小及其分布、常规铸造成型工艺下不同显微组织对NZ30K镁合金室温拉压高周疲劳性能的影响。研究通过改变Zr含量制备不同晶粒度大小及其分布不同的重力铸造NZ30K镁合金,通过重力金属型、重力砂型、低压金属型和低压砂型四种不同铸造工艺制备具有不同显微组织的NZ30K镁合金,通过光学显微镜(OM)研究合金显微组织,通过拉伸实验测试合金室温力学性能,采用德国SincoTec MAG50KN高频疲劳机检测合金的室温高周疲劳性能,采用电子显微镜(SEM)对疲劳实验断口进行观察与表征。
     通过调整Zr元素的含量,可以制备平均晶粒大小分别为40μm、60μm、100μm和180μm的NZ30K-T6镁合金。随着平均晶粒尺寸的减小,合金晶粒尺寸分布范围减小并逐渐趋向于正态分布;合金室温力学性能中,屈服强度随平均晶粒尺寸的减小而升高,两者呈H-P关系,抗拉强度随平均晶粒尺寸的减小先升高后降低,在60μm时达到峰值,延伸率随平均晶粒尺寸的减小先下降而后又升高,100μm时延伸率最低,60μm时延伸率最高。NZ30K-T6镁合金达到107时的室温拉压疲劳极限强度随合金晶粒尺寸的减小大体上呈现增加趋势,平均晶粒尺寸从180μm到100μm,疲劳极限强度变化很小,增量为1MPa,而从100μm到60μm,合金疲劳强度提高比较明显,增量为12MPa,而从60μm到40μm,材料疲劳强度略有下降,下降量小于1.5MPa。
     NZ30K镁合金在重力金属型铸造(GPC)、重力砂型铸造(GSC)、低压金属型铸造(LPC)以及低压砂型铸造(LSC)四种不同的铸造方式下的显微组织与力学性能的差异,可以理解为合金常规凝固条件下不同冷却速率的影响。凝固冷却速率快(金属型铸造)时,合金晶粒尺寸成正态分布,且平均晶粒尺寸较小,凝固冷却速率降低到砂型铸造以后,合金晶粒尺寸分布范围更加宽泛,明显偏离正态分布,且晶粒不同区域分布不均匀,合金平均晶粒尺寸较大。对于短时拉伸性能而言,细小均匀的显微组织,有利于提高合金的力学性能,包括屈服强度、抗拉强度和延伸率。相对于提高幅度不大的屈服强度而言,抗拉强度和延伸率提高的幅度比较明显。对于室温疲劳性能而言,细小均匀的显微组织并没有显著提高合金的性能:GPC-NZ30K-T6的疲劳强度为76.39±7.04MPa,GSC-NZ30K-T6合金的疲劳强度为75.27±0.75MPa,GPC-NZ30K-T6合金的均值疲劳强度仅比GSC-NZ30K-T6提高了1.12MPa,但合金疲劳性能的波动范围却大大增加;从合金疲劳性能波动范围上讲,晶粒分布不均的组织更有利于稳定NZ30K合金的疲劳性能。
     NZ30K镁合金的疲劳断面观察结果表明,疲劳裂纹源总位于疲劳试验外表面附近,整个断口主要由三个特征区域组成,分别对应疲劳裂萌生区、疲劳裂纹扩展区和瞬时断裂区。裂纹源区的断口形貌总体相对平整,条纹清楚规则,断口疲劳条纹大体呈平行分布,纹理间距较小;扩展区的形貌相对于源区断面起伏有所增加,断口疲劳条纹分布杂乱;瞬时断裂区的断面高低起伏进一步增加,同时断面条纹更加不规则,断面主要由解理面组成,与室温拉伸断口类似。
Magnesium alloy is widely used for the higher specific strength, specific stiffness and good mechanical property. A lot of studies of Mg alloy are conducted to develop new Mg alloy with higher strength. The latest study revealed that Mg-3.0Nd-0.2Zn-Zr (wt. %) alloy is a magnesium rare earth alloy with high strength, low rare earth content and good formability. The alloy has a better mechanical property at both room and high temperature and corrosion resistance property than AZ91D alloy. It is expected the alloy will be used in the field of aerospace, automobile etc. However, fatigue property of NZ30K alloy hasn’t been investigated systemly as a key factor of material, which will be focused by this article.
     The dimension and distribution of grain size, the influence of high cycle fatigue property of NZ30K alloy by different microstructure of normal formability process were determined. Different grain size and distribution of gravity casting NZ30K magnesium alloy can be made by adjusting the Zr content. NZ30K Mg alloys with different microstructure were made by four type of formability casting process: gravity permanent cast (GPC), gravity sand cast (GSC), low pressure permanent cast (LPC) and low pressure sand cast (LSC). Microstructure, tensile property, high cycle fatigue property at room temperature and fatigue fracture surface were investigated by optical microscope (OM), tensile test machine, SincoTec MAG50KN and scanning electric microscope (SEM).
     NZ30K-T6 alloy with grain sizes 40μm, 60μm, 100μm and 180μm were made by adjusting the Zr content. The range of grain size distribution is getting smaller and going to be normal distribution with the decrease of average grain size. Yield strength increases with grain size reducing, and shows H-P relation. Tensile strength increases first and then decreases with the decrease of grain size, and gets its peak at 60μm. Elongation decreases first and then increases with the decrease of grain size, and the result shows the min. value at 100μm, and max. value at 60μm. The fatigue strength of NZ30K-T6 alloy up to 107 cycles increases at room temperature with the the decrease of grain size. The variety of fatigue strength is a little with the range of grain size from 180μm to 100μm, only 1MPa enhancement. The obvious increment is 12MPa when the avearge grain size decreases from 100μm to 60μm. While the fatigue strength decreases a little from 60μm to 40μm, the reduce volume is less than 1.5MPa.
     The difference of microstructure and mechanical properties for NZ30K magnesium alloys cast by GPC, GSC, LPC and LSC could be understood as the influence of different cooling rate of solidification condition. If the solidification cooling speed is fast (metal mold cast), grain size distribution is normal distribution, and the average grain size is smaller. When the solidification cooling rate decreases to sand cast, the grain size distribution range is broader and deviating from normal distribution obviously, and the grain size distribution is uneven in different area and the average grain size is larger. For tensile properties, tiny and uniform microstructure is helpful for improving mechanical properties of alloy, including yield strength, tensile strength and elongation. Compare with the yield strength, the increases of tensile strength and elongation are more remarkably. For fatigue properties at room temperature, there is no large increase because of tiny and uniform microstructure. The fatigue strength of GPC-NZ30K-T6 is 76.39±7.04MPa, and that of GSC-NZ30K-T6 is 75.27±0.75MPa. The average value of fatigue strength for GPC-NZ30K-T6 is just improved 1.12MPa comparing with GSC-NZ30K-T6. However, the fluctuation range of fatigue strength property becomes wider. Considering of fluctuating range of alloy fatigue properties, the uneven grain size distribution is favorable for stabilize the fatigue property of NZ30K alloy.
     SEM investigation results of NZ30K alloy fatigue fracture show that fatigue cracks initiation specimen surfaces. The fracture surface consists of three typical areas, which are fracture initial area, crack propagation area and collapse area. The surface morphology of fracture initial area is generally smooth. The stripe is clear and regular, and the distribution of fracture surface stripe is parallel, with short the stripe space. The surface morphology of crack propagation area shows more fluctuation comparing with fracture initial area, and the stripe distribution is disordered. The surface morphology of collapse area shows more fluctuation than the above two areas, and the stripe distribution is more disordered. The surface morphology of collapse fracture region is similar to those of tensile fracture surface, which are all characterized by cleavage planes.
引文
[1] R.F. Decker, the Renaissance in Magnesium, Advanced Materials and Processing, 1998, 9, 31-35
    [2] A.A. Luo, A.K. Sachdev, Wrought Magnesium Research for Automotive Applications, in: Magnesium Technology 2006, A.A. Luo, N.R. Neelameggham, and R.S. Beals (Eds.), TMS, 2006, 333-339
    [3] J.Polmar.Magnesium alloy and applications[1].Materials Science and Technology. 1994,10(1):256-258
    [4] I.J. Polmear, Recent development in light alloys, Materials Transaction, JIM, 1996, 37(1), 12-31
    [5] R. Brown, Magnesium alloys and their applications materials: Materials Week - Munich, Germany, Light Metal Age, 2001, 59, 54-56
    [6] F.H. Froes, D. Eliezer, E. Aghion, The science, technology and application of magnesium, JOM, 1998, 50(9), 30-34
    [7] F. K. Abu-Farha, M. K. Khraisheh, Analysis of Superplastic Deformation of AZ31 Magnesium Alloy, Advanced Engineering Materials, 2007, 9, 777-783
    [8] Polmear I J. Magnesium alloys and applications. Materials Science and Technology, 1994, 10(1): 1-16
    [9]黄乃瑜,罗吉荣.第九届国际铸造博览会(GIFA’99)综述.特种铸造与有色合金, 1995, (5): 48-52
    [10]张永忠,张奎,樊建中,等.压铸镁合金及其在汽车工业中的应用.特种铸造及有色合金, 2002, (压铸专刊): 296-299
    [11] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London, Taylor and Francis, 2003
    [12] L.L. Rokhlin, Advanced Magnesium Alloys with Rare-earth Metal Additions, Advanced Light Alloys and Composites (R. Ciached.), 1998, 443-448
    [13] I.J. Polmear, Light Alloys, 3rd ed., London, Arnold, 1995
    [14] Y. Kawamura, K. Hayashi, A. Inoue, et al, Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600MPa, Mater Trans, 2001, 42, 1172-1176
    [15] M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, OH: Metal Park, 1999
    [16] Y. Okubo, M. Shiono, S. Kamado, Y. Kojima, Improvement of Tensile Properties Mg-Gd-Y-Zn-Zr Alloys Containing Long Period Staching Order Strcture by Optimizing Alloy Composotions, in: B.S. You, K.S. Shin, S. Kamado, W. Ding(Ed.), Proceeding of the 1st Asian Symposium on magnesium alloys (Ed. by), Jeju, Korea, October 11-14, 2005, 43-46
    [17] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate,Scripta Materialia, 2005, 53(7), 799-803
    [18] G.W. Lorimer, P.J. Apps, H. Karimzadeh, J.F. King, Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum, 2003, 419-422, 279-284
    [19] J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn, Scripta Materialia, 2005, 53(9), 1049-1053
    [20] S.M. He, X.Q. Zeng, L.M. Peng, et al., Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy, Journal of Alloys and Compounds, 2007, 427, 316-323
    [21] S.M. He, X.Q. Zeng, L.M. Peng, et al., Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250℃, Journal of Alloys and Compounds, 2006, 421, 309-313
    [22] X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, et al., Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250℃, Materials Science and Engineering A, 2006, 431, 322-327
    [23] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Effect of thermo-mechanical treatment on the microstructure and mechanical properties of a Mg–6Gd–2Nd–0.5Zr alloy,Materials Science and Engineering A, 2007, 454-455, 314-321
    [24] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Effect of precipitation aging on the fracture behavior of Mg–11Gd–2Nd–0.4Zr cast alloy, Materials Characterization, 2007, 454-455, 314-321
    [25]郑开云,Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究[博士论文],上海,交通大学,2008
    [26]章桢彦,Mg-Gd-Sm-Zr系镁合金时效析出行为及强化机制的研究[博士论文],上海,交通大学,2009
    [27]夏长清,武文花,刘双丽等,Mg-Nd-Zn-Zr稀土镁合金的热变形行为,中国有色金属学报,2004,11(14),1810-1816
    [28] Fu Penghuai, Peng Liming, Jiang Haiyan, et al. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Materials Science and Engineering A 486 (2008) 183-192
    [29] Fu Penghuai, Peng Liming, Jiang Haiyan,et al. Chemical composition optimization of gravity cast Mg-yNd-xZn-Zr alloy [J]. Materials Science and Engineering A 496 (2008) 177-188
    [30] N. Raghunathan, T. Sheppard, Materials Science and Technology, 1990, 6, 629-640
    [31]Xuefeng Guo, Sergei Remennik, Chunjie Xu, Dan Shechtman, Development of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolution during processing, Materials Science and Engineering A, 2008, 1-2, 266-273
    [32] X.F. Guo, D. Shechtman, Reciprocating extrusion of rapidly solidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy, Journal of Materials Processing Technology, 2007, 187-188, 640-644
    [33] K. Nakashima, H. Iwasaki, T. Mori, M. Mabuchi, M. Nakamura, T. Asahina, Mechanical properties of a powder metallurgically processed Mg-5Y-6RE alloy, Materials Science and Engineering A, 2000, 293, 15-18
    [34]张世军,黎文献,余琨.镁合金的细化工艺[J].铸造,2001,50(7):273
    [35]张诗昌,魏伯康,林汉同等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001,11(S2):99
    [36]张诗昌,魏伯康,林汉同等.钇对Mg-9Al-1Zn合金铸态组织及时效特性的影响[J].材料热处理学报,2003,24(3):23
    [37]刘红梅,付珍,赵浩峰.稀土元素镧在镁合金细化及强化中所起的作用[J].铸造工程·造型材料,2003,1:14
    [38]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造,2002,5(12):767
    [39]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报,2004,14(1): 99
    [40] Kocks U. F., Kinetics of solution hardening, Metallurgical transactions A, 1985, 16A,2109-2129
    [41] P. Lukác, Strengthening and softening in some magnesium base alloys, in: G. W. Lorimer (Ed.), Proc. of Third International Magnesium Conference, April 10-12, Manchester, 1996; The Institut of Materials, 1997, 381-390
    [42] A. Akhtar, E. Teghtsoonian, Solid Solution Strengthening of Magnesium Single Crystals-Ⅰ,Ⅱ, Acta Metall, 1969, 17(11), 1339-49, 1951-56
    [43] A. Akhtar, E. Teghtsoonian, Substitutional Solution Hardening of Magnesium Single Crystals, Phil. Mag., 1972, 25, 897-916
    [44] Yu K, Li W X. Homogenization treatment of Mg-Al-Zn magnesium ingots. Acta Metallurgica Sinica (English Letters), 2002, 15(6): 545-550
    [45]Yasumasa Chino, Motohisa Kado, Mamoru Mabuchi, Compressive deformation behavior at room temperature-773 K in Mg-0.2 mass%(0.035at.%)Ce alloy, Acta Materialia, 2008, 56, 387-394
    [46] Barnett MR, Nave MD, Bettles CJ, Deformation microstructures and textures of some cold rolled Mg alloys, Materials Science and Engineering A, 2004, 386, 205-211
    [47] S.R. Agnew, M.H. Yoo, C.N.Tome, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Materialia, 2001, 49, 4277-4289
    [48] S.R. Agnew, J.W. Senn, J.A. Horton, Mg sheet metal forming: Lessons learned from deep drawing Li and Y solid-solution alloys, JOM, 2006, 58, 62-69
    [49] C.H. Caceres, D.M. Rovera, Solid solution strengthening in concentrated Mg-Al alloys, Journal of Light Metals, 2001, 1, 151-156
    [50] A. J. Ardell, Precipitation hardening, Metall. Trans. A, 1985, 16A, 2131-2165
    [51] F.R.N. Nabarro, The statistical problem of hardening. J. Less Common Met., 1972, 28(2), 257-276
    [52] A. Kelly, R. B. Nicholson, Precipitation hardening, Progress in Materials Science, 1963, 10, 153-391
    [53]L.M. Brown, R.K. Ham, in: Strengthening Methods in Crystals, A. R. B. Nicholson (Eds.), London, Applied Science Publishers Ltd., 1971, 9-135
    [54] H. Gleiter, Theory of prismatic cross-slip of dislocations in the vicinity of precipitations, Acta Metallurgica, 1967, 15, 1213-1221
    [55] H. Gleiter, Experimental investigation of prismatic cross-slip of dislocations in the vicinity of coherent, strained precipitations, Acta Metallurgica, 1967, 15, 1221-1228
    [56]李德辉.高性能Mg-Dy-Nd-(Gd)合金组织与性能的研究[博士论文],上海,交通大学,2008
    [57] Wood, W.A. (1958). Formation of fatigue cracks. Philosophical Magazine 3, 692-9
    [58] Feltner, C.E. & Laird, C. (1967a). Cyclic stress-strain response of F.C.C. metals and alloys-Ⅰ. Phenomenological experiments. Acta Metallurgica 15,1621-32
    [59] Feltner, C.E. & Laird, C. (1967a). Cyclic stress-strain response of F.C.C. metals and alloys-Ⅱ. Dislocation structures and mechanisms. Acta Metallurgica 15,1633-53
    [60] Brett, S.J. & Doherty, R.D. (1978). Loss of solute at the fracture surface in fatigued aluminum precipitation-hardened alloys. Materials Science and Engineering 32, 255-65
    [61] Orowan, E. (1959). Causes and effects of internal stresses. In Internal Stresses and fatigue in Metal (ed. W. M. Murray), pp. 139-67. New York: Wiley
    [62] Purushothaman, S. & Tien, J.K. (1975). A fatigue crack growth mechanism for ductile materials. Scripta Metallurgica 9, 923-6
    [63] Walker, N. & Beevers, C.J. (1979). A fatigue crack closure mechanism in titanium. Fatigue of Engineering Materials and Structures 1, 135-48
    [64] Suresh, S. & Ritchie, R.O. (1984a). Near-threshold fatigue crack propagation: a perspective on the role of crack closure. In Fatigue Crack Growth Threshold Concepts(eds. D.L. Davidson & S. Suresh), pp. 227-61. Warrendale:The Metallurgical Society of the American Institute of Minging, Mineral and Petroleum Engineers
    [65] Suresh, S. & Ritchie, R.O. (1984b). Propagation of short fatigue cracks. International Metals Reviews 29, 445-76
    [66] Kim, W.H. & Laird, C. (1978). Crack nucleation and stageⅠpropagation in high strain fatigue -Ⅱ. Mechanism. Acta Metallurgica 26, 789-99
    [67] Neumann, P. & T?nnessen, A. (1988). Crack initiation at grain boundaries in FCC materials. In Strength of Metals and Alloys (eds. P.O. Kettunen, T.K. Lepist? & M.E. Lehtonen), vol. 1, pp. 743-8. Oxford: Pergamon Press
    [68] K.Tokaji, M. Kamakura, Y. Ishiizumi, N. Hasegawa. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy [J]. International Journal of Fatigue 26 (2004) 1217-1224
    [69] Noster U, Scholtes B. Isothermal strain-controlled quasi-static and cyclic deformation behavior of magnesium wrought alloy AZ31. Z Metallkd 2003;94(5):559–63
    [70] Hasegawa S, Tsuchida Y, Yano H, Matsui M. Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int J Fatigue 2007; 29 : 1839-45
    [71] Eisenmeier G, Holzwarth B, Hbppe1 H W,et a1. Cyclic defoemation and fatigue behavior of the magnesium alloy AZ91 [J]. Materials Science and Engineering, 2001, A319-321: 578-582
    [72] S. Begum, D.L. Chen, S. Xu, Alan A. Luo. Low cycle fatigue properties of an extruded AZ31 magnesium alloy[J]. International Journal of Fatigue 31 (2009) 726–735
    [73] Srivatsan T S, wei L, Chang C F. The cyclic strain resistance, fatigue 1ife and final fracture behavior of magnesium alloys [J]. Engineering Fracture Mechanics, 1997, 56(6): 735-758
    [74] Horstemeyer M F, Yang N, Gal K, et a1. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy [J]. Acta Materlalia, 2004, 52(5): 1327-1336
    [75]聂德福,赵杰。AZ31镁合金疲劳裂纹扩展和过载效应[J]。中国有色金属学报,2008,18(5):771-775
    [76] Shih T S, Liu W S, Chen Y J. Fatigue of as-extruded AZ61A magnesium alloy[J]. Materials Science and Engineering, 2002, A325: 152-162
    [77] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The fatigue behavior of I-phase containing as-cast Mg–Zn–Y–Zr alloy[J]. Acta Materialia 56 (2008) 985-994
    [78] Shih T S, Liu W S, Chen Y J. Fatigue of as-extruded AZ61A magnesium alloy[J]. Materials Science and Engineering, 2002, A325: 152-162
    [79] Wang Q G, A~lian D, et a1. Proe Materials Solutions 98, Rosemont, IL, USA, Materials Park, OH: ASM International, 1998: 217
    [80] Stephens R I, Schrader C D, Lease KB. Corrosion fatigue of AZ91E-T6 cast magnesium alloy in a 3.5% aqueous environment [J]. Journal of Engineering Materials &Technology, 1995, 117 : 293-298
    [81] Kobayashi Y, Shibusawa T, Ishikawa K. Environmental effect of fatigue crack propagation of magnesium alloy [J]. Materials Science and Engineering, 1997, A234-236: 220-222
    [82] Gal1 K, Biallas G, Maier H J, el: a1. Insitu observationsof high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments[J]. International Journa1 of Fatigue, 2004, 26: 59-70
    [83] Eliezer A, Gutman E M, Abramov E, el: a1. Corrosion fatigue of die-cast and extruded magnesium alloys[J]. Joum al of Light Metals, 2001, 1: 179-186
    [84] Eifen A J,Thomas J P,Rateick R G.Influence of anodization on the fatigue life WE43A-T6 magnesium [J].Scripta Materialia,1999,40(8):929-935
    [85] Sabrina Alam Khan, Yukio Miyashita, Yoshiharu Mutoh, Toshikatsu Koike. Fatigue behavior of anodized AM60 magnesium alloy under humid environment[J]. Materials Science and Engineering A 498 (2008) 377-383
    [86] Sertsyuk V A, Grinberg N M, et a1. Fatigue fracture of some magnesium alloys in vacuum at room and low temperatures[J].Materials Science, 1980, 16(4): 362-365
    [87] S. Beguma, D.L. Chen, S. Xu, Alan A. Luo. Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy[J]. Materials Science and Engineering A 517 (2009) 334-343
    [88]刘正,李艳春,王中光,等。载荷频率和热处理对压铸镁合金AZ91HP疲劳裂纹扩展速率的影响[J]。航空材料学报,2000,20(1):7-10
    [89] Altenberger I,Tcholtes B. Improvement fatigue behavior of mechanically surface treated materials by annealing[J]. Scripta Materialia, 1999, 41(8): 873-881
    [90] Cáceres C H , Davidson CJ , Griffiths J R , et al . Effects of solidification rate and ageing onthe microstructure and mechanical properties of AZ91 alloy[J ] .Materials Science and Engineering A, 2002, 325: 344-355
    [91] Saito N, Mabuchi M, Nakanishi M, et al. The aging behavior and the mechanical properties of the Mg2Li2Al2Cu alloy[J ] . Scripta Materialia , 1997 , 36 (5) : 551-555
    [92] Zhang P, Lindemann J. Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80[J]. Scripta Mater, 2005, 52: 485-490
    [93] Deiseroth D, Zirm W, et a1. Consequences of mechanical surface treatments on near surface properties of Mg-alloy AZ31[J]. Magnesinm Alloys and theirApplications, 1998. PP. 409-14
    [94] Wagner L. Mechanical Surface Treatments on Titanium, Aluminum and Magnesium Alloys[J]. Mater. Sci. Eng. 263A, 1999, 210-216
    [95] Wagner L, Hilpert M, et a1. On Methods for Improving the Fatigue Performance of the W- rought Magnesium Alloys AZ31 and AZ80[J]. Mater. Sd. Forum .,2003, 419-422: 93-102
    [96] Wendt J, Hilpert M, et a1. Surface and environmental effects on the fatigue behavior of wrought and east magnesium alloys[J]. Magnesium Technology 2001 as held at the 2001 TMS Annual Meeting, 2001, PP. 281-285
    [97]冯忠信,何家文,等。ZM1镁合金的滚轧形变强化及机理[J]。机械工程学报,1996,32(1):103-108
    [98] Song G L, Atrens A. Corrosion Mechanisms of Magnesium Alloys [J]. Adv. Eng. Mat. , 1999, 1, 11-13
    [99] Jing Tao Wang, De Liang Yin, et al. Effect of grain size on mechanical property of Mg–3Al–1Zn alloy[J]. Scripta Materialia 59 (2008) 63–66
    [100] LUO Shou-jing, SHAN Wei-wei. Steady state rheological behavior of semi-solid ZK60-RE magnesium alloy during compression[J]. Trans. Nonferrous Met. Soc. China 17(2007)974-980
    [101] Perov SN, OgarevicVV, et a1. Application and verification of fatigue life calculation methods for AZ91E-T6 cast magnesium alloy under variable amplirodeloading[J]. J. of Eng. Mat. Techn 1993, 115(4): 385-390.
    [102] Eisenmeier G. Erm iidungsverhahen der Magnesiumlegierung AZ91: in Mecbenisrnenorientierte Lebensdauervorhersage fur zyklisch beanspruchte meta1lische W erkstofe, DVM–Berieht, 683, 2000, 153
    [103] F.Lv, F.Yang, Q.Q. Duan, T.J. Luo, et al. Tensile and low-cycle fatigue properties of Mg-2.8%Al-1.1%Zn-0.4%Mn alloy along the transverse and rolling directions [J]. Scripta Materialia 61 (2009) 887-890
    [104] Eisenmeier G, Holzwarth B, Hbppe1 H W, et a1. Cyclic deformation and fatigue behavior of the magnesium alloy AZ91 [J].Materials Science and Engineering, 2001, A319-321: 578-582
    [105] Mayer H,Papakyriacou M,Zettl B,el:a1. Influence of porosity on the fatigue limit of die-casting magnesium and aluminum alloys[J].International Journal of Fatigue, 2003, 25: 245-256
    [106] WANG Feng, WANG Yue, MAO Ping-li, et al. Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy [J]. Trans. Nonferrous Met.Soc. China 20(2010)s311-s317
    [107] YANG You, LI Xuesong. Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy [J]. JOURNAL OF RARE EARTHS, Vol. 28, No. 3, Jun. 2010, p. 456
    [108] Jian-Wei Chang, Peng-Huai Fu, Xing-Wu Guo, et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Corrosion Science 49 (2007) 2612-2627
    [109] Ding Wenjiang, Li Daquan, Wang Qudong, et al. Microstructure and mechanical properties of hot-rolled Mg-Zn-Nd-Zr alloys [J]. Materials Science and Engineering A 483–484 (2008) 228–230
    [110] LI Jie-hua, JIE Wan-qi, YANG Guang-yu. Effect of gadolinium on aged hardening behavior, microstructure and mechanical properties of Mg-Nd-Zn-Zr alloy [J]. Trans. Nonferrous Met. Soc. China 18(2008) s27-s32
    [111] Lihua We, Zesheng Ji, Xiaoliang Li. Effect of extrusion ratio on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloys prepared by a solid recycling process [J]. Material Scharacterization 59 (2008) 1655-1660
    [1] Specification and Verification of Tensile and Fatigue Properties in Cast Components. GM ENGINEERING STANDARDS, Material Specification Metals, GMN7152, February 2002.
    [1] Fu Penghuai, Peng Liming, Jiang Haiyan, et al. Chemical composition optimization of gravity cast Mg–yNd–xZn–Zr alloy [J]. Materials Science and Engineering A 496 (2008) 177-188
    [2] Fu Penghuai, Peng Liming, Jiang haiyan, Zhai Chunquan, X. Gao, J.F. Nie, Zr-containing precipitates in Mg-3wt%Nd-0.2wt%Zn-0.4wt%Zr alloy during solution treatment at 540℃. Materials Science Forum 546-549 (2007) 97-100
    [3] M. Bamberger, Structural refinement of cast magnesium alloys, Materials Science and Technology, 2001, 17(1), 15-24
    [4] S.M. He, X.Q. Zeng, L.M. Peng, et al., Journal of Alloys and Compounds, 2007, 427, 316-323.
    [5] F. Penghuai, P. Liming, J. Haiyan, et al., Mater. Sci. Eng. A, 2008, 486, 183-192
    [6] L.L. Rokhlin ,Magnesium alloys containing rare earth metals, London:Taylor and Francis, 2003
    [7] C.J. Bettles, M.A. Gibson, S.M. Zhu. Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy [J]. Materials Science and Engineering A 505 (2009) 6–12
    [8] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy [J]. Acta Materialia 56 (2008) 985-994
    [9] M.F. Horstemeyer, N. Yang b, Ken Gall c, et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy [J]. Acta Materialia 52 (2004) 1327-1336
    [10] Wood, W.A. (1958). Formation of fatigue cracks. Philosophical Magazine 3, 692-9
    [1] D.K. Xu, L. Liu, Y.B. Xu, et al. The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime [J]. Scripta Materialia 56 (2007) 1-4
    [2] K. Tokaji, M. Kamakura, Y. Ishiizumi, et al. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy [J]. International Journal of Fatigue 26 (2004) 1217-1224
    [3] D.K. Xu, L. Liu, Y.B. Xu, et al. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy [J]. Act Materialia 56 (2008) 985-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700