Mo-Cu合金和Cr18-Ni8不锈钢真空钎焊接头的组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用Ag-Cu-Ti、 Cu-Mn-Co和镍基钎料(Ni-Cr-P、 Ni-Cr-Si-B),通过真空钎焊技术实现了Mo-Cu合金与Cr18-Ni8不锈钢的钎焊连接,并对钎焊接头的显微组织和性能进行了研究,为Mo-Cu/Cr18-Ni8复合构件的焊接制备提供了试验基础和理论依据,对于扩大Mo-Cu合金的工程应用具有重要的应用价值和理论意义。
     试验采用光学显微镜(OM)、扫描电镜(SEM)、能谱分析仪(EDS)、显微硬度计和微控万能电子试验机对Mo-Cu/Cr18-Ni8钎焊接头的显微组织、元素扩散分布、显微硬度、剪切强度和断裂特征进行了研究。
     实验结果表明,Ag-Cu-Ti、 Cu-Mn-Co和镍基钎料均能实现Mo-Cu合金和Cr18-Ni8不锈钢的真空钎焊链接,钎料与母材润湿良好,界面结合致密,钎焊接头性能优异,无裂纹、显微空洞、未钎合等缺陷。
     Ag-Cu-Ti钎料钎缝主要由Cr18-Ni8不锈钢一侧的Ag-Cu共晶组织和Mo-Cu合金一侧的富铜固溶体组成,钎缝的显微硬度低于两侧母材;钎焊接头的剪切强度为75MPa,剪切裂纹起源于Cr18-Ni8不锈钢一侧的连接界面处,并向钎缝共晶组织中扩展,剪切断口呈现剪切塑性断裂特征。
     Cu-Mn-Co钎料钎缝组织为单相Cu-Mn固溶体组织,显微硬度低于两侧母材;接头的剪切强度为192MPa,剪切断口呈现以塑性断裂为主,塑性断裂和脆性断裂相结合的断裂特征;剪切断裂发生于钎缝的铜固溶体基体中,形成塑性断裂断口,Cr18-Ni8不锈钢一侧则形成了河流状的脆性断裂断口。
     Ni-Cr-P钎料钎焊接头显微组织主要由Ni-Cr-P固溶体基体组织、钎缝中心的Ni-P共晶组织、钎缝两侧的Ni-Cr(Fe、 Mo)固溶体和Ni5P2、 Cr3P等析出相组成;钎缝的显微硬度高于两侧母材的显微硬度,在Ni-P共晶组织处出现最高值(560Hv);钎焊接头剪切强度为155MPa,剪切断口呈现穿晶断裂和撕裂韧窝断裂相混合的断裂特征,具有一定的塑性;断裂首先发生于Mo-Cu合金一侧连接界面处的穿晶区,剪切裂纹向钎缝中扩展,形成剪切韧窝断裂的断口。
     Ni-Cr-Si-B钎料接头钎缝组织为y-Ni(Cu、 Fe)固溶体、Ni3S、 y-Ni固溶体和Ni3B共晶,非晶态钎料钎焊接头钎缝中间的共晶组织消失,形成单相γ-Ni固溶体组织;钎缝的显微硬度高于两侧母材,在共晶组织处出现最高值;钎焊温度为1040℃时,钎焊接头的剪切强度可达207MPa,剪切断裂起源于Mo-Cu合金一侧的连接界面处,剪切断口呈现撕裂断裂、解理断裂和穿晶断裂相混合的断裂特征;钎焊温度为1120℃,钎焊接头的剪切强度高达343MPa,剪切断口表现为明显的脆性断裂特征,剪切断裂开始于钎缝基体固溶体,并在钎缝中扩展,形成微解理台阶的脆性断口。
In this work, the vacuum brazing of Mo-Cu alloy and Crl8-Ni8stainless steel was carried out with Ag-Cu-Ti, Cu-Mn-Co and Ni-based filler metal(Ni-Cr-P, Ni-Cr-Si-B) and the microstructure and properties of Mo-Cu/Cr18-Ni8brazed joint was analyzed. The study would provied theory and experiment basis, as well as has great application value and theoretical significance for the engineering application of Mo-Cu alloy and Crl8-Ni8stainless steel.
     The microstructure, diffusion and distribution of element, microhardness, shear strength and fracture characteristics were tested by means of optical microscope(OM), scanning electron microscope(SEM), energy dispersive system(EDS), microhardness tester and microcomputer control electron universal testing machines.
     The results showed that Ag-Cu-Ti, Cu-Mn-Co and Ni-based filler metal(Ni-Cr-P, Ni-Cr-Si-B) had a good wetting with Mo-Cu alloy and Cr18-Ni8stainless steel and the vacuum brazed joint has no crack or micro-hole with good metallurgical bonded interface.
     The Ag-Cu-Ti filler metal brazed seam was mainly comprised of eutectic and Cu-rich phase and the microhardness of brazed joint was lower than that of Mo-Cu alloy and Cr18-Ni8stainless steel. The shearing strength of Mo-Cu/Cr18-Ni8joint was about75MPa and the shear fracture exhibited plastic feature with shear dimple. The flake crack initiated in the interface between braze seam and Cr18-Ni8stainless steel and propagated along the interface and even eutectic.
     The Cu-Mn-Co filler metal brazed seam was mainly composed of single Cu-Mn solid solution phase with good plasticity and the microhardness of brazed joint was lower than that of based metal. The shearing strength was192MPa and shear fracture exhibited mixed ductile-brittle fracture feature. The fracture originated from the brazing seam forming plastic fracture and crack propagated to the Cr18-Ni8 stainless steel shaping river pattern brittle fracture.
     The Ni-Cr-P filler metal brazed seam was mainly consist of Ni-Cr-P solid solution, Ni-P eutectic, Ni-Cr(Fe, Mo) solid solution, N15P2and Cr3P precipitated phase. The microhardness of brazed joint was higher than that of based metal and the Ni-P eutectic was the highest, reached560Hv. The shearing strength was155MPa and shear fracture exhibited mixed ductile-brittle fracture feature with transgranular fracture, ductile dimples and tearing edges. Fracture originated from interface between brazing seam and Mo-Cu alloy and crack propagated to the barzing seam.
     The Ni-Cr-Si-B filler metal brazed seam was mainly made up of y-Ni(Cu, Fe) solid solution, Ni-B eutectic, while Ni-B eutectic disappeared and formed single y-Ni solid solution phase in amorphous filler metal brazed seam; the microhardness of brazed joint was higher than that of based metal, which the Ni-B eutectic was the highest. When the brazing temperature was1040℃, the shearing strength was207MPa and shear fracture showed mixed tear fracture, cleavage fracture and transgranular fracture, which the fracture originated from interface beside Mo-Cu alloy. When the brazing temperature was1120℃, the shearing strength reached343MPa and shear fracture showed obvious brittle fracture. The fracture located at y-Ni(Cu, Fe) solid solution in center of brazed seam formed brittle fracture with micro-cleavage step.
引文
[1]李亚江.先进材料焊接技术[M].北京:化学工业出版社,2012.
    [2]周武平.钼及钼合金制品的应用[J].中国金属通报,2008,(42):34-37.
    [3]任耀文.真空钎焊工艺[M].北京:机械工业出版社,1993.
    [4]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,2008.
    [5]吕大铭.Mo-Cu材料的开发和应用[J].粉末冶金工业,2000,10(6):32-35.
    [6]张全孝,刘全利,熊晓松等.钼合金在结构件应用方面的发展[J1.兵器材料科学与工程,2001,24(2):59-62.
    [7]牟科强,邝用庚.Mo-Cu材料的性能和应用[J].金属功能材料,2002,9(3):26-29.
    [8]朱爱辉,吕新矿,王快社等.Cu/Mo复合材料研究进展[J],中国钼业,2006,30(1):35-38.
    [9]张德尧,吴晓惠.Mo-Cu材料的制作[J].中国钼业,2001,25(4):38-50.
    [10]吕忠,殷劲松.钼的最近研究动向[J].中国钼业,1994,18(6):20-22.
    [11]王东辉,袁晓波,李中奎等.钼及钼合金研究与应用进展[J].稀有金属快报,2006,25(12):1-7.
    [12]M H Scott, P M Knowlson. The welding and brazing of the refractory metals niobium, tantalum molybdenum and tungsten-a review [J]. Journal of the Less-Common Metals,1963, (5):205-244.
    [13]Chen Guoqin, Wu Gaohui, Zhu Dezhi, et al. Microstructure and thermal and electric conductivities of high dense Mo/Cu composites [J]. Transactions of Nonferrous Metals Society of China,2005,3(15):111-114.
    [14]吕大铭.真空开关和电子器件用钨铜材料[J].粉末冶金工业,1998,8(6):32-35.
    [15]钟培全.钼与钼合金的应用及其加工方法[J].中国钼业,2000,24(5):15-16.
    [16]罗振中.钼的应用及其发展[J].中国钼业,2003,27(2):7-10.
    [17]German R M, Hens K F, Johnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. International Journal of Powder Metallurgy,1994,30(2):205-215.
    [18]贾成厂,何忠,赵军等.烧结Mo-Cu合金的热膨胀行为[C].第12届全国复合材料学术会议,天津:中国复合材料学会,2002,391-394.
    [19]董英虎,周贤良,何新波.Mo-Cu复合材料致密度的影响因素研究[J].热加工工艺,2009,38(6):68-71.
    [20]何忠.粉末法制取Mo-Cu合金的微观结构[J].材料科学与工程,2000,18(4):75-77.
    [21]钟培全.散热片用钼-铜合金材料加工工艺研究[J].中国钼业,2001,25(1):37-38.
    [22]夏扬,宋月清,催舜等.Mo-Cu和W-Cu合金的制备及性能特点[J].稀有金属,2008,32(2):240-244.
    [23]Bryskin B, Ohriner EK. Processing of High-strength, High-conductivity W-Cu Composite [C]. Procedings of the 14th Plansee Seminar, Reutte,1997, 358-370.
    [24]Kim J C, Moon I H. Sintering of Nano Structured W-Cu Alloy Prepared by Mechanical Alloying [J]. Nano Structured Materials,1998,10(2):283-290.
    [25]Johnson J L, German R M. Phase Equilibria Effect on Enhanced Liquid Phase Sintering of W-Cu [J]. Metallurgical Transaction A,1993,24A (11): 2369-2377.
    [26]南海,曲选辉,方玉诚等.电子封装用注射成形Mo2Cu合金烧结工艺的研究[J].粉末冶金工业,2004,14(6):1-5.
    [27]陈国钦,朱得志,占荣等.挤压铸造法制备高密度Mo2Cu及其导热性能[J].中国有色金属学报,2005,15(11):1865-1868.
    [28]陈国钦,姜龙涛,朱德志等.高致密Mo2Cu合金复合材料的制备与性能研究[C].2004年材料科学与工程新进展论文集,2004:1338-1341.
    [29]夏扬,宋月清,催舜等.Mo-Cu合金研究方法进展[J].粉末冶金技术,2007,25(3):224-227.
    [30]黄德玺.略论Mo-Cu合金粉制备的工艺技术[J].装备制造技术,2010,(7):13-14.
    [31]邹爱华,华小珍,周贤良.活化元素Co对Mo-Cu合金性能的影响[J].特种铸造及有色合金,2009,29(7);682-684.
    [32]李增峰,汤慧萍,刘海彦.活化元素Ni对Mo-Cu合金性能的影响[J].粉末冶金材料科学与工程,2006,11(3):185-189.
    [33]李增峰,汤慧萍,刘海彦.添加活化元素Ni对Mo-Cu合金性能的影响[J].稀有金属快报,2006,25(1):29-32.
    [34]韩强,张相一,陈家松等.添加稀土元素对钼基金属组织和性能的影响[J].中国钼业,2001,25(3):36-38.
    [35]李云平,曲选辉,段柏华.W-Cu(Mo-Cu)复合材料的研究进展[J].粉末冶金材料科学与工程,2002,7(1):18-23.
    [36]李云平,曲选辉,段柏华.W-Cu(Mo-Cu)复合材料的最新研究状况[J].硬质合金,2001,18(4):232-236.
    [37]Jedmzik R, Neubrand A, Roder J. Electrochemical Processing and Characterization of Graded W-Cu Composites [C]. Proceedings of the 14th International Plansee Seminar, Reutte,1997:1-15.
    [38]Juan L, Sepulveda, David E Jech. Functional Graded Copper/Tungsten Metal Composites [C]. Proceedings of powder metallurgy world congress, Korea, 2000:1461-1464.
    [39]Xiong C S, Xiong Y H, Dong E, et al. Synthesis and Structural Studies of the Cu-W Alloys Prepared by Mechanical Alloying [J]. Nano Structured Materials, 1995,5(4):425-432.
    [40]中国机械工程学会.钎焊手册(第2卷)[M].北京:机械工业出版社,2008.
    [41]李亚江等.高硬度材料的焊接[M].北京:冶金工业出版社,2010.
    [42]潘际銮,王之伦,潘妙良.钼的电子束焊接[J].清华大学学报,1964,11(2):15-34.
    [43]李鑫,张品源.钼及钼合金焊接的工艺研究[J].稀有金属材料与工程,2001, 30(1):152-156.
    [44]李鑫,张品源.合金钼焊接影响因素的初步分析[J].中国原子能科学研究院年报,1999,(1):57-59.
    [45]张德尧.氧、氮、碳对钼及钼合金性能的影响[J].中国铝业,2003,27(2):20-25.
    [46]Yutaka Hiraoka, Masatoshi Okada, Hirosada Irie. Alloying to improve the properties of welded molybdenum [J]. Journal of Nuclear Materials, 1988,156: 381-385.
    [47]Cockeram B V, Ohriner EK, Byun TS, et al. Weldable ductile molybdenum alloy development [J]. Journal of Nuclear Materials,2008,382(2):229-241.
    [48]清华大学焊○班钼氩弧焊毕业实践小组.钼熔化极氩弧焊工艺及合金元素对钥焊缝组织和性能影响的研究[J].清华大学学报(自然科学版),1975,1:104-116.
    [49]Jiang Qinglei, Li Yajiang, U. A. Puchkov. Microstructure characteristics in TIG welded joint of Mo-Cu composite and 18-8 stainless steel [J]. International Journal of Refractory Metals & Hard Materials,2010,28:429-433.
    [50]Fukuhisa Matsuda, Masao Ushio, Kazuhiro Nakata. Weldability of molybdenum and its alloy sheet [J]. Transactions of JWRI,1990,19(1):69-78.
    [51]Hidetoshi Fujii, Yufeng Sun, Hideaki Kato. Microstructure and mechanical properties of friction stir welded pure Mo joints [J]. Scripta Materialia,2011, 64:657-660.
    [52]Andrzej Ambroziak. Friction welding of molybdenum to molybdenum and to other metals [J]. International. Journal of Refractory Metals & Hard Materials, 2011,29:462-469.
    [53]傅莉,杜随更.钼粉末合金与模具钢摩擦焊接组织特征分析[J].西北工业大学学报,2001,19(4):557-561.
    [54]陆允信,沃连恩.钼的钎焊[J].电子学通讯,1981,3(4):259-260.
    [55]易明.利用Pd-20%Ag合金钎焊单晶相[J].中国钼业,1995,19(2):22-25.
    [56]刘晓芳.Mo-Cu合金与95%氧化铝瓷的封接技术[J].真空电子技术,2001,(5):50-51.
    [57]H.Y. Chan, D.W. Liaw, R.K. Shiue. Microstructural evolution of brazing Ti-6A1-4V and TZM using silver-based braze alloy [J]. Materials Letters, 2004,58:1141-1146.
    [58]H.Y. Chan, D.W. Liaw, R.K. Shiue. The microstructural observation of brazing Ti-6A1-4V and TZM using the BAg-8 braze alloy [J]. International Journal of Refractory Metals & Hard Materials,2004,22:27-33.
    [59]H.W. Chuanga, D.W. Liawa, Y.C. Du. Brazing of Mo and Nb using two active braze alloys [J]. Materials Science and Engineering A,2005,390:350-361.
    [60]李鹏,李京龙,张赋升.Ag-Cu-Ti活性钎料真空钎焊钼和石墨结合质量研究[J].电焊机,2009,39(11):19-22.
    [61]陆艳杰,张小勇,楚建新.Ag-Cu-Ti活性法封接AIN陶瓷与Mo-Cu合金[J].真空电子技术,2009,4:14-18.
    [62]李宁,赵兴保,文玉华等.一种含活性元素Ti适合钎焊钼及其合金的锰基钎料[P].中国专利:200710050808.0,2008-5-28.
    [63]陈立东,赵德刚,李小亚.一种与锑化钴热电元件匹配的合金电极及一步法连接工艺[P].中国专利:200710037778,2007-8-22.
    [64]易廷章.触头焊接工艺[P].中国专利:87103022.5,1989-2-1.
    [65]胡汉起.金属凝固原理[M].北京:机械工业出版社,2007.
    [66]陈建民,朱长福.真空钎焊不锈钢接头的钎缝组织和相组成特征[J].石油大学学报(自然科学版),1999,23(2):66-69.
    [67]陈忠宝.Ni-P钎料真空钎焊不锈钢接头性能及扩散行为研究[D].兰州理工大学材料科学与工程学院,2007.
    [68]肖伟,李宁,赵兴保等.Cr对Ni-P系钎料钎焊不锈钢接头性能的影响[J].热加工工艺,2009,38(23):15-18.
    [69]Gavin Stratford, Alun Battenbough, Lydia Lee, et al. Comparing High-Temperature Nickel Brazing Filler Metals [J]. Welding Journal,2011,3: 54-59.
    [70]A. Ghoneim, O. A. Ojo. Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy [J]. Materials Characterization, 2011,62(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700