黑龙江省大豆核盘菌生物学特性和生物防治的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌Sclerotinia sclerotiorum (Lib) de Bary是一种子囊真菌,其寄主范围和地理分布十分广泛,是一种危害相当严重的世界性植物病害真菌。近几年来核盘菌病害,俗称菌核病,在东北大豆产区发病日趋严重,本研究的主要目的是对黑龙江省不同地区的菌核病病原进行形态学、生物学、致病性系统研究,以及用绿色木霉防治该病的室内和田间试验研究,以期获得东北不同地区菌核病病原的主要差异和在不同地区的绿色木霉防治大豆菌核病的效果,为大豆安全生产奠定理论基础。主要的工作及结果如下:
     完整地揭示了黑龙江大豆核盘菌的生物学特性及核盘菌侵染寄主对农艺性状所造成的不良影响;提供了研究核盘菌侵染寄主的多种观察方法。
     通过对东北不同生态区的菌核病病原的形态学特性分析表明菌核病的菌落特征有差异,毒力相近。海伦市采集的菌核形成了闭合的圆环菌落特征;采自佳木斯市的菌核首先形成不均匀的离散的菌落特征,而后在培养皿边缘或近边缘形成菌核粒组成的环形菌落特征。海伦地区的菌丝丰度明显高于佳木斯地区,海伦地区采集的菌核大小大于佳木斯地区采集的。离体草酸试验表明两个地区的分离物的毒力可能相近。
     离体叶片接种和盆栽试验表明大豆离体叶片接种核盘菌病原30天后整个叶片全部被核盘菌丝分解;盆栽条件下大豆两片真叶出现菌丝体,16天下部叶片出现菌丝团。染病的大豆籽粒百粒重下降,粗脂肪含量、粗蛋白含量均有下降趋势,粗脂肪含量下降幅度大于粗蛋白含量。氨基酸总量、氨峰值也有相同趋势。不同地区的核盘菌生理小种病情指数差异显著,致病力差异显著,且病情指数与病斑长度呈正相关。以成株期的鉴定结果作为品种抗菌核病的指标较为合适。
     采用实验室与田间相结合的方法,全面研究生防菌防治大豆菌核病的效果,为生物防治核盘菌提供了具有可操作性的实验模式。
     室内外试验表明绿色木霉对核盘菌有明显的抑制作用;风沙土上施用生防剂防治大豆菌核病的效果好于其它土壤。随着大豆生长时间周期推移,生防菌剂的作用效果逐渐下降;在黑土、风沙土施用不同量的生防菌剂,随着用量的增加,大豆菌核病发病率呈下降趋势;风沙土中,生防菌剂能够有效地降低田间发病率,但在增产效果上幅度不大。
     摸索出一整套针对核盘菌丝制备原生质体并进行转化的分子生物学操作体系,搭建了生物防治机理研究的验证平台。
     由于绿色木霉和核盘菌的菌丝在微观下很难辨认,它们之间的抑制作用很难明确,为此构建了含有绿色荧光蛋白(GFP)基因表达载体pPGT。并采用PEG介导的原生质体转化法成功地把绿色荧光蛋白基因GFP转入病原真菌核盘菌中。通过Southern杂交分析表明,GFP基因已经整合到核盘菌基因组DNA中,从而证明绿色荧光蛋白基因在核盘菌中成功表达,并且能够稳定遗传。通过核盘菌和绿色木霉的对峙试验在荧光显微镜下的观察证明了绿色木霉对核盘菌的抑制作用。
     针对东北不同生态区菌核病病原的生物学特性和致病性的研究,为进一步研究菌核病的发生规律和利用抗病大豆品种防治菌核病提供基础材料,同时利用绿色木霉菌防治大豆菌核病,为东北的大豆安全生产提供了必要的措施。
Sclerotinia sclerotiorum (Lib) de Bary is a Ascomycete with a wide host rangeS and geographical distribution, which is one of the most non-specific, omnivoroes and successful plant pathogens. In resent years, the outbreak of Sclerotinia sclerotiorum, also called sclerotium, more and more severe in northeast soybean plant areas. The objective of the study was to identify morphology, biochemistry and pathogenicity of the sclerotium isolated from different areas in northeast of China and the biocontrol effect of Trichoderma spp. to sclerotium by antagonistic on plates and field experiments, to show the main various sclerotium isolates and biocontrol effect of Trichoderma viride Pers. in northeast different areas. The results provided theory basis for soybean safety product. Main experiments and acquired results like these:
     The results showed Sclerotinia sclerotiorum (Lib) de Bary chacteristics and the negative effects of agronomic traits for inoculated hosts in northeat soybean areas; It supplied mang research methods for sclerotium inoculated hosts.
     Analysis results of Sclerotinia sclerotiorum morphology character collected from different norheast ecological zones showed that it was discrepancy and toxicity similar. Sclerotium acquired from Hailun city can form close roundly colony, however, acquired from Jiamu Si city form uneven and discrete colony first, and then form ring-shaped colony by sclerotium at the marginal zone or near edge of culture dish. Hypha abundance of Hailun city was higher than acquired Jiamu Si city significantly, and sclerotia acquired from Hailun city are bigger than Jiamu Si city. Results of exsomatize oxalic acid test showed that isolates toxicity from two areas may be similar.
     Results of exsomatized leaves inoculation and pot experiments showed that whole soybean leaves would be decomposed by Sclerotinia sclerotiorum (Lib) de Bary hypha after inoculated 30d; pot experiments results indicated that mycelium appears when soybean has two leaves and after 16d hypha block appears. Kernel weight, coarse fat and coarse prote content of infected soybean all declined, and coarse content declined more than coarse protein content. Amino acid gross and ammonia peak value have the same trend with them. Disease severity index (DSI) and pathopoiesia of physiological race of Sclerotinia sclerotiorum (Lib) de Bary were various greatly among different areas, besides disease severity index (DSI) and lesion length has positive correlation. It is suitable that identify at the stage of growth up as the standard of species resistance to the disease.
     Roundly researched on the biocontrol effects of biocontrol bacteria on soybean sclerotium by combined methods of laboratory and yield supplied maneuverability experimental model for sclerotium biocontrol.
     Results of pot experiments and on PDA plates showed that Trichoderma viride Pers. can inhibit Sclerotinia sclerotiorum (Lib) de Bary significantly; the effect of application biocontrol agent on wind-sand soil was better than other types of soil. With the soybean growth, the effect of biocontrol agent declined gradually; Application of potassium fertilizer can inhibit the growth of Sclerotinia sclerotiorum (Lib) de Bary. With the increase application of biocontrol agent, incidence of the disease declined on black soil and wind-sand soil, it can reduce the incidence of field significantly, but hasn’t great effect to yield on wind-sand soil.
     Groping a molecular biology operationg system for protoplast preparated by Sclerotinia sclerotiorum (Lib) de Bary hypha and translated, built examination platform for biocontrol mechanism studies.
     It was difficult to identify the hypha of Trichoderma viride Pers or Sclerotinia sclerotiorum (Lib) de Bary, and illustrate their inhibition, so that composing gene expressing carrier pPGT which has GFP. It was succeeded to transfer the GFP gene to pathogen fungal Sclerotium by the method of protoplast transformation with PEG. Results of Southern hybridize indicated that GFP gene has been integrated to Sclerotium genesis DNA. It proved that GFP gene could be expressed in Sclerotium successfully, and could inherit steadily. Antagonistic experiments proved that Trichoderma viride Pers could inhibit Sclerotinia sclerotiorum (Lib) de Bary observed under the fluorescence microscope.
     Base on the study of pathogen isolates morphology characters and pathopoiesia in different northeast ecological zones, supplied more materials for the studies of sclerotium occur discipline and soybean resist disease breeding. The biocontrol study of Trichoderma viride Pers to soybean sclerotium provided necessary measures for northeast soybean safety products.
引文
1杨谦.核盘菌.哈尔滨:黑龙江科学技术出版社. 1994: 1~174
    2 H. H. Whetzel. A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia. 1945, 37: 648~714
    3 N. W. Waipara. Isolation of white rot, Sclerotinia sclerotiorum, causing leaf necrosis on Tradescantia fluminensis in New Zealand. Australasian Plant Disease Notes. 2006, 1(1): 27~28.
    4庄文颖.中国核盘菌科分类研究概况.真菌学报.1994, 13(1): 13~23
    5 Tziros., GT. Bardas., GA. Tsialtas. GS First report of oilseed rape stem rot caused by Sclerotinia sclerotiorum in Greece. Plant Disease. 2008, 92(10): 1473
    6 R. E. Partyka., W. F. Mai. Effects of environment and some chemicals on Sclerotinia sclerotiorum in laboratory and potato field. Phytopathology. 1962, 52: 766~770
    7 J. C. Tu. Integrated disease control of white mold (Sclerotinia sclerotiorum) in navybean (Phaseolus vulgaris). In Symp Crop Prot. 1986, 39:731~740
    8 A. Lamey., J. Knodel., G. Endres., Canola disease survey in Minnesota and North Dakota. Extension Report 71. 2001, 11
    9 D. E. Zimmerman., J. A. Hoes. Disease. In J. F. Carter (Ed). Sunflower Science and Technology, American Society of Agronomy, Crop science Society of America and Soil Science Society of America, Madison, 1978, 225~262
    10 Naveed Ahmed., Muhammad Iqbal., Umer Iqbal.Morphological variability and mycelial compatibility among the isolates of Sclerotinia sclerotiorum associated with stem rot of chickpea. Mycopath. 2007, 5(1): 11~15
    11 L. H. Purdy. Sclerotinia sclerotiorum: Histtory, disease and symptomatology, host range, geographic distribution, and impact. Phytopathology. 1979, 69:875~880
    12 MA Aghajani., N.Safaei. New hosts for sclerotinia stem rot of canola. Journal of Plant Pathology. 2008, 90(1): 147
    13 L. Huang., H. Buchenauer., Q. Han., et al. Ultrastructural and cytochemical studies on the infection process of Sclerotinia sclerotiorum in oilseed rape. Journal of Plant Diseases and Protection. 2008, 115(1):9~16
    14 R. D. Lumsden., R.L.Dow. Histopathology of Sclerotinia sclerotiorum infection of bean. Phytopathology. 1973, 63:708~715
    15 D. P. Maxwell., P. H. Williams., M. D. Maxwell. Studies on the possible relationships of microbodies and multivesicular bodies to oxalate, endopolygalacturonase, and cellulose (Cx) production by Sclerotinia sclerotiorum. Can J Bot. 1972, 50: 1743~1748
    16 A. L. Wong., H. J. Willetts. Cytology of Sclerotinia sclerotiorum and related species. J Gen Microbiol. 1979, 112:29~34
    17 L M. Kohn., MR. Schaffer., JB. Anderson. Marker stability throughout 400 days of in vitro hyphal growth in the filamentous ascomycete, Sclerotinia sclerotiorum. Fungal Genetics and Biology. 2008, 45(5): 613~617
    18 A L. Mila., XB.Yang. Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of Sclerotinia sclerotiorum. Plant Disease. 2008, 92(1):78~82
    19 F. M. Humpherson-Jones., R. C. Cooke. Morphogenesis in sclertium-forming. Ⅱ.Rhythmic production of sclerptia by Sclerotinia sclerotiorum(Lib.) de Bay. New Phytol. 1977, 78:181~187
    20 B. B. Townsend. Nutritional factors influencing the production of sclerotia by certain fungi. Ann Bot (London). 1957, 21: 153~166
    21 Chet., Y. Henis. Sclerotial morphogenesis in fungi. Annu Rev Phytopathol. 1975, 13:169~192
    22 H. J. Willetts. Slerotium formation. In Smith JE and Berry DR(eds). The filamentous fungi, vol 3 Developmental mycology. Edward Arnold, LONDON, 1978, pp. 197~213
    23 B M. Wu., K V. Subbarao., Y B. Liu. Comparative survival of sclerotia of Sclerotinia minor and S. sclerotiorum. Phytopathology. 2008, 98(6): 659~665
    24 S. Veluchamy., J A.Rollins. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genetics and Biology. 2008, 45(9): 1265~1276
    25 H. J. Willetts., J A L. Wong. The biology of Sclerotinia sclerotiorum, S.trifoliorum, and S. minor with emphasis on specific nomenclature. The Bot Rev. 1980, 46: 101~165
    26 D. F. Bateman., S.V. Beer. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotiun rolfsii. Phytopathology. 1965, 58: 204~211
    27 R. D. Noyes., J. G. Hancock. Role of oxalic acid in the sclerotinia wilt of sunflower. Physiol Plant Pathol. 1981, 18: 123~132
    28 D. P. Maxwell., R. D. Lumsden. Oxalic acid production by Sclerotiniasclerotiorum in infected bean and in culture. Phytopathology. 1970, 60:1395~1398
    29 P. Marciano., P. Dilenna., P. Margo. Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol. 1983, 22: 339~345
    30 G. Godoy., J. R. Steadman., M. B. Dickman, et al. Use of mutants todemonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol. 1990, 37: 179~191
    31 M. V. Dutton., C. S. Evans. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can J Microbiol. 1996, 42: 881~895
    32 T. Zhou., G. J. Boland. Mycelial growth and production of oxalic by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can J plant Pathol. 1999, 21:93~99
    33 BJ. Culbertson., N C. Furumo., S L. Daniel. Impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH by Sclerotinia sclerotiorum. FEMS Microbiology Letters. 2007, 270(1): 132~138
    34 Andreas Walz, Irmgard Zingen-Sell, Simone Theisen, Andreas Kortekamp. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum. European Journal of Plant Pathology. 2008,120(4): 317~330
    35刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理.植物病理学报.1998, 28(1):33~37
    36 K S. Kim., J Y. Min., M B. Dickman. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions. 2008, 21(5):605~612
    37 S. G. Cessna., V. E. Sears., M. B.Dickman., et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell. 2000, 12:2191~2199
    38 D. F. Bateman., H. G.Basham. Degradation of plant cell walls and membranes by microbial enzymes. In Heitefuss Rand Williams PH(eds.). Physiological Plant Pathology. Springer-Verlag, Berlin, 1976, pp. 316~355
    39 W. D. Bauer., D. F. Baseman., C. H. Whalan. Purification of endo-β-1,4 galatannase produced by Sclerotinia sclerotiorum: effects on isolated plant cell walls and patato tissues. Phytopathology. 1977, 67:862~868
    40 R. P. Singh., P. R. John. Phenolics and cell wall degrading enzymes in Sclerotinia sclerotiorum infection of resistance and susceptible plants of Brassica juncea.India J Mycol and Plant Pathol. 1979, 9:160~165
    41 R. D. Lumsden. Pectolytic enzymes of Sclerotinia sclerotiorum and their localization in infected bean. Can J Bot. 1976, 54:2630~2641
    42 M. B. Martel., C. H. Penhoat., R. Letoublon., et al. Purfication and characterization of two endopolygalacturonases secreted during the early stages of the saprophytic growth of Sclerotinia sclerotiorum. FEMS Microlobiol Lett. 1998, 158: 133~138
    43 N. Poussereau., S. Creton., G. Billon-Grand., et al. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology. 2001, 147:717~726
    44 W. N. Stoner., W. D. Moore. Lowland rice farming, a possible cultural control for Sclerotinia sclerotiorum in the everglades. Plant Dis Ris. 1997, 81:13~17
    45 J. C.Walker. Plant Pathology,3rd ed. McGRAW-Hill, New York and London. 1969,pp.819
    46 H. F. Schwartz., J. R. Steadman. Factors affecting sclerotium population and apothecium production by Sclerotinia sclerotiorum. Phytopathology. 1978, 68: 383~388
    47 J. J. Hao., K. V. Subbarao., S.T.Koike. Effects of broccoli rotation on lettuce drop caused by Sclerotinia minor and on the population dendity of sclerotia in soil. Plant Dis. 2003, 87: 159~166
    48 J. A. Gracia., S. V. Neumanu., G. J. Boland. Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum. Can J Plant PATHOL. 2002, 24: 137~143
    49 Rousseau, G. Rioux, S. Dostaler, D.Effect of crop rotation and soil amendments on Sclerotinia stem rot on soybean in two soils. Canadian Journal of Plant Science. Agricultural Institute of Canada, Ottawa, Canada: 2007, 87: 3, 605~614
    50 LCL. Ferraz., ACC.Filho., LCB. Nasser., et al. Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant PATHOL. 1999, 48: 77~82
    51 D. B. Letham., D. O. Huett., D. S. Trimboli. Biology and control of Sclerotinia sclerotiorum in cauliflower and tomato crop on coastal New South Wales. Plant Dis Rep. 1976, 60:286~289
    52 D. S. Mueller., A. E. Dorrance., R. C. Derksen., et al. Efficacy of fungicide on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis. 2002, 86: 26~31
    53 D. M. Mclean. Sclerotinia stalk rot of cabbage seed plants. Wash State Agric Exp Stn Circ. 1959, 359:pp.4~10
    54 Abdullah, MT Ali, NY Suleman, P. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection. 2008, 27 (10): 1354~1359
    55 J. M. Whipps., M. Gerlagh. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res. 1992,96: 897~907
    56 Huang HungChang.,R S. Erickson. Factors affecting biological control of Sclerotinia sclerotiorum by fungal antagonists. Journal of Phytopathology. 2008, 156(10): 628~634
    57 S N. Smith, M.Prince, J M. Whipps. Characterization of Sclerotinia and mycoparasite Coniothyrium minitans interaction by microscale co-culture. Letters in Applied Microbiology. 2008. 47: 2, 128~133. 26 ref
    58 F. L. Pieckenstain., M. E. Bazzalo., A M I. Roberts., et al. Epicoccum purpurascens for biocontrol of aclerotinia head rot of sunflower. Mycol Res. 2001,105: 77~84
    59 A. M. Madsen., E. Neergaard. Interaction between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur J Plant Pathol. 1999, 105: 761~768
    60 Kim, TG Knudsen, GR. Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Applied Soil Ecology. 2008, 40(1): 100~108
    61 A. K. Pathak., S. Godika., J. P. Jain., et al. Effect of antagonistic fungi and seed dressing fungicides on the incidence of stem rot of mustard. J Mycol Plant Pathol. 2001,31:327~329
    62 A. L. Goldstein., M. A. Carpenter., R. N.Crowhurst., et al. Identification of Coniothyrium minitans isolate using PCR amplification of a dispersed repetitiveelement.Mycologia. 2000, 92:46~53
    63 X J. Hu., Jiang M., Liu S Y. Antagonistic activity of a bacterial strain against Scerotinia and gene cloning. J Agrobiotech. 2001, 10: 53~54
    64 E. I. Tarabily., K. A. Soliman., M. H. Nassar., et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinmycetes. Plant Pathol. 2000, 49: 573~583
    65 P. B. Adams., C. J. Tate., R. D. Lumsden., et al. Ristance of Phaseolus species to Scerotinia sclerotiorum. Ann Rep Bean Improv Coop. 1973, 16: 8~9
    66 F. N. Anderson., J. R. Steadman., D. P. Coyne., et al. Tolerance to white mold inPhaseolus vulgaris dry edible bean types. Plant Dis Rep. 1974, 58: 782~784
    67 A. P. Coyne., J. R. Steadman., H. F. Schwartz. Reaction of Phaseolus dry bean germplasm to Sclerotinia sclerotiorum. Plant Dis Rep. 1977, 61: 226~230
    68 Mc Laren, N W Craven, M. Evaluation of soybean cultivars for resistance to sclerotinia stalk rot in South Africa. Crop Protection. 2008, 27(2): 231~235
    69 A. R. Grau., H. L. Bissonnette. Whetzelinia stem rot of soybean in Minnesota. Plant Dis Rep. 1974, 58: 693~695
    70 C. Y. Olivier., B. D. Gossen., G. T. Séguin-Swartz. Impact of flower age and colour on infection of bean and alfalfa by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology. 2008, 30 (1) : 58~65
    71 P. Leclercq. Influence de facteurs héréditaires sur la résistance apparaente du tournesolàSclerotinia sclerotiorum. Ann Amélior Plant. 1973, 23: 279~286
    72刘澄清,杜德志,邹崇顺.甘蓝型油菜的抗病性及其遗传效应研究.中国农业科学. 1991, 24(31):43~49
    73王汉中,刘贵华,郑元本等.抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究.中国农业科学. 2004,37:23~28
    74 M.Behrouzin. Reactions of six spring and winter types of canola cultivars to Slerotinia sclerotiorum (Lib) de Bary, the causal agent of sclerotinia stem rot disease, at seedling stage in greenhouse. Seed and Plant. 2007,22(4): 529~541
    75 Jurke, C J Fernando, W. G D Comparison of growthroom screening techniques for the determination of physiological resistance to sclerotinia stem rot in Brassica napus. Archives of Phytopathology and Plant Protection. 2008,41(3):157~174
    76陈玉卿,张洁夫,伍贻美.芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定.中国油料. 1993,2:4~7
    77周乐聪.油菜品种资源对菌核病的抗性鉴定.中国油料. 1994(增刊):69~72
    78黄永菊,陈军,李云昌.甘蓝型油菜菌核病抗性的遗传研究.中国油料作物学报. 2000,22(1):6~10
    79 K. S. Baswana., K. S. Sedun. Inheritance of stem rots in cauliflower. Euphytica. 1991, 57:93~96
    80 V. S. Arahana., G. L. Graef., J. E. Specht., et al. Identification of QTLs For resistance to Sclerotinia sclerotiorum in soybean. Crop Sci. 2001, 41:180~188
    81 L. Gentzbittel., S. Mouzeyar., S. Badaoui., et al. Cloning of molecular marker for disease resistance in sunflower, Helianthus annuus L. Ther Appl Genet. 1998, 96:519~525
    82 B. G. Lane., J. M. Dunwell., J. A. Ray., et al. Germin, a protein marker of early plant development, is an oxlate oxidase. J Biol Chem. 1993, 268:12239~12242
    83 V. P. Kotsira., Y. D. Clonis. Oxalate oxidase from barley roots: Purification to homogeneity and study of some molecular, catalytic, and binding properties. Arch Biochem Biophys. 1997, 340: 239~249
    84 Dong XiangBai,Ji RuiQin,Guo XueLan,et al. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta. 2008, 228(2): 331~340
    85 P. A. Donaldson., T. Anderson., B. G.. Lane., et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Pathol. 2001, 59:297~307
    86 G. Lu., D.Bidney., Bao Z Hu X., et al. Constitutive promoters and Sclerotinia disease resistance in sunflower. The Proceedings of 15th International Sunflower Conference. Toulouse, France. June 2000, pp. 72~77
    87 X. Hu., A.S.Reddy. Cloning and expression of a PR5-like protein from Arabidopsis: Inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol. 1997, 34:949~959
    88 Ma LingLi., Huo Rong Gao., Xue Wen He.Transgenic rape with hrf2 gene encoding harpinXooc resistant to Sclerotinia sclerotinorium. Agricultural Sciences in China. 2008, 7(4): 455~461
    89 G. Lu. Engineering White Mold Resistance in Oilseed Crops. First International Conference on Legume Genetics and Genomics: Translation to Crop Improvement at Minneapolis-St. Paul, MN. June 2002, pp.54
    90 K. Broglie. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science. 1991, 254:1194~1197
    91 G. B. Grison., B .B. Grezes., M.Schneider., et al. Field tolerance to fungal pathogen of Brassica napus constitutively epressing chimeric chitinase gene. Nat Biotechnol. 1996, 14: 643~646
    92蓝海燕,张正华.农杆菌介导法将β-1,3-葡聚糖苷酶基因导入油菜的研究初报.中国油料作物学报. 2000,22(1):6~10
    93郭学兰,王汉中,李均等.玉米转座子Ae转基因甘蓝型油菜的遗传变异.中国油料作物学报. 2001,23(1):7~11
    94汪恒英,周守标,常志州等.绿色荧光蛋白(GFP)研究进展.生物技术.2004, 14(3):71~77
    95李寿东,齐义鹏,胡建红等.用绿色荧光蛋白基因作为筛选标记的新型克隆载体的构建.生物工程学报.1997,(3): 323~324
    96黄国存,朱生伟,董越梅等.绿色荧光蛋白及其在植物研究中的应用.植物学通报.1998,15(5):24~30
    97蒋芳玲,杨国顺,刘志敏等.绿色荧光蛋白研究进展.作物研究.2003,17(2):106~109
    98方宣钧,金轶强,孙梅等.绿色荧光蛋白质体瞬间表达载体的构建及在大肠杆菌中的表达.农业生物技术学报.1997,(4):339~345
    99刘祖强,胡敏,齐义鹏.绿色荧光蛋白的结构、发光机制及其应用研究.武汉大学学报.2000,46(2):211~214
    100薛启汉.绿色荧光蛋白(GFP)的特性及其在分子生物学研究中的应用.江苏农业学报.1999,5(1):52~58
    101许飞虎,龚兴国.绿色荧光蛋白应用研究进展.细胞生物学杂志.2002,24(6): 332~333
    102吕碧文.绿色荧光蛋白及其在生物技术上的应用.丽水师范专科学校学报.2000,22(5):42~43,56
    103郝敏,邢达,谢波等.含有绿色荧光蛋白基因的质粒载体的构建及其在水稻白叶枯细菌中的表达.激光生物学报.2002,11(6): 427~430
    104贺竹梅,李华平,陈谷.线粒体定位序列介导的绿色荧光蛋白基因在烟草中表达的分析.中山大学学报.2002,41(3):48~51
    105陆惠萍,周凤娟,孙树汉.绿色荧光蛋白在大肠杆菌中的克隆及高效表达.第二军医大学学报.1997,18(5):406~408
    106张阳德,廖允军.绿色荧光蛋白及其在细胞生物学中的应用.中国现代医学杂志.2001,11(5):34~37
    107李志达,刘青珍,齐义鹏.稳定表达egfp基因细胞的构建与克隆.武汉大学学报.2001,47(4): 463~467
    108鞠传丽,王东,孔冬冬.绿色荧光蛋白在植物细胞生物学中的应用.生命的化学.2001,21(6):528~530
    109范文韬,刘德立,孙晓洁等.带有绿色荧光蛋白基因(gfp)的植物重组表达质粒pBI-GFP的构建.华中师范大学学报.2000,34(2):213~215
    110张春阳,马辉,陈瓞延.绿色荧光蛋白在细胞分析中的应用.分析科学学报.2000,16(5):433~439
    111叶海仁,钟卫鸿,陈建孟等.绿色荧光蛋白分子标记在环境微生物学研究中的应用.环境污染与防治.2003,25(6):353~355
    112魏明宝,方呈祥,张甲耀等.绿色荧光蛋白标记在生物修复中的应用.中国环境科学.2004,24(3):290~293
    113邵继海,何绍江,王平.用gfp报告基因检测土壤中Cu2+对饭豆根瘤菌生物毒性的研究.华中农业大学学报.2004,23(3):307~310
    114陈菲莉,张甲耀,方呈祥.绿色荧光蛋白基因在根际优势菌株中的高效表达.环境科学技术.2003,26(6):1~5
    115王创,郑慧芬,何绍江.用gfp基因检测饭豆根瘤菌的侵染途径和定殖动态.生物学杂志.2004,21(6):14~16
    116陈玲,张甲耀,方呈祥等.根际微生物耦合降解系统的构建及其对蒽污染土壤的修复.应用与环境生物学报.2004,10(3):340~344
    117董越梅,安千里,李久蒂等.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖.应用与环境生物学报.2000,6(1):61~65
    118罗启仕,王慧,张锡辉等.利用GFP标记基因检测环境微生物.中国给水排水.2004,(20):32~34
    119刘默芳,王恩多.绿色荧光蛋白.生物化学与生物物理进展.2000,27(3):238~243
    120苑晓玲,从玉文,陈家佩.绿色荧光蛋白的特性及其在信号转导中的应用.生命的化学.2001,21(6):525~528
    121徐进,莫明和,张克勤等.绿色荧光蛋白(GFP)在真菌研究中的应用.生物技术.2004,14(6):74~76
    122吴冠英,潘华珍.生物化学与分子生物学实验常用数据手册.科学出版社.2002:127~129
    123李建武,余瑞元,袁明秀等.生物化学实验原理和方法.北京大学出版社.1994:279~283
    124 J. Sambrook, D. W. Russell. Molecular Cloning: A Laboratory Manual,3rd ed. Cold Spring Harbor,New York, USA: Cold Spring Harbor Press, 2001,26~27,93~96,532~552
    125杨建雄.生物化学与分子生物学实验技术教程.科学出版社.2002:227~228
    126李建武,萧能庚,余瑞元等.生物化学实验原理和方法.北京大学出版社.1999: 280~281
    127 Jiang Daohong, Li Guoqing, Ran Hongchang etc.Studies on the Recovery of Hypovirulent strain Ep-1PN of Sclerotinia sclerotiorum with Protoplast Regeneration. Journal of Huazhong Agricultural University, 1999, 18(6): 543~548
    128 J.萨姆布鲁克, D.W.拉赛尔.分子克隆实验指南(第三版).北京:科学出版社.2002: 492~499
    129廖晓兰,任新国,罗宽.油菜花上真菌种类及其对菌核菌拮抗作用的研究,1993,2:171~176
    130郭瑾,马军.松花江水中天然有机物的提取分离与特性表征.环境科学. 2005, 26(5):77~84
    131 B. Nelson., D. Duval., H. Wu. An in vitro technique for large-scale production of sclerotia of Sclerotinia sclerotiorum. Phytopathology. 1988, 78: 1470~1472
    132 H. J. Willetts. The Morphogenesis and possible evolutionary orgins of fungal sclerotia. Bio Rev Cambrige Philos Soc. 1972, 47: 515~536
    133 A. Christias., J. L.Lockwood. Conservation of mycelial constituents in four sclerotium-forming fungi in nutrient-deprived conditions. Phytopathology. 1973, 63: 602~605
    134 S. Marukawa., S. Funakawa., Y. Satomura. Some physical and chemical factors on formation of sclerotia in Sclerotinia libertinia Fuckel. Agric Bio Chem. 1975, 39: 463~468
    135 A. Favaron., L. Sella., R. D’ovidio. Relationships among Endopolygalacturo -nase, oxalate, pH, and plant polygalaturonase inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol Plant Microbe In. 2004, 17: 1402~1409
    136 H. S. Kim., G. L. Hartman., J. B. Manandhar., et al. Reaction of soybean cultivars to sclertinia stem rot in field, greenhouse, and laboratory evaluation. Crop Sci. 2000, 40: 665~669
    137 B. D. Nelson., T. C. Helms., M.A.Olson. Comparison of laboratory and field evalutions of resistance in soybean Sclerotinia sclerotiorum. Plant Dis. 1991, 75: 662~665
    138 S. N.Wegulo., X. N. Yang., C. A. Martinson. Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies. Plant Dis. 1998, 82: 1264~1270
    139 D. J. Hannusch., G. J.Boland. Interactions of air temperature, relative humidity and biological control agents on grey mold of bean. Eur. J. Plant Pathol. 1996, 102:133~142
    140 A. J. Bolan. Stability Analysis for Evaluating the Influence of Environment on Chemical and Biological Control of White Mold (Sclerotinia sclerotiorum) ofBean.Biological Control. 1997,9: 7~14
    141 A. E. Harman. Myths and dogmas of biocontrol: changes inperceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 2000, 84:377~393
    142 J. Inbar., A. Menendez., I. Chet. Hyphal interactions between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol. Biochem. 1996,28: 757~763
    143 C. Calvet., J. Pera., J. M.Barea. Interactions of Trichoderma spp. with Glomus mosseae and two wilt pathogenic fungi.Agric. Ecosyst. Environ. 1989, 29: 59~65
    144 S. Zeilinger., C. Galhaup., K. Payer., et al. Chitinase gene expression during mycoparasitic interaction of Trichodermaharzianum with its host. Fungal Genet. Biol. 1999, 26:131~140
    145 M. Lorito., V. Farkas., S. Rebuffat., et al. Cell wall synthesis is a major target of mycoparasite antagonismby Trichoderma harzianum. J. Bacteriol. 1996, 178: 6382~6385
    146 A. Rousseau., N. Benhamou., I. Chet., et al. Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology. 1996, 86: 434~443
    147 H. C .Huang., E. Bremer., R.K.Hynes., et al. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol.Control. 2000, 1 8: 270~276
    148 G.E.Harman., I. Chet., R. Baker. Factors affecting Trichoderma hamatum applied to seeds as a biocontrol agent. Phytopathology. 1981, 71: 569~572
    149杜克久.农药与环境的可持续发展.白然辩证法通论.1999,21(3):33~37
    150虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与繁殖策略.环境科学进展.1996,4(3):28~36
    151尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志.2004,23(1):73~77
    152桑伟莲,孔繁翔.植物修复研究进展.环境科学进展.1999,7(3):40~44
    153宋秀杰,郝国方.生物农药与生物防治.环境保护.2002,(6):52~53
    154顾继东.国外环境生物技术的发展和展望.生物技术通报.1999,(6):8~12
    155 Paul VH. and Verlag Th. Mann, Gelsenkirchen-Buer, 1992, pp.35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700