费氏中华根瘤菌嘌呤合成酶基因purL表达的改造对共生能力的影响及其在生态安全防范中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌的嘌呤合成途径在共生固氮过程中有重要作用,已知多数嘌呤缺陷型突变株都不能与宿主植物共生固氮。有报道认为嘌呤代谢途径中purL基因的转座子插入突变能导至腺嘌呤缺陷型和脂多糖LPS组分改变,该突变株与大豆只能形成微小无固氮活性的假瘤,虽在培养液中添加5-氨基咪唑-4-甲酰胺核苷酸或腺嘌呤和VB_1可以提高突变株的结瘤能力,但仍不能恢复固氮功能。为进一步探讨purL基因对根瘤菌共生固氮能力的影响,并通过改造purL基因表达方式实现根瘤菌应用中的生态防范,本研究对purL基因进行了不同时间和水平的表达改造,以探讨菌株共生能力、竞争结瘤与purL基因表达的关系,并获得了既能有效共生固氮、又可较快消亡的共生诱导表达重组菌。此外,本研究还考察了PurL突变对其它生理过程的影响。
     本研究通过对费氏中华根瘤菌嘌呤合成酶purL的基因置换构建出腺嘌呤缺陷型突变株P825和P618,P825 purL的NotⅠ-ⅩhoⅠ片段被luxAB基因取代,P618的purL结构基因发生了1.98kb片段的缺失。两突变株只能在大豆上形成不固氮的假瘤,purL表达载体pBBR-PG在P825和P618中可恢复其在基本培养基上的生长情况和共生能力,同时对费氏中华根瘤菌SMH12、HN01、WH3和S11进行purL的基因置换,获得突变株SMH12-P1、HN01-P1、WH3-P1、S11-P1、SMH12-P2、HN01-P2、WH3-P2和S11-P2。
     用fixK和fixR启动子启动purL表达的载体pHN801K和pHN801R,使P825仍需要添加腺嘌呤和VB_1才能生长,在1%琼脂的基本培养基穿刺培养中,P825(pHN801R)和P825(pHN801K)有弥散性的生长,表明两启动子能够在微氧条件下启动purL的表达。而两种purL诱导表达重组菌只形成假瘤,均没有恢复共生固氮的能力。以purL-gusA转录融合单元构建出purL基因渗漏表达载体pHN811(1/3野生型、组成型表达水平)、含nifH、nifQ、fixN启动子的共生诱导表达载体pTPG-PnifH、pTPG-PnifQ、pTPG-PfixN和超量表达载体pBBR-PG(10倍野生型水平)。结果表明pHN811和适宜的共生诱导表达的pTPG-PnifH与pTPG-PnifQ都可使重组菌与大豆在无外源嘌呤添加物时建立有效的共生固氮体系。添加腺嘌呤和VB_1,依然不能使突变株P618和purL不表达重组菌菌株P618(pTPG-PfixN)恢复共生固氮的功能,仅形成少数有侵染的无效根瘤。研究结果证明:只有表达了一定水平的purL基因才能进行有效侵染与共生固氮,而purL基因的表达在结瘤后期也是必需的。渗漏表达purL基因重组菌的现瘤时间晚于野生型2-3天,对植株鲜重和干重均、根瘤结构和含菌细胞中类菌体数量、固氮酶活的研究结果表明适宜的purL表达量对根瘤的正常发育和固氮效率发挥是必要的。
     在植物砂培竞争结瘤实验中,purL基因渗漏表达、共生诱导表达和超量表达重组菌的竞争能力均显著下降,砂土盆载条件下重组菌的竞争能力均有所提高,添加
The purine synthesis pathway plays an important role in the Rhizobium-plant interaction since most purine auxotrophs of rhizobia species are unable to form effective nodules on their host plants. Previous reports showed that a transposon induced PurL mutant of Sinorhizobium fredii induced pseudonodules on Glycine max, addition of 5-aminoimidazoie-4-carboxamide (AICA)-riboside or adenine and VBl to the plant could enabled the mutant to form infected nodules but no nitrogen fixation. To gain a better understanding of the impact of purL gene on the symbiosis formation, we studied the relationship between the purL gene and effective symbiosis on soybean by different transcriptional modification of S.fredii purL gene. The engineered genetic circuit of symbiotic-expressing purL was also applied in the biological containment study of rhizobia inoculum. In addition, other interested pleiotropic effects were studied with these PurL" mutants..
    Two different PurL" mutant, P825 and P618, were constructed from the wild type S. fredii strain HH103 by gene replacement. The strain P825 was the replacement mutant whose Xhol-Notl fragment in purL gene was replaced by luxAB, and the strain P618 was a 1.98kb deletion mutant in purL open reading frame. Both mutant required the supplement of adenine and VB1 to grow in minimal medium, and induced defective pseudonodules on soybean. Expressing vector pBBR-PG could restore the mutants to grow in minimal medium and the symbiotic abilities, which confirmed that they were the result of mutated purL gene. By the same method, four other PurL" mutants were constructed with S. fredii strain SMH12, HN01, WH3 and S11, to create the mutants SMH12-P1, HN01-P1, WH3-P1, S11-P1, SMH12-P2, HN01-P2, WH3-P2 and S11-P2, respectively. All these PurL" mutants were defective in symbiotic nitrogen fixation.
    Symbiotic expression vectors of purL gene using the promoter of fixK and fixR., pHN801K and pHN801R, could not restore the growth of P825 in minimal medium. In microaerobic stab inoculation in minimal medium, pHN801K and pHN801R could improve P825 a diffused growth like that of HH103, suggesting that purL could be expressed under the microaerobic conditions. However, neither two plasmids could restore the mutant to form infected nodules.
    New modification of purL expression containing a reduced expression plasmid
    (pHN811, 1/3 of the wild type level, constitutive) , symbiotic expression plasmids with
    promoter of nifH, nifQ and fixN (pTPG-PnifH, pTPG-PnifQ and pTPG-PfixN), and a
    over-expression plasmid (pBBR-PG, 10 times of the wild type level, constitutive) were
    constructed. Plant results showed that the reduced expression of pHN811 and symbiotic
引文
陈三凤,杜金萍,伍丽娴,赵银锁,李季伦.巴西固氮螺菌NifA与P_Ⅱ蛋白之间的相互作用.科学通报,2002,47:1820-1823
    李友国,李杰,刘墨青,周岷江,周俊初.导入四碳二羧酸转移酶基因对费氏中华根瘤菌共生固氮效率的影响.高技术通讯,2000,5:1-7
    李友国,周俊初.导入dctABD和nifA基因对费氏中华根瘤菌共生固氮的影响研究.遗传学报,2002,29:181—188
    何庆元,胡艳,玉永雄.生态环境对根瘤菌竞争结瘤影响的研究进展.大豆科学,2004,23:66-70
    黄大昉,关于植物生物技术的发展与思考.中国农业科技导报,2002,4:42-45
    黄大昉,林敏.农业微生物基因工程.北京:科学出版社,2001
    刘涛,周俊初.高固氮基因工程大豆根瘤菌的研制及其增氮效应.广西农业大学学报,1996,15:38-45
    缪礼鸿,周俊初.根瘤菌竞争结瘤的研究进展.华中农业大学学报,2003,22:84-89
    缪礼鸿,周俊初,郑慧芬.费氏中华根瘤菌内源质粒和大豆品种对菌株竞争结瘤能力和固氮效率的影响.中国农业科学,2002,35:802-808
    周俊初,曹燕珍.快生型根瘤菌营养生理的研究.华中农学院学报,1981,3:44-57
    朱晨光,孙明,喻子牛.带cry3Aa启动子的aiiA基因在苏云金芽胞杆菌中的表达.生物工程学报,2003,19.397-401
    Albus U, Baier R, Holst O, Puhler A, Niehaus K. Suppression of an elicitor-induced oxidative burst in Medicago sativa cell-cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytologist. 2001, 151:597-606
    Allaway D, E M Lodwig, L A Crompton, Wood M, Parsons R, Wheeler T. R, Poole P S. Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol Microbiol, 2000.36:508-515
    Almon L. Concerning the reproduction of bacteroids. Zentbl Bakteriol Parasitenkol. Infectionskr Hyg Abt Ⅱ, 1922.87:289-297
    Amarger N. Genetically modified bacteria in agriculture. Biochimie, 2002, 84:1061-72
    Amar M, Patriarca E J, Manco G, Bernard P, Riccio A, Lamberti A, Defez R, laccarino M. Regulation of nitrogen metabolism is altered in a glnB mutant strain of Rhizobium leguminosarum. Mol Microbiol, 1994, 11:685-693
    Andrea B, Schenberg A C G. A conditional suicide system for Saccharomyces cerevisiae relying on the intracellular production of the Serratia marcescens nuclease, Yeast.2005, 22:203-212
    Arcondeguy T, Jack R, Merrick M.. P_Ⅱ signal transduction proteins, pivotal players in microbial nitrogen control, Microbiol Mol Biol Rev, 2001, 65:80-105.
    Arnon R, Ben-Yedidia T. Old and new vaccine approaches International Immunopharmacology, 2003, 3:1195-1204
    Arcondeguy T, Huez I, Tillard P, Gangneux C, de Billy F, Gojon A, Truchet G, Kahn D. The Rhizobium meliloti P_Ⅱ protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development, Genes Dev. 1997, 11: 1194-1206
    Ardourel M, Demont N, Debelle F, Maillet F. De Billy F, Prome J C, Denarie J, Truchet G. Rhizobium mefiloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells andinduction of plant symbiotic developmental responses. Plant Cell, 1994,6: 1357-1374
    Bal A K, Shantharam S, Verma D P. Changes in the outer cell wall of Rhizobium during development of root nodule symbiosis in soybean. Can J Microbiol, 1980, 26:1096-103
    Batut J, Daveran-Mingot M L, David M, Jacobs J, Garnerone A M, and Kahn D. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J, 1989, 8:1279-1286
    Bauer E, Kaspar T, Fischer H M Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol, 1998, 180: 3853-3863
    Bauer W, Mathesius U. Plant responses to bacterial quorum sensing signals. Curr Opin in Plant Biology, 2004, 7:429-433
    Becquart-de-Kozak I, Reuhs B L, Buffard D, Breda C, Kim J S, Esnault R Kondorosi A. R ole of the K-antigen sub-group of capsular polysaccharide in the early recognition process between Rhizobium meliloti and alfalfa leaves. Mol Plant-Microbe Interact, 1997, 10: 114-123
    Bej, A. K, Perlin M H Atlas R M. Model suicide vector for containment of genetically engineered microorganisms. Appl Environ Microbiol, 1988, 54: 2472-2477
    Bhagwat A A, Mithofer A, Pfeffer P E, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister D L. Further studies of the role of cyclic-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(13)--glucosyl. Plant Physiol, 1999, 119:1057-1064
    Borthakur D, Barbur C E, Lamb J W, Daniels M J, Downie J A, Johnston A W B. A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by R. phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas. Mol Gen Genet, 1986, 203:320-323
    Bosworth A H, Williams M K, Albrecht K A, Kwiatkowski R, Beynon J, Hankinson T R, Ronson C W, Cannon F, Wacek T J, Triplett E W. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol, 1994, 60: 3815-3832
    Brencic A, Winans S C. Detection of and Response to Signals Involved in Host-Microbe Interactions by Plant-Associated Bacteria. Microbiol Mol Biol Rev. 2005.69: 155-194
    Buikema, W J, Szeto W W, Lemley P V, Orme-Johnson W H, Ausubel F M. Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K.pneumoniae. Nucleic Acids Res, 1985, 13:4539-4555
    Burlage R S, Hooper S W, Sayler G S. The TOL (pWWO) catabolic plasmid. Appl Environ Microbiol, 1989,55:1323-1328
    Buendia-Claveria A M, Moussaid A, Ollero F J, Vinardell J M, Torres A, Moreno J, Gil-Serrano A M,Rodriguez-Carvajal M A, Tejero-Mateo P, Peart J L, Brewin N J, Ruiz-Sainz J E A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology, 2003, 149:1807-1818
    
    Burnet M W, Goldmann A, Message B, Drong R, E 1 Amrani A, Loreau O, Slightom J, Tepfer D. The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene, 2000, 244: 151-161
    Caetano-Anolles G, Wrobel-Boerner E. Bauer W D. Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol, 1992, 98:1181 -1189
    Carlson T A, Martin G B, Chelm B K. Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. ,J Bacteriol, 1987, 169:5861-5866
    Castillo A, Taboada H, Mendoza A. Valderrama B, Encarnacion S, Mora J. Role of GOGAT in carbon and nitrogen partitioning in Rhizobium etli. Microbiology. 2000, 146:1627-1637
    Catoira R, Galera C, de Billy F, Penmetsa R V, Journet E P, Maillet F. Rosenberg C, Cook D. Gough C, Denarie J. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 2000, 12: 1647-1666
    Cevallos, M A, Encarnacion S, Leija A, Mora Y and Mora J. Genetic physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-b-hydroxybutyrate. J Bacteriol, 1996. 178: 1646-1654
    Chen H, Batley M, Redmond J, Rolfe B G. Alteration of the effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis. J Plant Physiol, 1985, 120:331-349
    
    Chen W M, Moulin L, Bontemps C, Vandamme P, Bena G Boivin-Masson C. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol, 2003. 185:7266-72
    Chen W M. Laevens S, Lee T M, Coenye T, de Vos P. Mergeay M. Vandamme P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient.Int J Syst Evol Microbiol, 2001, 51:1729-1735
    Chen W X. Han G H, Li J L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen.nov. International Journal of Systematic Bacteriology. 1988. 38:392-397
    Ching T M. Hedtke S. Isolation of bacteria, transforming bacteria, and bacteroids from soybean nodules. Plant Physiol, 1977, 27: 771 -774
    Cohen S N. Chang A C, Boyer H W, Helling R B. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci, 1973, 70: 3240-3244
    Collavino M, Ruccukki P M, Grasso D H, Crespi M, Aguilar O M GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-Alfalfa symbiotic interaction. Mol Plant-Microbe Interact, 2005, 18:742-750
    Crawley, M J, Brown S L, Hails R S, Kohn D D, Rees M. Transgenic crops in natural habitats. Nature. 2001,409:682-683
    Cren M, Kondorosi A, Kondorosi E. NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol Microbiol, 1995, 15:733-747
    Cubo M T, Economou A, Murphy G. Johnston A W, Downie J A. Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol, 1992. 174:4026-4035
    Cullimore J V, Ranjeva R. Bono J J. Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci, 2001. 6: 24-30
    Cunningham S, Kollmeyer W D, Stacey G. Chemical control of interstrain competition for soybean nodulation by Bradyrhizobiumjaponicum. Appl Environ Microbiol, 1991. 57:1886-1892
    Da Re S, Bertagnoli S, Fourment J, Reyrat J-M, and Kahn D. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. Nucleic Acids Res, 1994. 22:1555-1561
    Daniell H, Wiebe P O, Millan A F.Antibiotic-free chloroplast genetic engineering—an environmentally
    friendly approach. Trends in Plant Science, 2001, 6: 237-239
    Dazzo F B, Truchet G L, Hollingsworth R I, Hrabak E M, Pankratz H S, Philip-Hollingsworth S, Salzwedel, J L, Chapman K, Appenzeller L, Squartini A, Gerhold D, Orgambide G. Rhizobium LPS modulates infection thread development in white clover root hairs. J Bacteriol, 1991, 173:5371-5384
    Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, and Greenberg E P. The involvement of cell-to-cell signals in the development of a bacteria! biofilm. Science, 1998, 280:295-298
    Day D A, Price G D, Udvardi M K. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis: peribacteroid units from soybean nodules. Aust J Plant Physiol, 1989, 16:69-84
    Debelle F, Plazanet C, Roche P, Pujol C, Savagnac A, C Rosenberg, Prome J C, Denarie J. The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol, 1996, 22:303-314
    
    de Bruijn F J, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto W W, Ausubel F M, Schell J. Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol, 1989, 171:1673-1682
    Dejonghe W, Goris J, Fantroussi S E, Hofte M, Vos P V, Verstraete W, Top E: Effect of dissemination 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmid on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol, 2000, 66:3297-3304
    de la Cruz F, Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol, 2000, 8:128-133
    de Lajudie P, Willems A, Pot B. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium, and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol, 1994, 44: 715-733
    Denarie J, Truchet G and Bergeron B. Effects of some mutations on symbiotic properties of Rhizobium, In Symbiotic Nitrogen Fixation in Plants, Edited by Nutman P S. Cambridge: Cambridge University Press, 1976, 47-61
    Denarie J, Cullimore J. Lipo-oligosaccharide nodulation factors: A new class of signalling molecules mediating recognition and morphogenesis. Cell, 1993, 74:951-954
    Dilworth M J, Glenn A. Control of carbon substrate utilization by rhizobia. In Current Perspectives in Nitrogen Fixation, Edited by Gibson A H, Newton W E, Aust Acad Sci, 1981, 244-51
    Djordjevic S P, Ridge R W, Chen H, Redmond J W, Batley M, Rolfe B G. Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposon-induced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234. J Bacteriol, 1988, 170: 1848-1857
    Doolittle W F. Phylogenetic classification and the universal tree. Science, 1999, 284: 2124-2128.
    Dreyfus B, Garcia J L, and Gillis M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol, 1988,38:89-98
    Droge M, Puhler A, Selbitschka W. Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol, 1998, 64: 75-90
    Drummond M H, Contreras A, Mitchenall L. The function of isolated domains and chimaeric proteins constructed from NifA and NtrC proteins of Kiebsiella pneumoniae. Mol Microbiol, 1990, 4:29-37
    dvardi M K, Ou Yang L-J, Young S, Day D A.. Sugar and amino acid transportacross symbiotic membranes from soybean nodules. Mol Plant-Microbe Interact, 1990, 3: 334-40
    Dylan T, Helinski D R, Ditta G S. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants J Bacteriol, 1990, 172:1400-1408
    de Vries J, Heine M, Harms K, Wackernagel W Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol. 2003, 69:4455-4462
    de Vries J, Meier P, Wackernagel W. The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett, 2001, 195:211-215
    Robleto E A, Kmiecik K, Oplinger E S. Nienhuis J, Triplett EW. Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Appl Environ Microbiol, 1998, 64:2630-2633
    Eisenstein B I. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science. 1981.214:337-339
    Elkan, G H. Kwik I. Nitrogen, energy, and vitamin nutritio of Rhizobium japonicum. J Appl Bacteriol, 1968,31:399-401
    Ellstrand N C. Prentice H C, Hancock J F. Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst, 1999. 30: 539-563
    Engelke T. Jording D. Kapp D, Puhler A. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C_4-dicarboxyate carrier. J Bacteriol, 1989, 171:5551-5560
    Espin G, Moreno S, Guzman J. Molecular genetics of the glutamine synthetases in Rhizobium species. Crit Rev Microbiol, 1994,20:117- 123
    Fe(?)ay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W. Staehelin C, Broughton W J. Jabbouri S. nodD2 of Rhizobium sp. NGR234 is involved in repression of the nod4.BC operon. Mol. Microbiol, 1998, 27:1039-1050
    Feng J, Qing Li F, Li Q, Hu H L, Hong G F. Expression and purication of Rhizobium leguminosarum NodD. Protein Exp Purif, 2002. 26:321-328
    Finan T M. McWhinnie E, Driscoll B, Watson R J. Complex symbiotic phenotypes result from gluconeogenic mutations in Rhizobium meliloti. Mol Plant-Microbe Interact. 1991, 4:386-92
    
    Fischer H M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev, 1994, 58:352-386
    
    Fischer H M, Fritsche S, Herzog B, Hennecke H. Critical spacing between two essential cysteine residues in the interdomain linker of the Bradvrhizobium japonicum NifA protein. FEBS Lett. 1989,255:167-171
    Fougere F, Le Rudulier D 1990 Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J Gen Microbiol, 136: 157-163
    Fuqua C, M. Burbea, Winans S C. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol, 1995, 177:1367-1373
    Fuqua C, Greenberg E P. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol, 1998. 1:183-189
    Fuqua C, Parsek M R. and Greenberg; E P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet. 2001, 35:439-468.
    Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol, 1985, 164:918-921
    Geurts R, Fedorova E, and Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol, 2005, 8:346-52
    Glenn A R, Dilworth M J. The uptake and hydrolysis of disaccharides by fast and slow-growing species of Rhizobium. Arch Microbiol, 1981, 129:233-39
    Gonzalez J E, Marketon M M. Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev, 2003, 67:574-592
    Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 1980,77:7380-7384
    Gressel J. Tandem constructs: preventing the rise of superweeds Trends Biotechnol, 1999, 17:361-366
    Gubler M. 1989. Fine-tuning of nif and fix gene expression by upstream activator sequences in Bradyrhizobium japonicum. Mol Microbiol, 3:149-159
    Haro M, de Lorenzo V. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol, 2001, 85:103-113
    Hartwig U A, Phillips D A. Release and modification of nod-gene inducing flavonoids from alfalfa seeds. Plant Physiol, 1991, 95:804-807
    Hill K E, Weightman A J, Fry J C. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl Environ Microbiol, 1992, 58:1292-1300
    Hindle Z, Chatfield S N, Phillimore J, Bentley M, Johnson J, Cosgrove C A, Ghaem-Maghami M, Sexton A, Khan M, Brennan F R, Everest P, Wu T. Pickard D, Holden D W, Dougan G, Griffin G E, House D, Santangelo J D, Khan S A, Shea J E, Feldman R G, Lewis D J M Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun, 2002, 70:3457-3467
    Hirsch A M , Lum M R, Downie J A. What makes the rhizobia-legume symbiosis so special? Plant Physiol, 2001,127:1484-1492
    Hoffmann A, Thimm T, Droge M, Moore E R, Munch J C, Tebbe C C. Intergeneric Transfer of Conjugative and Mobilizable Plasmids Harbored by Escherichia coli in the Gut of the Soil Microarthropod Folsomia Candida (Collembola). Appl Environ Microbiol, 1998, 64: 2652-2659
    Hotter G S, Scott D B. Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol, 1991, 173:851-859
    Hoover T R, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NifA, the transcriptional activator for nitrogen fixation operons. Cell, 1990, 63:11-22
    Hornez J P, El Guezzar M, Derieux JC. Succinate transport in Rhizobium meliloti: characteristics and impact symbiosis. Curr Microbiol, 1989, 19:207-1262
    Huala E, Ausubel F M. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R meliloti nif- promoter. J Bacteriol, 1989, 171:3354-3365
    Hudman J F, Glenn A R.. Glucose uptake by free living and bacteroid forms of Rhizobium leguminosarum. Arch Microbiol, 1980, 128:72-77
    Hwang I, Cook D M, Farrand SK.A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol, 1995, 177:449-458
    
    ISSA. The International Service for the Acquisition of Agri-Biotech Applications, http://www.isaaa.org
    Jackson D A, Symons R H. Berg P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA, 1972, 69: 2904-2909
    Jarvis B D W, Van Berkum P. Chen W X, Nour S M, Fernandez M P. Cleyet-Marel J C, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol, 1997, 47:895-898
    Jensen L B, Ramos J L, Kaneva Z, Molin S. A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coil gef gene. Appl Environ Microbiol, 1993, 59:3713-3717
    Jimenez-Zurdo J I, Garc(?)'a-Rodr(?)'guez F M, Toro N. The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa. Mol Microbiol, 1997, 23:85-93
    Jordan D C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobiitm gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol, 1982, 32:136-139
    Jording D, Uhde C. Schmidt R. Puhler A. The C_4-dicarboxyiate transport-system of Rhizobium meliloti and its role in nitrogen-fixation during symbiosis with alfalfa (medicago-sativa). Experientia, 1994,50:874-883
    John M, Rohrig H, Schmidt J, Wieneke U, Schell J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA, 1993. 90:625-629
    Kamst E, Pilling J, Raamsdonk L M, Lugtenberg B J J. Spaink H P. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol, 1997, 179:2103-2108
    Kaiser B N, Finnegan P M, Tyerman S D, Whitehead L F, Bergersen F J, Day D A, Udvardi M K. Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science, 1998, 281:1202-1206
    Kaminski P A. Mandon K. Arigoni F, Desnoues N. Elmerich C. Regulation of nitrogen fixation in Azorhizobium caulinodans; identification of afixK-like gene, a positive regulator of nifA. Mol Microbiol, 1991,5:1983-1991
    Kim C H, D. Helinski R, Ditta G. Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene, 1986, 50:141-148
    Krishnan H B. Pueppke S G. Genetic characterization of a mutant of Sinorhizobium fredii strain USDA208 with enhanced competitive ability for nodulation of soybean, Glycine max (L.) Merr. FEMS Microbiol Lett. 1998, 165:215-220
    Kustu S, Santero E, Popham D, Keener J, Weiss D. Expression of σ~(54) (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev, 1989, 53:367-376
    Kuvshinov V, Koivu K, Kanerva A, Pehu E. Molecular control of transgene escape from genetically modified plants. Plant Science, 2001. 160:517-522
    Lagares A, Caetano-Anolles G, Niehaus K. Lorenzen J, Ljunggren H D, Puhler A, Favelukes G. A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa. J Bacteriol, 1992, 174:5941-5952
    Laguerre G, Louvrier P, Allard M R, Amarger N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum Biovar viciae for nodulation of host legurnes. Appl Envir Microbiol, 2003, 69:2276-2283
    Lazazzera B A, Bates D M, Kiley P J. The activity of the Escherichia coli transcription factor Fnr is regulated by a change in oligomeric state. Genes Dev, 1993.7:1993-2005
    Leigh J A, Signer E R, Walker G C. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective: nodules. Proc Natl Acad Sci USA. 1985, 82:6231-6235
    Lerouge P. Roche P, Faucher C. Maillet F, Truchet G. Prome J C. and Denarie J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 1990, 344:781-784
    Lindow S E, Panopoulos N J. Field tests of recombinant lce-Pseudomonas syringae for biological frost control in potato, in: M. Sussman. C.H. Collins, F.A. Skinner. D.E. Stewart-Tull (Eds.). The Release of Genetically-Engineered Micro-Organisms. Academic Press. London. 1988. 121-138
    Liosa M, de la Cruz F. Bacterial conjugation: a potential tool for genomic engineering. Res in microbiol. 2005. 156:1-6
    Loh J, Carlson R W, York W S, Stacey G. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci USA, 2002.99:14446-14451
    Loh J. Stacey G. Nodulation Gene Regulation in Bradyrhizobium japonicum: a unique integration of global regulator5 circuits. Appl Environ Microbiol. 2003, 69:10-17
    Luka S. Patriarca E J, Riccio A. laccarino M. Defez R. Cloning of the rpoD Analog from Rhizobium etli: sigA of R. etli is growth phase regulated. J Bacteriol, 1996. 178:7138-7143
    Mariani C. de Beuckelerr M. Truettner J. Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature. 1990. 347: 737-741
    Marketon M M, Gonzalez J E. Identification of two quorumsensing systems in Sinorhizobium meliloti. J Bacteriol. 2002, 184: 3466-3475
    Marketon M M, Gronquist M R. Eberhard A, Gonzalez J E. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol. 2002, 184:5686-5695
    Mathesius U, Mulders S, Gao M. Teplitski M, Caetano-Anolles G. Rolfe B G, Bauer W D: Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proc Natl Acad Sci USA, 2003, 100: 1444-1449
    McRae D G. Miller R W, Berndt W B. Joy K. Transport of C_4-dicarboxylates and amino acids by Rhizobium meliloti bacteroids. Mol Plant Microbe Interact, 1989.2:273-78
    Mendoza A, Leija A. Martinez-Romero E, Hernandez G, Mora J. The enhancement of ammonium assimilation in Rhizobium etli preventsnodulation of Phaseolus vulgaris. Mol Plant-Microbe Interact. 1995, 8:584-592
    Mendoza A. Valderrama B, Leija A, Mora J. NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis, Mol Plaint Microbe Interact, 1998, 11:83-90.
    Merrick M J. Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In G. Stacey. edited by Burris R H, Evans H J, Biological nitrogen fixation. Chapman & Hall, New York 1992,835-876
    
    Merrick M, Edwards R A. Nitrogen control in bacteria. Microbiol Rev, 1995, 59:604-622
    Mithofer A, Bahgwat A A, Keister D L, Ebel J. Bradyrhizobium japonicwn mutants defective in cyclic a-glucanes synthesis show enhanced sensitivity to plant defense responses. Z. Naturforsch. 2001,56:581-584
    Mitra R M, Shaw S L and Long S R. Six non-nodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the Iegume-rhizobia symbiosis. Proc Natl Acad Sci USA, 2004, 101:10217-10222
    Molina, L., C. Ramos, M.-C. Ronchel, S. Molin, and J. L. Ramos. 1998. Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appi. Environ. Microbiol. 64:2072-2078.
    Morett E, Fischer H M, Hennecke H. Influence of oxygen on DNA binding, positive control, and stability of the Bradyrhizobium japonicwn NifA regulatory protein. J Bacteriol. 1991.173:3478-3487
    Morett E, Buck M. In vivo studies on the interaction of RNA polymerase-σ~(54) with the KIebsiella pneumoniae and Rhizobium meliloti nifH promoters: the role of NifA in the formation of an open promoter complex. J Mol Biol, 1989. 210:65-77
    Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the B-subclass of Proteobacteria. Nature, 2001, 411:948-950
    Molin S, Boe L., Jensen L B, Kristensen C S, Givskov M, Ramos J L, Bej A K. Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol, 1993. 47: 139-166
    Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol, 2003.14. 255-261
    Navon A. Bacillus thuringiensis insecticides in crop protection - reality and prospects. Crop Protect. 2000, 19:669-676
    Newman J D, Schultz B W, Noel K D. Dissection of Nodule Development by Supplementation of Rhizobium leguminosarum biovar phaseoli purine Auxotrophs with AICA Riboside. Plant Physiol, 1992,99:401-408
    Newman J D, Diebold R J, Schultz B W, Noel K D. Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazoie-4-carboxamide riboside. J Bacteriol, 1994, 176: 3286-3294
    Nielsen K M, van Elsas J D, Smalla K... Transformation of Acinetobacter sp. Strain BD413 (pFG4△nptII) with Transgenic Plant DNA in Soil Microcosms and Effects of Kanamycin on Selection of Transformants. Appl Environ Microbiol, 2000. 66: 1237-1242
    Noel K D. Sanchez A, Fernandez L, Leemans J, Cevallos M A. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol. 1984. 158:148-155
    Noel K D, Diebold R J, Cava J R. Brink B A. Rhizobial purine and pyrimidine auxotrophs: nutrient supplementation, genetic analysis, and the symbiotic requirement for de novo purine biosynthesis. Arch Microbiol, 1988,149: 499-506
    Nystrom T. Albertson N H, Flardh K, Kjelleberg S. Physiological and molecular adaptation to starvation and recovery from starvation by the marine Vibrio sp. S14. FEMS Microbiol Ecol 1990.74:129-140
    Paau A S, Bloch C B, Brill W J. Developmental fate of Rhizobium meliloti bacteroids in. alfalfa nodules. J Bacterial, 1980,143:1480-90
    Paau A S, Bloch C B, Brill W J. Developmental fate of Rhizobium meliloti bacteroids in alfalfa nodules. J Bacteriol, 1980, 143:1480-1490
    Paau A S, Oro J, Cowles J R. DNA content of free living rhizobia and bacteroids of various Rhizobium-legume associations. Plant physiol, 1979, 63:402-405
    Pain A N. Symbiotic properties of antibiotic-resistant and auxotrophic mutants of Rhizobium leguminosarum. J Appl Bacteriol, 1979,47:53-64
    Parniske M, Schmidt P E, Kosch K, MUller P. Plant defense responses of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum. Mol Plant Microbe Interact, 1994, 7:631-638
    Parveen N, Webb D T, Borthakur D. The symbiotic phenotypes of exopolysaccharide-defective mutants of Rhizobium sp. strain TAL1145 do not differ on determinate- and indeterminate-nodulating tree legumes. Microbiology, 1997, 143:1959-1967
    Patriarca E J, Tate R, Fedorova E, Riccio A, Defez R, laccarino M. Downregulation of the Rhizobium ntr system in the determinate nodule of Phaseolus vulgaris identifies a specific developmental zone. Mol Plant Microbe Interact, 1996, 9:243-251
    Patriarca E J, Tate R, and laccarino M. Key role of bacterial NH~(4+) metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev, 2002, 66:203-222
    Pawlowski K, Klosse U, de Bruin F J. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet. 1991,231:124-138
    Pellock B J, Cheng H P. Walker G C. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol. 2000, 182: 4310-4318.
    Perret X, Staehelin C, Broughton W J. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev, 2000, 64:180-201
    Poulsen L K., Refn A, Molin S, Andersson P. Topographic analysis of the toxic Gef protein from Escherichia coli. Mol Microbiol, 1991, 5:1627-1637
    Putnoky P, Kereszt A, Nakamura T, Endre G, Grosskopf E, Kiss P, Kondorosi A. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K~+ efflux system. Mol Microbial, 1998, 28:1091-1101
    Recorbet G, Robert C, Givaudan A, Kudla B, Normand P, Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol, 1993,59:1361-1366
    Reid C J, Poole P S. Roles of DctA and DctB in signal detection by the dicarboxylic acid Transport System of Rhizobium leguminosarum. J Bacteriol, 1998, 180:2660-2669
    Riccillo P M, Collavino M M, Grasso D H, England R, Bruijn de F J, Aguilar O M. A guaB mutant strain of Rhizobium tropici CIAT899 pleiotropically defective in thermal tolerance and symbiosis. Mol Plant Microbe Interact, 2000, 13:1228-1236
    Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage R S. and Sayler G S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol, 2000, 34:846-853
    Ronchel M C, Ramos J L.. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol, 2001, 67: 2649-2656
    Ronson C W, Bosworth A H, Genova M, Gudbrandsen S, Hankinson T, Kwiatowski R, Ratcliffe H. Robie C, Sweeney P, Szeto W, Williams M. Zablotowicz R. Field release of genetically engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In Nitrogen Fixation: Achievements and Objectives. Eds. Gresshoff L E, Stacey G and Newton W E. Chapman and Hall, New York, USA. 1990, 397—403.
    Ronson C W. Lyttleton P. Robertson J G. C_4-tricarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci USA, 1981,78:4284-4288
    Rossen L, Shearman C A, Johnston A W B, Downie J A. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes. EMBO J, 1985, 4: 3369-3373
    Samanta S K; Bhushan B. Jain R K. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strains defective in glucose metabolism. Appl Microbiol Biotechnol, 2001,55:627-631
    Salminen S O, Streeter J G. Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids. J Bacteriol, 1987, 169: 495-499
    Salvemini F, Marini A M, Riccio A, Patriarca E J, Chiurazzi M, Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene, 2001, 270:237-243
    San Francisco M J D, Jacobson G R. Uptake of succinate and malate in ultured cells and bacteroids of two slow-growing species of Rhizobium. J Gen Microbiol, 1985, 131:765-773
    Santero E, Hoover T R, North A K, Berger D K, Porter S C, Kustu S. Role of integration host factor in stimulating transcription from the or54-dependent nifH promoter. J Mol Biol, 1992. 227·602-620
    Santero E. Hoover T. Keener J, Kustu S. In vitro activity of the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci USA. 1989, 86:7346-7350
    Sampei G. Mizobuchi K. The organization of the purL gene encoding 5'-phosphoribosylformylglyclnamide amidotransferase of Escherichia coli, J Biol Chem, 1989. 264: 21230-21238
    Schlaman H R, Horvath B, Vijgenboom E, Okker R J, and Lugtenberg B J J. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol, 1991, 173:4277-4287
    Schubert K R. Products of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Annu Rev Plant Physiol. 1986, 37:539-574
    Schluter A, Nohlen M, Kramer M, Defez R, Priefer U B. The Rhizobium leguminosarum bv. viciae GlnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation. Microbiology, 2000, 146:2987-2996
    Schwieger F, Dammann-Kalinowski T, Dresing U, Selbitschka W, Munch J C, Puhler A, Keller M, Tebbe C C. Field lysimeter investigation with luciferase-gene (luc)-tagged Sinorhizobium meliloti strains to evaluate the ecological significance of soil inoculation and a recA-mutation. Soil Biol Biochem, 2000, 32:859-868
    Scupham A J, Bosworth A H, Ellis W R. Wacek T J, Albrecht K A, Triplett E W. Inoculation with Sinorhizobium meliloti RMBPC-2 increases alfalfa yield compared with inoculation with a nonengineered wild-type strain. Appl Environ Microbiol, 1996, 62:4260-4262
    Selbitschka W, Dresing U, Hagen M, Niemann S, Puhler A. A biological containment system for
    Rhizobium meliloti based on the use of recombination-deficient (recA) strains. FEMS Microbiol Ecol, 1995, 16:223-232
    Lopez-Garcia S L, Vazquez T E, Favelukes G, Lodeiro A R. Rhizobial position as a main determinant in the problem of competition for nodulation in soybean. Environ Microbiol, 2002,4: 216-224
    Smit G, Kijne J W, Lugtenberg B J. Involvement of both cellulose fibrils and a Ca~(2+)-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol, 1987, 169:4294-4301
    Soberon M, Lopez O, Miranda J, Tabche ML, Morera C. Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli. Mol Gen Genet, 1997, 254:665-673
    Soberon M, Morera C, Kondorosi A, Lopez O, Miranda J. A purine-related metabolite negatively regulates fixNOQP expression in Sinorhizobium meliloti by modulation of fixK expression Mol Plant Microbe Interact, 2001, 14: 572-576
    Spaink H P, Wijffelman C A, Okker R J H, Lugtenberg B E J. Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol Biol, 1989, 12:59-73
    Spaink H P, Okker R J H, Wijffelman C A, Tak T, Goosen-de Roo L, Pees E, van Brussel A A N, and B. Lugtenberg J J. Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J. Bacteriol, 1989, 171:4045-4053
    Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A. Goddeeris B, Cox E, Remon J P, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol, 2003. 21:785-789
    Stocker B A. Aromatic-dependent Salmonella as live vaccine presenters of foreign epitopes as inserts in flagellin. Res Microbiol, 1990. 141:787-796
    Sutton W D, Paterson A D. The detergent sensitivity of Rhizobium bacteroids and bacteria. Plant Sci Lett, 1979, 16:377-385
    Szafranski P, Mello C M, Sano T, Smith C L, Kaplan D L, Cantor C R.. A new approach for containment of microorganisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc Natl Acad Sci USA, 1997, 94:1059-1063
    Szeto W W, Nixon B T, Ronson C W, Ausubel F M. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol, 1987, 169:1423-1432
    Tate R, Riccio A, Merrick M, Patriarca E J. The Rhizobium etli amtB gene coding for an NH_4~+ transporter is downregulated early during bacteroid differentiation. Mol Plant Microbe Interact, 1998, 11:188-198
    Tate R, Mandrich L, Spinosa M R, Riccio A, Lamberti A, laccarino M, Patriarca E J. The GstI protein reduces the NH_4~+ assimilation capacity of Rhizobium leguminosarum. The endocytosis as a key step for gene regulation in developing nodules. Mol Plant Microbe Interact, 2001, 14:823-831
    Tate R, Cermola M, Riccio A, laccarino M, Merrick M, Favre R, Patriarca E J. Ectopic expression of the Rhizobium etli amtB gene affects the symbiosome differentiation process and nodule development. Mol Plant Microbe Interact, 1999, 12:515-525
    Timms-Wilson T M, Ellis R J, Renwick A, Rhodes D J, Mavrodi D V, Weller D M, Thomashow L S, Bailey M J. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Micro Int, 2000, 13:1293-1300
    Top E, de Smet 1, Verstraete W, Dijkmans R, Mergeay M. Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol, 1994, 60:831-839
    Tsien H C, Cain P S, Schmidt E L. Viability of Rhizobium Bacteroids. Appl Environ Microbiol, 1977, 34:854-856
    Thony B, Fischer H M, Anthamatten D, Bruderer T, Hennecke H. The symbiotic nitrogen fixation regulatory operon (fixRnifA) of Bradyrhizobium japonicum is expressed aerobically and is subject to a novel, nifA-independent type of activation. Nucleic Acids Res, 1987. 15:8479-8499
    Torres B, Jaenecke S, Timmis K N, Garcia J L, Diaz E A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology, 2003, 149: 3595-3601
    Trinchant J C, Guerin V, Rigaud J. Acetylene reduction by symbiosomes and free bacteroids from broad bean (Vicia faba L.) nodules: role of oxalate. Plant Physiol, 1994. 105:555-561
    Triplett E W. Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol, 1990, 56:98-103
    Udvardi M K, Salom C L, Day D A. Transport of L-glutamate across the bacteroid membrane but not the peribacteroid membrane from soybean root nodules. Mol Plant Microbe Interact, 1988. 1:250-54
    van Dillewijn P, Soto M J, Villadas P J. Toro N. Construction and environmental release of a Sinorhizobium meliloti strain more competitive for alfalfa nodulation. Appl Environ Microbiol. 2001,67:3860-3865
    van Elsas J D. Bailey M J. The ecology of transfer of mobile genetic elements. FEMS Microbiology Ecology, 2002, 42: 187-198
    
    van Rhijn P and Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995. 59:124-42
    van Slooten J C, Bhuvanasvari T V. Bardin S, Stanley J. Two C_4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. Mol Plant Microbe Interact, 1992, 5:179-186
    van Workum WAT, Canter-Cremers H C J, Wijfjes A H M, van der Kolk C, Wijffelman C A, and Kijne J W. Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. Mol Plant Microbe Interact, 1997. 10:290-301
    van Workum WAT, van Slageren S, van Brussel A A N, and Kijne J W. Role of exopolysaccharides of Rhizobium leguminosarum bv. viciae as host plant-specific molecules required for infection thread formation during nodulation of Vicia sativa. Mol Plant Microbe Interact, 1998. 11:1233-1241
    Vasse J, de Billy F, Camut S, Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol, 1990, 172:4295-4306
    Verma DPS, Hong Z L. Biogenesis of the peribacteroid. membrane in root nodules. Trends Microbiol. 1996,4:364-368
    Wang L X, Wang Y, Pellock B, and Walker G C. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriol. 1999,181:6788-6796
    Wang S P, and Stacey G. Ammonia regulation of nod genes in Bradyrhizobium japonicum. Mol Gen Genet, 1990,223:329-331
    Waters J K, Hughes B L, Purcell L C, Gerhardt K O, Mawhinney T P, Emerich D W. Alanine, not ammonia, is excreted from N_2-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA, 1998,95:12038-12042
    Weber P C, Ohlendorf D H, Wendoloski J J, Salemme F R. Structural origins of high-affinity biotin binding to streptavidin. Science, 1989, 243:85-88
    Whitehead L F, Tyerman S D, Salom C L, Day D A. Transport of fixed nitrogen across symbiotic membranes of legume nodules. Symbiosis, 1995, 19:141-154
    Williams M N V, Hollingsworth R I, Klein S, and Signer E R. The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by lpsZ , a gene involved inlipopolysaccharide synthesis. J Bacteriol, 1990, 172: 2622-2632
    Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow J K, Downie J A. N-Acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol, 2002. 184:4510-4519
    Wilmut I, Schnieke A E, Mc Whir J, Kind A J, Campbell K H S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385: 810-813
    Witty J F. Microelectrode measurements of hydrogen concentrations and gradients in legume nodules. J Exper Bot, 1991,42:20-36
    Worland S, Guerreiro N, Yip L, Djordjevic M A, Weinman J J, Djordjevic S P, Rolfe B G Rhizobium purine auxotrophs, perturbed in nodulation, have multiple changes in protein synthesis. Aust J plant Physiol, 1999,26:511-519
    You Z, Gao X, Ho M M, Borthakur D. A tomatin-like protein, encoded by the slp gene of Rhizobium etli is required for nodulation competitiveness on the common bean. Microbiology, 1998, 144:2619-2627
    Yuen J P Y and Stacey G. Inhibition of nod gene expression in Bradyrhizobium japonicum by organic acids. Mol Plant Microbe Interact, 1996. 9:424-428
    Zambryskep. Ti plasmid vector for the introduction of DNA into plant cells without alternation of their normal regulation capacity. EMBO J, 1983. 2:2143-2150
    Zhou J C, Tchan Y T, Vincent J M. Reproductive capacity of bacteroids in nodules of Trifolium repens L. and Glycine max (L.) Merr. Planta. 1985, 163:473-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700