耐酸苜蓿根瘤菌的定殖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿是一种优质豆科牧草,有“牧草之王”的美称。近年来,随着对紫花苜蓿需求量的增加,紫花苜蓿产业化进程加快,苜蓿在酸性土壤上种植的呼声也愈高。在我国,紫花苜蓿主要种植在北方中性和碱性土壤上。随着西部大开发和退耕还林还草工作的进一步深入,我国实施了“北草南引”的计划。“北草南引”是推进紫花苜蓿在我国南方种植的重大举措。然而,我国南方酸性土壤分布广、面积大,紫花苜蓿是对酸最敏感的豆科牧草,酸性土壤的存在严重阻碍了紫花苜蓿的“北草南引”及其产业化进程。因此在南方酸性土壤上接种耐酸根瘤菌建立高效共生抗逆系统显得尤为重要。
     苜蓿根瘤菌与苜蓿的共生是长期以来研究苜蓿的重要方面,高效耐酸苜蓿根瘤菌接种苜蓿将有助于在我国南方建立抗逆的苜蓿高效固氮系统。随着豆科植物在酸性土壤中的应用日益推广,接种耐酸根瘤菌已经作为提高酸性土上豆科牧草产量和品质的重要途径。而所接种根瘤菌在土壤中生存定殖能力的强弱直接影响着接种的效果。同时,根瘤菌施入土壤以后,对根际其他微生物和微生物生物量均有一定的影响。因此,加强根瘤菌根部定殖的研究对于揭示有益细菌在根圈的微生态学特征、提高其根际适应性和增产效果的稳定性具有十分重要的意义。
     同时,Ca~(2+)作为一种信号传递因子,是一种能促进苜蓿根瘤菌耐酸的重要因子,其促进苜蓿根瘤菌及其共生系统耐酸的作用已得到了一定的研究。因此,本研究在缙云山酸性土壤上接种耐酸苜蓿根瘤菌,并施用不同浓度的Ca~(2+),探讨其在酸性土壤上的定殖及其对苜蓿根际土壤微生态环境的影响,进而分析了施Ca~(2+)和接种耐酸苜蓿根瘤菌对紫花苜蓿共生效应的影响。可以为在南方紫花苜蓿新种植区接种高效耐酸苜蓿根瘤菌提供一定的理论和技术依据。研究的主要结果如下:
     1.采用裂区设计缺三区处理,在缙云山酸性土壤中(pH4.6)接种三株由本实验室分离的耐酸苜蓿根瘤菌91522、91512、91532,并施用不同浓度的Ca~(2+)(0mmol/L、5mmol/L、10mmol/L),结果表明:三种耐酸苜蓿根瘤菌均能在酸性土中定殖,且定殖动态基本一致,三种供试菌株与对照相比,其定殖数量没有显著性差异,但三种供试菌株的定殖数量均高于对照,以接种菌株91512和91532的效果最好。施Ca~(2+)处理对根瘤菌定殖影响不明显,但仍以施5mmol/LCa~(2+)时,定殖效果最佳。说明接种耐酸根瘤菌并施用适当浓度的Ca~(2+),对根瘤菌在酸性土壤中的定殖有一定的促进作用;
     2.施Ca~(2+)和接种耐酸苜蓿根瘤菌对苜蓿根际土壤微生物数量及其生物量的影响明显,其差异达到显著和极显著水平。其中,接着耐酸苜蓿根瘤菌后,细菌、真菌和微生物生物量均显著增加,而放线菌数量稍增加,未达到显著性差异。而三种菌株(91522、91512、91532)之间差异不显著。施Ca~(2+)仅对细菌数量有显著性增加,而对其它微生物未产生显著性影响。可见在酸性土壤上,接种耐酸苜蓿根瘤菌和施Ca~(2+),改变了根际营养成分,有利于微生物的生长繁殖,从而使土壤的微生态环境得到改善,提高了微生物数量和微生物生物量;
     3.接种耐酸苜蓿根瘤菌后土壤微生物数量及其微生物生物量与对照相比,在大部分月份均明显增加,达到显著和极显著水平。四个处理的三大类微生物数量及其生物量均在6月份达到最大值。可见,随着根瘤菌的定殖,植株根系的生长发育,根系分泌物随之增加,为根际微生物提供了大量的能源,再加上土壤适宜的温湿条件,有利于各种微生物的生长繁殖。因而,使微生物的数量和微生物生物量达到了最大值;
     4.检测了施Ca~(2+)和接种耐酸苜蓿根瘤菌对紫花苜蓿共生效应的影响。结果表明,接种耐酸苜蓿根瘤菌和施Ca~(2+)对苜蓿植株瘤重、根鲜重、株高和植株上部鲜重的影响显著。其中接种菌株91512对苜蓿瘤重、株高和地上部鲜重的影响最大,根鲜重则以接种菌株91532的效果最好;而施Ca~(2+)处理则以施5mmol/LCa~(2+)时对共生效应的影响最大。说明接种耐酸苜蓿根瘤菌、施用适当浓度的Ca~(2+)以及共生系统良好的结瘤性能能够提高酸性土上紫花苜蓿的产量和品质;
     5.施Ca~(2+)和接种耐酸苜蓿根瘤菌对酸性土壤中土壤的养分状况有所改善,接种耐酸苜蓿根瘤菌和施Ca~(2+)5mmol/L对土壤氮有明显的影响。各处理中,土壤交换性钙的含量均减少,而施5mmol/L的Ca~(2+)处理,土壤中交换性钙减少最少。总体上看,除土壤中交换性钙含量减少,土壤全磷保持不变外,其余土壤养分含量均有所增加,但影响不显著。说明施Ca~(2+)和接种耐酸苜蓿根瘤菌,改善了苜蓿植株的营养条件,促进了苜蓿根系的生长和代谢,进而促进根际微生物的生长和繁殖,使土壤的微生态环境得到改善,从而加速土壤养分的积累,提高了土壤的肥力。
Alfafa is a high quality leguminous pasture, which is known as "kingdom of pasture". Recent years, the industrialization of alfafa is developing quickly with the increasing requirement, thus the demand is more that planting alfafa on the acid soil. In our country, alfafa mainly grow on the neutral and alkalescent soil in the north. With western exploition and the development of returning farmland to forestry and grassland, our county implied the plan of "bringing north pasture to south". This implement is an important action to boost the planting of alfafa. However, acid soils have a wide distribution and vast area in the south of China, in addition, alfafa is the most sensitive leguminous pasture, the existence of acid soils badly hampered the implement of "bringing north pasture to south" and the industrialization of alfafa. So it is important to establish a accrete system of highly effective and adversity resistance.
     The symbiosis of rhizobium and alfafa is an important aspect in the field of alfafa research, inoculating highly effective acid-tolerant rhizobium of alfalfa will help to establish an alfafa accrete system of highly effective and adversity resistance in the south of our country. With the increasingly spread of leguminous plant on acid soil, inoculating acid-tolerant rhizobium has already been an important approach to improve the yield and quality of leguminous pasture on the acid soil. However, the degree of viability and rhizobium colonization directly affects the inoculating effect. At the same time, rhizobium will affects other microorganism or microbial biomass to some distance after inoculating in the soil. So, it has a very important significance to strengthen the research of rhizobium colonization on the root, and it will help to discover the microecology characters of plant growth-promoting rhizobacteria, improve the adaptability in . rhizosphere and the stability of increase production.
     Meanwhile, as an ingredient that can transfer signal, Ca~(2+) is a vital factor which can promote the acid-tolerant ability of rhizobacteria. Thus, we studied that acid-tolerant rhizobium was inoculated on the acid soil in Jinyun mountain, and Ca~(2+) solution of three concentrations were applied on the soil, and discussed the rhizobium colonization on the acid soil and the effect that applying Ca~(2+) affected the soil microecological environment, then analyzed the affection of applying Ca~(2+) and inoculating acid-tolerant rhizobium to the symbiosis effect of rhizobium and alfafa. These can supply some theory and technology gist on the inoculating highly effective acid-tolerant rhizobium on the new south alfafa plantation. The main results followed:
     1.Bifida zone design which was lack of three zones was used, three strains of acid-tolerant rhizobium of alfalfa (91522、91512、91532) our lab had got were inoculated on the alfalfa, while Ca~(2+) solution of three concentrations (0mmol/L、5mmol/L、10mmol/L) were applied on the soil(pH4.6). The results showed that all the three strains of acid-tolerant rhizobium of alfalfa could colonize on the acid soil, and the trends of colonization were basically consistent. Compared with the control, the colonization amount of all the three strains had no significant difference, but the three strains in the experiment all had higher colonization amount than that of control, the best effects appeared in inoculating the strains named 91512 and 91532. The treatments which were applied Ca~(2+) didn't affect the rhizobium colonization significantly, but applying 5mmol/LCa~(2+) showed a best colonization effect. These indicated that inoculating acid-tolerant rhizobium and applying Ca~(2+) of suitable concentration will promote the colonization of rhizobium on the acid soil.
     2.Applying Ca~(2+) and inoculating acid-tolerant rhizobium of alfalfa could evidently affected the number of microorganism and microbial biomass in the .rhizosphere. The difference reaches a significant and very significant level. After inoculating acid-tolerant rhizobium of alfalfa, the number of bacteria、fungi and biomass increased significantly, actinomycetes increased a little but didn't reaches the significant level. The difference among the three strains wasn't significant. Applying Ca~(2+) only increased the number of bacteria significant, but not affected other microorganism significantly. It is obvious that inoculating acid-tolerant rhizobium of alfalfa and applying Ca~(2+) changed the nutrition ingredient of rhizosphere on the acid soil, it helped the microorganism to grow and propagation, so the microecological environment in the soil was meliorated, the number of microorganism and microbial biomass has also been increased.
     3.Compared to the control, after inoculating acid-tolerant rhizobium of alfalfa, the number of microorganism and microbial biomass had significant and very significant difference in most of the evaluating months. The number of microorganism and microbial biomass of three big types in the four treatments reached the maximum in June. It was obvious that with the colonization of rhizobium and the growth of plant roots, the increasing rhizosphere secretion provide large energy for rhizosphere microorganism, addition with the warm and wet condition of soil, all kinds of microorganism could grow and propagate quickly. Thus the number of microorganism and microbial biomass reached the maximum.
     4.Test the symbiosis of rhizobium and alfafa by inoculating acid-tolerant rhizobium and applying Ca~(2+). The results showed that inoculating acid-tolerant rhizobium and applying Ca~(2+) affected significantly on root fresh weight, plant height, fresh weight upground and nodule weight. Strain 91512 affected greatly on plant height, fresh weight upground and nodule weight, root fresh weight was affected greatly by strain 91532; by applying calcium 5mmol/L, the best symbiosis effect on alfalfa were gained, which showed that moderately calcium and acid-tolerant rhizobium of alfalfa were able to improve yield and quality of alfalfa.
     5.Inoculating acid-tolerant rhizobium and applying Ca~(2+)can ameliorated the nutrition condition in the acid soil, acid-tolerant rhizobium and Ca~(2+) 5mmol/L greatly affected the total nitrogen of soil. In every treatment, exchangeable calcium of acid soil decreased, the least of decreased exchangeable calcium of acid soil was discovered in the Ca~(2+) 5mmol/L treatment. All soil nutrition increased not significantly, except that exchangeable calcium decreased and total P keep the number. It indicated that acid-tolerant rhizobium and Ca~(2+) ameliorated the nutrition condition that alfafa needed during their growing, promoted the growth and metabolism of alfafa roots, thus accelerated the upgrowth and propagation of rhizosphere microorganism, which can ameliorated the microecologica! environment and speed up the accumulation of soil nutrition, accompanied the improvement of soil fertility.
引文
[1] 车晋滇编著.紫花苜蓿栽培与病虫草害防治.北京:中国农业出版社,1-3
    [2] 王勇,刘学义.苜蓿产业发展前景.内蒙古农业科技,2004,(1):45-46
    [3] 康爱民,龙瑞军,师尚礼等.苜蓿的营养与饲用价值.草原与草坪,2002,(3):31-33
    [4] 田丽萍,刘青广,刘刚.苜蓿综合利用及深加工进展.江西饲料,2004,(5):26-28
    [5] 薛琳,田丽萍,刘青广.苜蓿保健产品加工新技术.农业科技通讯,2004,11:42
    [6] Summer ME, H Shahandeh, J Bouton, et al. Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci Soc Am J, 1986, 50:1254-1258
    [7] 丁武.影响根瘤菌竞争结瘤的生态学因素分析.生态学杂志,1992,11(4):50-54
    [8] Castro-Sowinski S, Carrera I, Catalan AI, et al. Occurrence, diversity and effectiveness of mid-acid tolerant alfalfa nodulating rhizobia in Uruguay. Symbiosis (Rehovot), 2002, 32(2): 105-118
    [9] Segundo E, Martinez-Abarca F, Dillewijn P, et al. Characterisation of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiology Ecology, 1999, 28 (2): 169-176
    [10] Papa MF, Balague LJ,Sowinski SC, et al.Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of Central Argentina and Uruguay. Applied & Environmental Microbiology, 1999, 65(4): 1420-1427
    [11] 孟庆杰,王光全.生物固氮及其应用.生物学教学,2004,29(5):6-7
    [12] 陈文新.豆科植物根瘤菌-固氮体系在西部大开发中的作用.草地学报,2004,12(1):1-2
    [13] Bosworth AH,williams MK,Albrecht KA. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and or modified. Applied and Environmental Microbiology, 1994,60:3815-3832
    [14] 宁国赞,李元芳,刘惠琴,等.紫花苜蓿接种根瘤菌的效果.草业科学,1992,9(1):50-51
    [15] 陈丹明,曾昭海,隋新华,等.紫花苜蓿高效共生根瘤菌的筛选.草业科学,2002 19(6):27-31
    [16] 曾昭海,隋新华,胡跃高,等.紫花苜蓿-根瘤菌高效共生体筛选及共生田间作用效果-草业学报,2004,13(5):95-100
    [17] 宁德年.豆科牧草根瘤菌接种效果试验.甘肃农业,2006,5:110
    [18] 钟文文,张小平,Kristina Lindstrom.高效苜蓿根瘤菌的筛选.西北农业学报,2006,15(3):69-74
    [19] 赵士豪,王来福,陈文新.根瘤菌对紫花苜蓿接种效果的初步研究.河北省科学院学报,2005,9:63-66
    [20] Guan GL(关桂兰),Su Y(苏云),Wang WW(王卫卫). Hydrogen uptake and nitrogen fixing of noduled leguminous plants in Xinjiang arid area. Arid Zone Research(干旱区研究),1990,7:9-14.
    [21]GuanGL(关桂兰),Wang WW(王卫卫),Yang YS(杨玉锁).Nitrogen Fixation Biological Resource in Xingjiang Arid Region(新疆干旱区生物固氮资源).Science Press,Beijing.1991
    [22]李颖,阮小超,陈文新.宁夏沙坡头地区根瘤菌特性分析Ⅰ数值分类研究.中国农业大学学报,1996,1(5):15-20
    [23]韦革宏,龚明福,吕双庆.中国帕米尔高原根瘤菌-豆科植物共生资源调查.西北植物学报,2005,25(8):1618-1622
    [24]陈文新.新疆地区豆科根瘤菌特性分析(一).土壤肥料,1984,(3):4-7
    [25]关桂兰,郭沛新,王卫卫,等.新疆干旱地区根瘤菌资源研究:Ⅱ根瘤菌抗逆性及生理生化反应特性.微生物学报,1992,32(5):346-352
    [26]黄玲,石玉瑚,吴祖银.新疆部分豆科植物根瘤菌的某些耐性试验.微生物学通报,1990,17(3):130-133
    [27]王卫卫,胡正海,关桂兰,等.新疆干旱地区根瘤菌共生固氮特性研究.中国水土保持,2002,7:35
    [28]贺学礼,韦革宏,赵丽莉等.陕西豆科固氮植物资源调查及生态分布.陕西农业科学,1996,(1):35-37
    [29]何一,蔡霞,王卫卫.陕西黄土高原四种豆科植物根瘤的比较形态解剖学研究.陕西教育学院学报,2003,19(2):88-92
    [30]黄明勇,张小平,李登煜,等.金沙江干热河谷区土著花生根瘤菌耐旱性初步研究.应用与环境生物学报,2000,6(3):263-266
    [31]陈文新.土壤中影响根瘤菌存活的因素.土壤学进展,1986,(5):17-20
    [32]李力,曹凤明,徐玲玫,等.花生根瘤菌昀抗逆性初步研究.微生物学通报,2000,27(1):42-47
    [33]黄宝灵,吕成群,韦原莲,等.相思树种根瘤菌的若干抗逆性.南京林业大学学报,2004,28(1):29-32
    [34]李兴芳,樊妙姬,蒋艳明,等.相思根瘤菌的抗逆性初步研究.广西科学,2003,10(4):312-314
    [35]何恒斌,贾昆峰,贾桂霞,等.沙冬青根瘤菌的抗逆性.植物生态学报,2006,30(1):140-146
    [36]高丽锋,邓馨,王洪新,等.毛乌素沙地中间锦鸡儿根瘤菌的多样性及其抗逆性.应用生态学报,2004,15(1):44-48
    [37]王庆,方平.蚕豆根瘤菌的分离及生物学特性研究.涪陵师范学院学报,2004,20(5):89-90
    [38]Breedveld MN, Miller KJ. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbial.Rew.,1994,58:145-161
    [39]Miller KJ, Kennedy EP,Reinhold VN. Osmotic adaptation by Gram-negatine bacteria: possible role for periplasmic oligosaocharides. Science,1986,231:48-57
    [40]Miller KJ, Wood JM. Osmoadaptation by rhizosphere bacteria. Armua Review of Microbiology, 1996, 50:101-136
    [41]葛世超,樊振川,陈雪松,等.苜蓿中华根瘤菌与耐盐有关DNA片段的亚克隆和测序分析[J].微生物学报,2001,41(1):9-15
    [42]Sauvage D,Hamelin J,Larher F. Glycine be taine and other structuially telated component improve the salt tolerance of Rhizobium meliloti. Plant Sci. Lett., 1983,31:291-302
    [43] 吴健,杨苏声,李季伦.苜蓿根瘤菌(ghizobium melitoti)的耐盐性研究.微生物学报,1993,33(3):260-267
    [44] Zahran HH, Rasanen LA, Kasisto M, et al.Alteration of hpopolysaccharide an d protein profdes in SDS-PAGE of Rhizobia by osmotic and heat stress.World J. Microbiol. Biotech.,1993,9:354-360
    [45] Lloret J, Bolanos L, Lucas MM, et al.Ionicstress an dos motic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain.Appl Enciron. Microbiol., 1995,61:370-374
    [46] 卞学琳,葛世超,杨苏声.费氏中华根瘤菌与耐盐有关的DNA片段的亚克隆和测序.遗传学报,2000,27(10):925-931
    [47] 葛世超,刘艳宁,杨苏声.费氏中华根瘤菌与耐盐有关基因的克隆及其在大肠杆菌中的表达,遗传学报,2001,28(6):575-582
    [48] Dilworth MJ, Howieson JG, Reeve WG, et al. Acid tolerance in legume root nodule bacteria and selecting for it. Australian Journal of Experimental Agriculture,2001, 41(3): 435-446
    [49] Glenn AR, Dilworth MJ. The life of root nodule bacteria in the acidic underground. FEMS Microbiology Letters, 1994, 123(1/2): 1-9
    [50] Graham W. O'Hara and Andrew R. Glenn. The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Archives of Microbiology,1994,161 (4): 286-292
    [51] M K Sledge, J H Bouton, M Dall'Agnoll, et al. Crop Science. Madison, 2002, 42(4): 1121-1129
    [52] Goss TJ,Hara GWO, Dilworth MJ, et al. Cloning, characterization, and complementation of lesions causing acid sensitivity in Tn5-induced mutants of Rhizobium meliloti WSM419. Journal of Bacteriology, 1990, 172(9): 5173-5179
    [53] Tiwari R.P, Reeve WG, Dilworth MJ, et al. Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 1996, 142:1693-1704
    [54] Wayne GR, Ravi PT, Cheryl MW, et al. The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology, 1998, 144:3335-3342
    [55] Reeve WG,Tiwari RP, Nelson G. Probing for pH-Regulated Proteins in Sinorhizobium medicae Using Proteomic Analysis. Journal of Molecular Microbiology and Biotechnology, 2004, 7:140-147
    [56] Ravi PT, Wayne GR, Beau JF, et al. Probing for pH-Regulated Genes in Sinorhizobium medicae Using Transcriptional Analysis. Journal of Molecular Microbiology and Biotechnology, 2004, 7: 133-139
    [57] Provorov NA, Saimnazarov UB, Tanriverdiev TA. The contributions of plant and bacteria genotypes in the growth and nitrogen accumulation of inoculated alfalfa.Plant and Soil,1994,164:213-219
    [58] 石凤翔等主编.豆科牧草栽培.北京:中国林业出版社,2003:138-146
    [59] 曹景勤.三叶草根瘤菌高效耐酸菌株的选育和应用.土壤肥料,1992,(2):35-38
    [60] 康丽华,李素翠.相思根瘤菌耐酸性研究及耐酸菌株的筛选.林业科学研究,1998,11(6):581-585
    [61] 张学江.研究有机缓冲剂用于耐酸根瘤菌选择.微生物学杂志,1992 12(2):1-5
    [62] 陈今朝,张红,顾素芳,等.快生型豇豆根瘤菌突变株的筛选.四川师范大学学报(自然科学版),2000,23(1):87-89
    [63] Graham PH, Draeger KJ, Ferrey ML, et al. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol, 1994, 40:189-207
    [64] Graham PH, Viteri SE, Mackie F, et al. Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crop Res, 1982, 5:121-128
    [65] Martínez-RE, Segovia L, Mercante FM, et al. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. Trees. Int. J. Syst. Bacteriol, 1991,41: 417-426
    [66] Hernández-Lucas I, Segovia L, Martínez-Romero E, et al. Phylogenetic relationships and host range of Rhizobium spp. That nodulate Phaseolus vulgaris L. Appl. Environ. Microbiol, 1995, 61: 2775-2779
    [67] Streit W, Kosch K, Werner D. Nodulation competitiveness of Rhizobium leguminosarum by phaseoli and Rhizobium tropici strains measured by glucuronidase (gusA) gene fusion. Biol. Fertil. Soils, 1992, 14:140-144
    [68] Vlassak K, Vanderleyden J, Franco A. Competition and persistence of Rhizobiurn tropici and Rhizobium etli in tropical soil during successive bean (Phaseolus vulgaris L.) cultures. Biol. Fertil. Soils, 1996, 21:61-68
    [69] Slattery JF, Coventry DR. Acid-tolerance and symbiotic effectiveness of Rhizobium leguminosarum bv. Trifolii isolated from subterranean clover growing in permanent pastures. Soil Biology & Biochemistry, 1995, 27(1): 111-115
    [70] Brose E. Rhizobia selection for white clover in acid soil. Pesquisa Agropecuaria Brasileira, 1994, 29(2): 281-285
    [71] Castillo CB. Tolerance of Rhizobium trifolii to acidity. Revista Pastos, 1989, 39: extraordinario, 181-188
    [72] Richardson AE, Simpson RJ. Acid-tolerance and symbiotic effectiveness of Rhizobium trifolii associated with a Trifolium subterraneum L.-based pasture growing in an acid soil. Soil Biology & Biochemistry, 1989, 21(1): 87-95
    [73] Slattery JF, Coventry DR. Persistence of introduced strains of Rhizobium leguminosarum bv trifolii in acidic soils of north-eastern Victoria. Australian Journal of Experimental Agriculture, 1999, 39(7): 829-837
    [74] Chen H, Richardson AE, Gartner E, et aL Construction of an acid-tolerant Rhizobium leguminosarum biovar trifolii strain with enhanced capacity for nitrogen fixation. Appl Environ Microbiol, 1991, 57(7): 2005-2011
    [75] Chen H, Richardson AE, Rolfe BG. Studies of the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Applied & Environmental Microbiology, 1993, 59(6): 1798-1804
    [76] Dear BS, Jenkins L. Persistence, productivity and seed yield of Medicago murex, M. truncatula, M. culeate and Trifolium subterraneum on an acid red earth soil in the wheat belt of eastern Australia. Australian Journal of Experimental Agriculture, 1992, 32(3): 319-329.
    [77] Howieson JG, Ewing MA. Acid tolerance in the Rhizobium meliloti-Medicago symbiosis. Australian Journal of Agricultural Research, 1986, 37(1): 55-64
    [78] 汤江武,薛智勇,水建国,等.浙春2号接种耐酸大豆根瘤菌的效果.浙江农业科学,2003,(1):33-34
    [79] 洪健尔.银合欢耐酸根瘤菌株的分离和应用.土壤,1989,(4):210-211
    [80] Tiwari R.P, Reeve WG, Glenn AR. Mutations conferring acid sensitivity in the acid-tolerant strains Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiol Letters, 1992, 100:107-112
    [81] Howieson JG, Ewing MA, Thorn CW, et al. Increased yield in annual species of Medicago grown in acidic soil in response to inoculation with acid tolerant Rhizobium meliloti. Developments in Plant & Soil Sciences, 1991, 45:589-595
    [82] Kloepper JW, Zablotowicz RM, Tipping EM, et al. Plant growth promotion mediated by bacterial. rhizosphere colonizers. The Rhizosphere and Plant Growth. Dordrecht Kluwer Academic Publishers, 1991; 315-326
    [83] 潘超美,郭庆荣,邱桥姐,等.VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,2000,9:(4)304-306
    [84] 罗红燕.VA菌根真菌对烤烟生长及根际土壤微生态环境的影响,西南农业大学硕士学位论文,2002.6
    [85] Linderman RG. Mycorrhizal interaction with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology, 1988 78(3): 366-371.
    [86] Kothari SK, Marschner H. Romheld V Effect of a vestcular arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize(zea mays L). New phytol. 1991. 117:649-655.
    [87] 杜寒春.根瘤菌对禾本科作物生长的促进作用研究.南京农业大学硕士学位论文2005,8
    [88] 李友国,周俊初.2株重组根瘤菌在4个大豆品种根圈中定殖动态的比较研究.华中农业大学学报, 2002,21(6):531-534
    [89] 李友国,周俊初.费氏中华根瘤菌HNO1DL在大豆根圈的定殖动态与结瘤研究.应用生态学报,2003,14(8):1283-1286
    [90] 王平,冯新梅,李阜棣.发光酶基因标记的华癸根瘤菌JS5A16L在紫云英根圈的定殖动态.土壤学报,2001,38(2):265-270
    [91] Moawad H, El-Rahim WMA, El-Aleem DA, et al. Persistence of two Rhizobium etli inoculant strains in clay and silty loam soils. Journal of Basic Microbiology, 2005, 45(6): 438-446.
    [92] 李友国,周俊初.消除共生质粒的费氏中华根瘤菌HND29SR在大豆根圈的定殖动态.生态学报,2002,22(9):1420-1424
    [93] Berg RK, Loynachan TE, Zablotow icz RM, et al. Nodule occupancy by introduced Bradyrhizobium japonicum in Iowa soils. Agron. J., 1988, 80:876-881
    [94] Reyes VG, Sehmidt E. Population densities of Rhizobium japonicurn strain 123 estimated directly in soil and rhizospheres. Appl Environ Microbiol, 1979, 37:854-858
    [95] 李友国,周俊初.接种量对费氏中华根瘤菌HNO1DL根圈定殖与结瘤的影响.生态学杂志,2004,23(2):19-21
    [96] Mercante FM, Rumjanek NG, Franco AA. Applications of markers genes on ecologic microbial studies with enphasis on GUS system. Ciencia Rural. 2000, 30(3): 533-539
    [97] Jyrki Pitkaijarvi, Leena A. Rasanen, Jenny Langenskiold, Kaisa Wallenius, Maarit Niemi, Kristina Lindstrom.Persistence, population dynamics and competitiveness for nodulation of marker gene-tagged Rhizobium galegae strains in field lysimeters in the boreal climatic zone. FEMS Microbiology Ecology, 2003, 46(1): 91-104
    [98] 胡小佳,江木兰,张银波.巨大芽孢杆菌在油菜根部定殖和促生作用的研究.土壤学报,2004,41(6):945-948
    [99] 张晓霞,王平,冯新梅,胡正嘉.外源基因标记的紫云英根瘤菌在水稻根部的定殖研究.生态学报,2003(4):771-776
    [100] Lawrence JR, Delaquis PJ, Korber DR, et al. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol, 1987, 14:1-14
    [101] 李新民,窦新田,刘庆学,等.黑龙江省土著大豆根瘤菌数量分布及接种菌在土壤中生存定殖能力的研究.黑龙江农业科学,1997,5:24-27
    [102] 窦新田,李新民,王玉峰.黑龙江省土著大豆根瘤菌的数量分布及共生结瘤特性.土壤通报,1997,28(1):44-45
    [103] Hurse LS, Date RA. Competitiveness of indigenous strains of Bradyrhizobium on Desmodium intortum cultivar greenleaf in three soils of south east Queensland. Soil Biol. Biochem., 1992, 24: 41-50
    [104]陈文新,李阜棣,闫章才.我国土壤微生物学和生物固氮研究的回顾与展望.世界科技研究与发展,2002(4):7-12
    [105]胡振宇,黄怀琼,刘世全.快生型花生根瘤菌株与土著性根瘤菌竞争结瘤能力的探讨.四川农业大学学报,1994,12:12-18
    [106]窦新田,李树藩,李晓鸣,等.大豆根瘤菌(Bradyrhizobium japonicurn)在黑龙江省接种效果与接种有效性的研究.中国农业科学,1989,22(3):62-70
    [107]赵丹丹,李涛,赵之伟.丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展.生态学杂志,2006,25(3):327-333
    [108]曹景勤.影响三叶草根瘤菌生存条件的研究和分析.微生物学通报,1994,21(4):199-201
    [109]Elizabeth LJW, Graham WO, Andrew RG. Physiological responses to acid stress of an acid-soil tolerant and an acid-soil sensitive strain of Rhizobium eguminosarum biovar trifolii. Soil Biol. Biochem., 2003,35:621-624
    [110]杨江科,周琴,周俊初.pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响.应用生态学报,2001,12(4):639-640
    [111]CHEN Guo-Chao, HE Zhen-Li, WANG Yi-Jun. Impact of pH on Microbial Biomass Carbon and Microbial Biomass Phosphorus in Red Soils. Pedosphere, 2004, 14(1): 9-15
    [112]姜云植,张梅芳.豌豆簇根瘤菌菌株分离筛选及某些因素对结瘤的影响.广西农学院学报,1992,11(2):30-36
    [113]Brockwell J, Pilka A, Holliday RA. Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-euhivated soils in central New South ales.Australian J.of Exp.Agrie. 1991,31:211-220
    [114]Trotman AP, Weaver RW. Tolerance of clover Rhizobia to heat and desiccation stresses in soil. Soil. Sci. Soc. Am J, 1995, 59(2): 466-470
    [115]刘默涵,阮维斌,宁忠,等.内蒙古中东部地区几种豆科牧草根瘤菌的表型多样性及水分梯度对其分布的影响.应用与环境生物学报,2003,9(4):391-394
    [116]Beauchamp CJ, Kloepper JW, Antoun H. Detection of genetically engineered biolumjnescent Pseudomonads in potato rhizosphere at diverent temperatures. Microbial Relenses, 1993, 1:203-207
    [117]Mahler RL, Wollum AG. Seasonal variation of Rhizobium meliloti in alfalfa hay and cultivated fields in North Carolina. Agronomy Journal, 1982, 74(3):428-431
    [118]Watkin ELJ, O'Hara GW, Glenn AR. Calcium and acid stress interact to affect the growth of Rhizobium leguminosarum bv. Trifolii. Soil Biol. Biochem., 1997, 29:1427-1432
    [119]Reeve WG, Tiwari RP, Dilworth MJ, et al.Calcium affects the growth and survival of Rhizobium meliloti. Soil Biology & Biochemistry, 1993, 25(5): 581-586
    [120]Maccio D, Fabra A, Castro S. Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biology & Biochemistry, 2002, 34(2): 201-208
    [121] Jjemba PK, AIexander M. Possible determinants of rhizosphere competence of bacteria. Soil Biol. Biochem, 1999, 31: 623-632
    [122] Patrick HNI, Lowther WL. Influence of the number of rhizobia on the nodulation and establishment of Trifolium ambiguum. Soil Biol. Biochem., 1995, 27(4): 717-720
    [123] 王福生,李阜棣,陈华癸.土壤中大豆根瘤菌之间竞争结瘤的研究111接种菌量对大豆生长的影响.土壤学报,1989,26(4):388-392
    [124] 张学江,江木兰,姚瑞林,等.花生根瘤菌数量效应与种床接种效果.中国油料,1991(2):56-59
    [125] Singleton PW, Tavares JW. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Applied Environmental Microbiology, 1986, 51: 1013-1018
    [126] Theis JE, Singleton PW, Bohlool BB. Influence of the size of indigenous Rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field grown legumes. Applied and Environmental Microbiology, 1991, 57(1): 19-28
    [127] 吴建峰,林先贵.土壤微生物在促进植物生长方面的作用.土壤,2003,(1):18-21
    [128] 陆雅海,张福锁.根际微生物研究进展.土壤,2006,38(2):113-121
    [129] 张小冰.根系分泌物及其作用.生物学教学,2004,29(11):6-8
    [130] Darcy LA, Jay M. Study of soybean and lentil root exudates:Ⅲ. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizosphere micro-organisms. Plant and Soil,1987,101:267-272
    [131] Hartwig UA, Maxwell CA, Joseph CM, et al. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol, 1990, 92(1): 116-122
    [132] Masaoka Y, Koshino H, Arakawa Y, et al. Growth-promoting effect of root exudates of Fe-deficient alfalfa on Rhizobium meliloti. In Plant Nutrition for Sustainable Food Production and Environment. Proceeding of Ⅷ international plant nutrition colloquium, Tokyo, Japan,1997:505-506
    [133] 陈龙池,廖利平,汪思龙,等.根系分泌物生态学研究.生态学杂志,2002,21(6):57-62
    [134] LI Qing-Man, WANG Xing-Xiang, BI Shu-Ping. Impacts of Choerospondias axillaris growth on acidity of Udic Ferrosols in subtropical China Pedosphere. 2005, 15(1): 95-102
    [135] 尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理.植物生理与分子生物学学报,2005,31(2):111-118
    [136] 许信玲,肖祥希,谢一青,等.果园土壤酸化及铝毒矫治的研究.土壤,2005,37(5):541-544
    [137] 徐仁扣,季国亮.低分子有机酸对可变电荷土壤中铝吸附的影响.土壤学报,2004,41(1):144-147
    [138] Hashem FM, AngleJ S. Rhizobiophage effects on Bradyrhizobium. japonicum, nodulation and soybean, growth: Soil Biol.Biochem., 1988, 20:69-73
    [139] Angle JS, Pugashetti BK, Wagner GH. Fungal effects on Rhizobium japonicum soybean symbiosis. Agron.J., 1981, 73:301-306
    [140]Berggren I, Alstrom S, van Vuurde JWL, et al. Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida. FEMS Microbiology Ecology, 2005, 52(1): 71-78
    [141]董昌金.根瘤菌与AM真菌双接种对大豆植株生长的影响.湖北农业科学,2004(5):41-43
    [142]李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用.中国农业大学学报,2004,9(1):11-15
    [143]王创,郑慧芬,何绍江,等.用gfp基因检测饭豆根瘤菌的侵染途径和定殖动态.生物学杂志,2004(12):14~16
    [144]冯娜,郑慧芬,何绍江,等.用gfp基因检测饭豆根瘤菌在饭豆根部的定殖动态.华中农业大学学报,2005(2):49-51
    [145]Kochain LV. Cellular mechanisms of aluminium toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol, 1995, 46:237-260
    [146]李庆逵主编.中国红壤.北京:科学出版社.1983,74-193
    [147]戴冠英.我国苜蓿产品出口前景和当前面临的主要问题.草业科学,2002,19(8):71-72.发展紫花苜蓿前景广阔.浙江农网:http://www.zjnw.gov.com.
    [148]刘世庆.紫花苜蓿:南方农村一个充满希望的新兴产业-四川吉昌绿业有限公司和广元发展紫花苜蓿牧草产业的调研报告.http://www.xslx.com/htm/jjlc/cyjj/2002-11-9-11110.htm
    [149]南方紫花苜蓿的研究与推广.西南农业大学科技成果.
    [150]玉永雄.苜蓿耐酸性的研究.西南农业大学博士后出站报告.
    [151]张琴,龙娟,张磊,等.不同pH值下接种根瘤菌对紫花苜蓿产量和品质的影响(简报).草业学.报,2006(5):59-62
    [152]Fahraeus G. The infection of clover root hairs by nodule bacteria studied hy a simple glass slide technique. J Gen Microbiol, 1957, 16:374-381
    [153]孙艳玲,郭鹏,刘洪斌,等.基于GIS重庆市土壤养分贫瘠化研究.山地学报(增刊),2002,12(20):125-128
    [154]高振生,马其东,牛志强等.沿海滩涂地区苜蓿根瘤菌接种方法和效果的研究.草地学报,1996,4(4):288-292
    [155]李世清,李生秀.土壤微生物体氮测定方法的研究.植物营养与肥料学报,2000,6(1):75-83
    [156]Shen SM,Pruden G,Jenkinson PS. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomas nitrogen.Soil Biol.Bioehem.,1984,16:437-444
    [157]Paul EA,Juma NG.Mineralization and immobilization of soil nitrogen by microrganisms.Clark F E,Roswall T(eds.).Terrestrial nitrogen cycles.Ecological Bulletins(Stocklem). 1981,33:179-195
    [158]何晓群.现代统计分析方法与应用.北京:中国人民出版社,1998:281-315
    [159]杨民和,王国红Ca~(2+)对植物-微生物互作反应的调控 江西农业大学学报 2001,23(2):203-208
    [160]沈同等.生物化学.北京:高等教育出版社,1991年(第2版)
    [161]廖继佩 林先贵 曹志洪,等.丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响.应用与环境生物学报,2002,8(4):408-413
    [162]赵忠,王真辉.菌根真菌与根际微生物间的关系及其对宿主植物的影响.西北林学院学报2001,16(4):70-75
    [163]白清云.土壤微生物群落结构的化学估价方法.农业环境保护,1997,16(6):252-256
    [164]沈文英,陈祖校.钙锌在鸡腿菇菌丝体中的富集及其生长的影响.绍兴文理学院学报,2001,21(3):57-60
    [165]张昕.植物病原拮抗细菌的发酵条件作用机制及定殖规律的研究.浙江大学博士学位论文 2005
    [166]刘子雄,朱天辉,张健.不同退耕还林模式下土壤微生物区系分析.南京林业大学学报(自然科学版),2005,29(4):45-48
    [167]王岩,黄东迈.土壤微生物量及其生态效应.南京农业大学学报,1996,19(4):45-51
    [168]Wolters V,Joegense RG.Microbial carbon turnover in beech forest soils at different stages of acidification. Soil Biology &Biochemistry,1991,23:897-902
    [169]Brokes PC,Ocio JA.Wu J.The soil microbial biomass: its measurement, properties and role in soil nitrogen and carbon dynamics following substrate incorpo ration.Soil Microorganisms, 1990, 35:39-51
    [170]余波,李志芳.AM菌根真菌和根瘤菌对四季豆生长影响的效应初探.天津农业科学,2003,4
    [171]樊利勤,庄培亮,马兰珍,等.厚荚相思根瘤菌对盆栽苗木生长及土壤肥力的影响.生态科学,2004,23(4):289-291
    [172]肖润林,苏以荣,何铁光,等.桂西北环境移民安置区柑橘园土壤环境动态研究.中国生态农业学报,2005,4(13):135-137
    [173]曹景勤.某些土壤因素对根瘤菌存活影响的研究.土壤肥料,1994,(2):40-42
    [174]Holding AJ, Lowe JF. Some effects of acidity and heavy metals on the rhizobium leguminous plant association. Plant Soil, 1971: 153-166
    [175]Howieson JG, Robson AD, Abbott LK.. Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Australian Journal of Agricultural Research,1992, 43: 765-772
    [176]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响.土壤通报,2002,33(2):145-148
    [177]洪坚平,谢英荷,孔令节,等.矿山复垦区土壤微生物及其生化特性研究.生态学报,2000,20(4):669-672
    [178]张成娥,刘国彬,陈小利.坡地不同利用方式下土壤微生物和酶活性以及生物量特征.土壤通报,1999,30(3):101-103
    [179] Dakora FD Joseph CM.& Phillips DA..Alfalfa(Medicago sativa L.) root exudates contain isoflavonoids in the presence of rhizoibum meliloti. Plant Physiol. 1993,101:819-824
    [180] 宁国赞,刘惠琴,马晓彤.中国豆科牧草根瘤菌大面积应用13年回顾.中国草地,1995,(4):56-59
    [181] María José Soto, Pieter van Dillewijn, Francisco Martínez-Abarca, et al. Attachment to plant roots and nod gene expression are not affected by pH or calcium in the acid-tolerant alfalfa-nodulating bacteria Rhizobium sp. LPU83. FEMS Microbiology Ecology,2004,48:71-77
    [182] 喻文虎,杨鹏翼,贾德荣,等.红豆草、紫花苜蓿根瘤菌接种研究.草业科学,1995,(3):22-25
    [183] Fixen PE and Ludwick AE. Phosphorus and Potassium Fertilizer of Irrigated Alfalfa on Calcareous Soil: Soil Test Maintenance Requirements. Soil Sci. Soc. Am.,1983, 47.
    [184] 宁国赞,刘惠琴,马晓彤.中国苜蓿根瘤菌大面积应用研究现状及展望.首届中国苜蓿发展大会.北京:中国草原学会,2001
    [185] 鲁如坤.土壤植物营养学原理和施肥.北京:化学工业出版社,1998:281-306,412-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700