一体化双丝弧焊电源智能控制策略与工艺性能评定方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前双丝电源存在体积大、协同控制复杂、智能化程度较低的问题,而工艺性能难以定量评定的现状又进一步制约了智能化控制和智能优化技术在双丝电源中的实现。针对上述问题,提出一种能有效解决协同控制问题的一体化设计思想,并就双丝弧焊电源智能控制策略和工艺性能定量评定中的关键和难点问题进行了深入系统的研究。
     提出了基于DSP的一体化双丝弧焊电源的设计方案,通过一个控制系统直接给定两路电流控制信号,同时控制两个有限双极性软开关主回路,解决了协同通信问题。为了指导元器件选择,避免设计的盲目性,进行了建模仿真研究,建立了基于元器件的主电路模型和基于信号流的控制系统模型,实现了两者的联接调试,利用整体仿真模型预测了双丝焊电源的工作过程。
     出于信号降噪的目的,进行了数字滤波算法研究。研究了时滞滤波改进算法、自适应梯度格型改进算法。仿真试验表明时滞滤波改进算法滤波效果好,运行速度快,但算法受电流参数影响较大;自适应梯度格型改进算法在滤波效果、运行时间和光滑度上都有较好的表现。
     研究发现双丝弧焊电源每路送丝速度不仅由自身的电流大小决定,还受到另一路电流大小等多种因素的影响。通过相关分析筛选了4个送丝速度主要影响因素,建立了支持向量机送丝速度预测控制模型。为了获得较好的模型精度,利用网格算法具体研究了参数对模型学习精度和泛化能力的影响。最后利用粒子群智能优化算法对支持向量机模型参数进行了选择。焊接试验结果表明,优化后的模型能取得较好的预测控制效果。
     根据一体化设计思路,进行了控制系统软硬件设计。研究了电流不同脉冲阶段的信号特征,设计了自适应模糊PID控制器,实现PID参数的在线整定。试验表明模糊PID控制器动静特性更为优良。
     从电信号的角度进行了工艺性能定量评定研究。利用样本熵算法分析了电流稳定性,并具体研究了电信号参数对样本熵的影响,设计了双丝定量评定指标。设计了电信号的统计学稳定性评价指标,利用交叉验证思想,对照样本熵指标进行了验证。
     从电弧声入手,分析焊接过程的稳定性和飞溅情况。根据飞溅产生时电弧声能量增大的原理,利用短时能量的累计分布函数和概率分布图设计了统计学量化指标。进一步,利用声谱图研究电弧声的能量变化规律性,寻找时频面上峰值能量曲线,通过样本熵计算峰值能量的稳定度,设计了对应的指标进行定量评定。
     为了避免焊缝质量评定的主观随意性,结合焊缝缺陷分级的国家标准,提出了一种模糊评价的方法。设计实现了级联式焊缝模糊评价模型,从缺陷程度上对焊缝进行了定量评定。
     提出多信息融合的定量评定思想,利用支持向量机对电信号、电弧声、焊缝质量的量化结果建立回归模型,最终实现双丝焊接工艺性能的定量评定。
     在自行搭建的焊接试验平台上对自主开发的一体化双丝弧焊电源进行了性能测试和双丝电流相位关系焊接试验,并对工艺性能进行了定量评定。结果表明,电源性能良好,评定结果可信。在此基础上,设计了一种双丝焊新型互补对称过渡脉冲电流控制方法,并利用正交试验法进行了研究和分析。试验显示,新工艺在稳定性和焊缝成型上具有一定优势。
     综上,一体化双丝机设计思想的提出,解决了双丝焊机协同控制复杂的问题。双丝电源的输入信号数字滤波、送丝速度支持向量机预测、模糊PID控制等智能优化控制策略的研究,为智能化双丝焊电源的进一步开发奠定了基础。电信号、电弧声、焊缝质量定量评定指标和支持向量机多信息融合方法,为焊接工艺性能定量评定寻找了新途径。
At present, double wire welding power source has many shortcomings, such as large size,complex collaborative control and low intelligence. And the performance is difficult toquantitatively assess, which restricts the realization of intelligent control and intelligentoptimization in double wire power. In response to these issues, the integrated design ideas areproposed to solve collaborative control problems. Further, key and difficult problems inintelligent control strategies of double wire arc welding power source and quantitativeassessment of process performance are in depth research.
     The design of integrated double wire arc welding power source based on DSP isproposed. The two current control signals are directly given by single control system thatcontrols two limited bipolar soft switching main circuits simultaneously, which solve thecollaborative communication problems. In order to guide component selection and avoiddesign blindness, modeling and simulation is done. Control system model based on signalflow and main circuit model based on components are established. And the connection anddebug between above two models is realized. The overall simulation model is used to predictthe working process of the double wire welding power.
     For the purpose of the signal noise reduction, digital filtering algorithms, includingdelay filter improved algorithm and adaptive gradient lattice improved algorithm, are studied.The simulation results show that delay filter improved algorithm has good filtering effects andhigh running speed, but it is influenced easily by current parameters. While adaptive gradientlattice improved algorithm has better performance in terms of filtering effect, the running timeand smooth surface.
     The study found that each wire feed speed of double wire arc welding power source isdetermined not only by their current size, but also by the other current size and a variety offactors. Through correlation analysis, four main influencing factors of wire feed speed arescreened out, and support vector machine predictive control model of the wire feed speed isestablished. In order to obtain better accuracy of the model, the impact of parameters on model learning precision and generalization ability is studied by grid algorithm. Finally, themodel parameters of support vector machines are chosen by particle swarm intelligenceoptimization algorithm. Welding test results show that the optimized model can obtain betterpredictive control.
     According to integrated design ideas, the hardware and software of the control system isdesigned. Then the signal characteristics of different current pulse are studied, and adaptivefuzzy PID controller is designed. Finally, online tuning of PID parameters is realized.The experiments show that the static and dynamic characteristics of fuzzy PIDcontroller are superior.
     Process performance is quantitatively assessed from the point of view of electrical signal.The current stability is analyzed by sample entropy algorithm, and the influence of signalparameters on the sample entropy is studied. Double wire quantitative assessment indicatorsand statistical stability evaluation indicators of the electrical signal are designed. Then theindicators are verified in the contrast to sample entropy indicators by the use of crossvalidation ideas.
     Starting from the arc sound, the stability and splash of the welding process is analyzed.According to the principle that the arc sound energy increases when splash occurs, statisticalquantitative indicators are designed by the use of the cumulative distribution function of theshort term energy and probability distribution. Further, by the spectrogram, arc sound energyvariation is studied, and peak energy curve of time frequency surface is searched. The stability of the peak energy is calculated by sample entropy, and the corresponding index isdesigned for quantitative assessment
     In order to avoid the subjective assessment of weld quality, combined with national standards for weld defect classification, a fuzzy evaluation method is proposed. The cascade weldfuzzy evaluation model is designed and implemented for quantitative assessmentof the weld defect.
     The multi information fusion thought for quantitative assessment is presented.Regression model for electrical signal, the arc sound and quantitative results of weld quality isestablished by support vector machine. So the quantitative assessment of double wire weldingperformance is achieved.
     On the self development welding test platform, the performance of self developedintegrated double wire arc welding power source is tested, and the double wire current phaserelationship welding experiment is done. The process performance is assessed quantitatively,too. The results show that the power performance is good, and the assessment results arereliable. On this basis, a new complementary symmetry transition pulse current controlmethod for double wire welding is designed. And the method is analyzed by orthogonal test.Trials have shown that new technology has certain advantages in stability and weld molding.
     In summary, the integrated double wire welding power source solves the problem ofcomplex collaborative control. The intelligent optimization control strategies, such as digitalfiltering of double wire power input signal, support vector machines prediction of the wirefeed speed and fuzzy PID control, lay the foundation for the further development of the intelligent double wire welding power. The method of multi information fused with Electricalsignals, arc sound, quantitative assessment indicators of weld quality and support vectormachine find a new way for quantitative assessment of the welding performance.
引文
[1] J Tu ek. Mathematical modeling of melting rate in twin wire welding[J]. Journal ofmaterials processing technology,2000,100(1):250256
    [2] T. Ashton. Twin arc submerged arc welding[J]. Weld. J.1954,33(4):350355
    [3] D.E. Knight, Multiple electrode welding by``unionmelt'' process, Weld. J.1954,33(4):303312
    [4] Emil F. Steinert, Williamsville, Harry J.B, et al. Twin arc welding system[P].UnitedStates Patent:2673915,19540330
    [5] John A.P, Kenmore, Jan M.R, et al.High speed tandem arc working [P].United StatesPatent:2756311,19560724
    [6] Arthur D, Brampton, Boleslaw Z, et al.Twin pulsed arc welding system [P].UnitedStates Patent:4806735,19890221
    [7] S Goecke, FBTU Berlin, J Hedeg rd, et al. Tandem MIG/MAG Welding [J]. Svetsaren2001,3:2428
    [8]魏占静. TANDEM双丝焊的应用及工艺[EB/OL]. http://www.weldinfo.cn/wz/lunwen/20110528092731.html,20110528
    [9]周大胜,魏占静,王越,等. TANDEM双丝焊在平面分段流水线中厚板拼板焊接中的应用[J].电焊机,2008,38(12):1821
    [10] Fronius. TimeTwin Digital[EB/OL]. http://www.fronius.com/cps/rde/xchg/SID188C9A68B276FC47/fronius_international/hs.xsl/79_4640_ENG_HTML.htm,
    [11]殷树言.高效弧焊技术的研究进展[J].焊接,2006,(10):714
    [12]卢振洋,黄鹏飞,殷树言,等.一种双丝MAG焊接控制方法及其焊接电源[P].中国专利: CN200510077233.2,2005.06.20
    [13] Lin S B, Gang T, Yang C L, et al.An initial study on welding procedure using tandemMIG welding of high streng thaluminum alloy[J]. China Welding,2004,13(2):8185。
    [14]范成磊,孙清洁,赵博,等.双丝窄间隙熔化极气体保护焊的焊接稳定性[J].机械工程学报,2009,45(7):265269
    [15]李桓,梁秀娟,李幸呈,等.高效双丝MIG/MAG脉冲焊系统及工艺[J].焊接,2005,(10):2427.
    [16]牛永,薛海涛,李桓,等.脉冲电压峰值对双丝脉冲MIG焊熔滴过渡及焊缝成形的影响[J].焊接学报,2010,31(1):5054
    [17]曹梅青.双丝间接电弧气体保护焊研究[D].山东大学,2006
    [18]黄石生,蒋晓明,薛家祥,等.双丝高速软开关脉冲MAG焊装备[J].焊接学报,2007,28(3):58.
    [19]吴开源,黄石生,李星林,等.基于数字信号处理器的双丝高速焊数字化协同控制系统[J].机械工程学报,2008,44(9):134140
    [20]李阳,黄石生,陆沛涛,等.双丝脉冲熔化极气体保护焊的数字化协同控制[J].华南理工大学学报(自然科学版),2006,34(2):2226
    [21]成都焊研威达焊接自动化有限公司2008~2009年度科研工作情况简介[J].电焊机,2010,40(2):1819
    [22]北京埃森展会组委会.第十六届北京埃森展会综合技术报告焊接设备[R].北京:北京埃森展会组委会,2011:1759
    [23] Ronald R. Yager, Lotti A. Zadeh. An Introduction To Fuzzy Logic Applications InIntelligent Systems[M]. Norwell: Kluwer Academic Publishers,1992:6996
    [24] Y J Won, H S Cho.A Fuzzy Rule Based Method for Seeking Stable Arc Conditionunder Short Circuiting Mode of GMA Welding Process[J]. Proceedings of theInstitution of Mechanical Engineers, Part I: Journal of Systems and ControlEngineering,1992,206(2):117125
    [25] Koji Hamamoto, Naoki Kawai, Junzo Tanimoto, et al. Arc welding machine[P]. UnitedStates Patent:5270516,19931214
    [26] Sakae Ishikawa. Method for controlling resistance welding using adjustable fuzzyreasoning[P]. United States Patent:5834729,19981110
    [27] M. Fathi, M. Lambrecht. EBFLATSY: a fuzzy logic system to calculate and optimizeparameters for an electron beam welding machine[J]. Fuzzy Sets Syst,1995,69(1):3–13
    [28] Kang M. J, Rhee S. Arc stability estimation and fuzzy control for arc stabilisation inshort circuit transfer mode of CO2arc welding[J]. Science and technology of weldingand joining,2001,6(2):94102
    [29] Marjan Golob, Arpad Koves, Ales Puklavec, et al. Modelling simulation and fuzzycontrol of the GMAW welding process[J]. Barcelona: Proceedings of the15th IFACWorld Congress,2002,7:2426
    [30] Chien Yi Lee, Pi Cheng Tung, Wen Hou Chu. Adaptive fuzzy sliding mode control foran automatic arc welding system[J]. The International Journal of AdvancedManufacturing Technology,2006,29(5):481489
    [31] J.P. Ganjigatti, Dilip Kumar Pratihar. Forward and reverse modeling in MIG weldingprocess using fuzzy logic based approaches[J]. Journal of Intelligent and FuzzySystemS,2008,19(2):115130
    [32] Dimitar Filev, Dave Chesney, Mahmoud El banna, et al. Method for controlling weldenergy[P]. United States Patent:7759596,20100720
    [33]曾敏,曹彪,黄石生,等.脉冲熔化极气体保护焊的模糊控制[J].机械工程学报,2003,39(11):113116
    [34]吴开源,黄石生,蒙永民,等.脉冲MIG焊电弧双模模糊控制[J].控制理论与应用,2006,23(1):7478
    [35]张鹏,李春旭,王珊,等. DSP模糊控制在TIG焊电源中的应用[J].电焊机,2007,37(1):2326
    [36]黄鹏飞,张涛,古金茂,等.基于模糊PI控制的全数字送丝系统研究[J].电焊机,2010,40(7):3337
    [37] C. M. Bishop. Neural Networks for Pattern Recognition[M]. New York: Oxford Univ.Press,1995
    [38] K Andersen, GE Cook, G Karsai. Artificial neural networks applied to arc weldingprocess modeling and control[J]. Industry Applications, IEEE Transactions on,1990,26(5):824830
    [39] G E Cook, R J Barnett, K Andersen. Weld modeling and control using artificial neuralnetworks[J]. IEEE Transactions on Industry Applications,1995,31(6):14841491
    [40] B Irving.Neural networks are paying off on the produetion line[J]. Welding Journal,1997,76(10):5963
    [41] U. Dilthey, J. Heidrich, T. Reichel.On line quality control in gas shielded metal arcwelding using artificial neural networks[J]. Schweissen&Scheiden,1997,49(2):2224.
    [42] K. M. Tay, C. Butler. Modelling and optimizing of a MIG welding process—a casestudy using experimental designs and neural networks[J]. Quality and ReliabilityEngineering International,1997,13(2):61–70
    [43] Thomas Zacharia, John D. Allen, Jr., James G. Schroth. Neural network control of spotwelding [P]. United States Patent:6018729,20000625
    [44] S.C. Chi, L.C. Hsu.A fuzzy radial basis function neural network for predicting multiplequality characteristics of plasma arc welding[C]. Joint9th IFSA World Congr.20thNAFIPS Int. Conf.,2001,7(25–28):2807–2812.
    [45] Chen, S. B., Wu L., Wang Q. L., et al. Self learning fuzzy neural network and computervision for control of pulsed GTAW[J]. Welding Journa11997,76(5):201209.
    [46] Wu C S, T. Polte, D. Rehfeldt. A Fuzzy Logic System for Process Monitoring andQuality Evaluation in GMAW[J].Welding Journal,2001(2):3338.
    [47] Li D, T. Srikanthan, R.S. Chandel.Neural network based self organized fuzzy logiccontrol for arc welding[J].Engineering Applications of Artificial Intelligence,2001,14(2):115–124
    [48]张鹏贤,马跃洲,陈剑虹,等. CO2焊电流波形在线自适应控制系统[J].焊接学报,2003,24(5):1720,24
    [49]高忠林,胡绳荪,殷凤良,等.弧焊电源电压电流的自适应神经网络控制[J].电力电子技术,2007,41(11):103105
    [50] Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: SpringerVerlag,1995
    [51] Cortes C, Vapnic V N. Support vector networks.Machine Learning[J].1995,20(3):273297
    [52]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):3242
    [53] Pongsak Holimchayachotikul, Wimalin Laosiritaworn, Raweeroj Jintawiwat, et al.Optimization of Gas Metal Are Welding Parameters for ST37Steel Using SupportVector Regression[C]. The IE Network Conference,2007,10:189193.
    [54] Fabian Timm, Sascha Klement, Thomas Martinetz et al.Welding Inspection UsingNovel Specularity Features and a One Class SVM[C].4th International Conference onComputer Vision Theory and Applications,2009:145152.
    [55] Man Gyun Na, Jin Weon Kim, Dong Hyuk Lim, et al. Residual stress prediction ofdissimilar metals welding at NPPs using support vector regression[J]. NuclearEngineering and Design,2008,238(7):15031510
    [56]黄细霞,陈善本.基于支持向量机的焊接过程建模方法[C].上海:第十一届全国焊接会议论文集,2005:520523.
    [57] Huang X X, Gu W, Shi F H, et al. An adaptive inverse control method based onSVM–fuzzy rules acquisition system for pulsed GTAW process[J]. The InternationalJournal of Advanced Manufacturing Technology,2009,44(78):686694
    [58]周蓓,刘玉生.基于支持向量机对激光焊接的自适应控制[J].自动化与仪表,2008(7):3133
    [59]曾松盛,王国荣,石永华,等.基于LabVIEW和支持向量机的电弧传感焊缝偏差识别系统[J].焊接学报,2009,30(1):1316
    [60]张朴,万磊,孔力,等.基于支持向量机的激光焊接过程质量监测[J].华中科技大学学报(自然科学版),2007,35(7):6263
    [61]李春善,王经,刘桂方,等.基于遗传算法焊接送丝控制系统的设计与仿真[J].信息技术,2010,(7):110112
    [62]郑春红,苏玉鑫.基于遗传算法的模糊控制送丝系统[J].西安石油学院学报(自然科学版),2001,16(3):5052,56
    [63]刘海江,张春伟,徐君杰,等.基于遗传算法的白车身焊接机器人焊点分配[J].同济大学学报(自然科学版),2010,38(5):725729
    [64]李小英.基于模拟退火遗传算法的高频焊接输出功率优化控制[J].机电工程,2008,25(7):6567,83
    [65]张朴,孔力,刘文中,等.基于粒子群优化神经网络的激光焊接质量监测[J].仪器仪表学报.2007:257260
    [66]舒服华,王志辉.基于蚁群神经网络的电阻点焊工艺参数优化[J].焊接,2007,(2):3942
    [67]樊丁,黄健康,石圩,等.基于电弧声ARMA双谱分析对熔滴过渡类型SVM模式识别[C].第七届中国机器人焊接学术与技术交流会议论文集.2008:177180
    [68]张宏杰,侯妍妍.基于PCA SVM方法的点焊质量评估[J].焊接学报,2009,30(4):97100
    [69] K.Luksa, Z.Rymarski.Collection of arc welding process data[J].Journal ofAchievements in Materials and Manufacturing Engineering,2006,17(1):377380
    [70] Shinoda T., Kaneda H., Takeuchi Y. An evaluation of short circuit arc phenomena inGMA welding[J]. Welding and Metal Fabrication,1989.57(12):522–525
    [71] M. J. M. Hermans, G. DEN Ouden. Process Behavior and Stability in Short Circuit GasMetal Arc Welding[J]. Welding journal,1999,78(4):137141
    [72] T. P. Quinn, C. Smith, C. N. Mccowan, et al. Arc Sensing for Defects in ConstantVoltage Gas Metal Arc Welding[J]. Welding Journal,1999,78(9):323328.
    [73] S. Adolfsson, A. Bahrami, G. Bolmsj, et al. On Line Quality Monitoring inShort Circuit Gas Metal Arc Welding[J]. Welding Journal,1999,78(2):5973
    [74]薛家祥,贾林,易志平,等. CO2焊过程电信号的统计分析[J].华南理工大学学报(自然科学版),2003,31(4):3740
    [75]薛家祥,李海宝,张丽玲,等.弧焊过程电信号的频谱分析[J].电焊机,2005,35(8):4346
    [76]薛家祥,易志平,方平,等.焊接过程电信号虚拟分析仪的研究[J].机械工程学报,2004,40(2):6063
    [77] Y Arata, K Inoue, M Futamata, et a1. Investigation on welding arc sound (Report1):Effect of welding method and welding and welding condition of welding arc sound[J].Transactions of JWRI,1979,8(1):2531
    [78] Y Arata, K Inoue, M Futamata, et a1. Investigation on Welding Arc Sound (Report2):Evaluation by hearing acuity and some characteristics of arc sound[J]. Transactions ofJWRI,1979,8(2):3338
    [79] Y Arata, K Inoue, M Futamata, et a1. Investigation on Welding Arc Sound (Report4):Vibration Analysis of Base Metal during Welding[J]. Transactions of JWRI,1981,10(1):3945
    [80] D.Saini, S.Floyd. An Investigation of gas metal arc welding sound signature for on linequality control[J]. Welding Research Supplement,1998,77(4):172179
    [81] L Grad, J Grum, I Polajnar, et al. Feasibility study of acoustic signals for on linemonitoring in short circuit gas metal arc welding[J]. International Journal of MachineTools and Manufacture,2004,44(5):555561
    [82] M udina, J Prezelj. Evaluation of the sound signal based on the welding current in thegas metal arc welding process Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2003,217(5):483494
    [83]石玗,黄健康,樊丁,等.电弧声信号与铝合金MIG焊缝塌陷的相关性[J].机械工程学报,2007,43(10):3235
    [84]刘立君,兰虎,郑红艳,等. MIG焊电弧声信号与熔透状态相关性[J].机械工程学报,2010,46(14):7984
    [85]马跃洲.基于电弧声信号的CO2焊质量监控方法研究[D].兰州理工大学,2005
    [86]王继锋,陈波,陈善本,等.GTAW焊接过程声音特性研究[C].第七届中国机器人焊接学术与技术交流会议论文集.2008:6265
    [87] Li P. J., Zhang Y. M. Zhang. Robust sensing of arc length[J]. IEEE Trans. Instrume.Meas,2001,50(3):697–704.
    [88] T. J. Rockstroh, J. Mazumder.Spectroscopic studies of plasma during cw laser materialinteraction[J]. J. Appl. Phys.,1987,61(3):917–923
    [89] C.D. Yoo, Y.S. Yoo, H K. Sunwoo.Investigation on Arc Light Intensity in Gas MetalArc Welding, Part1, Relationship Between Arc Light Intensity and Arc Length[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture May1,1997,211(5):345353
    [90] M.S.W glowski. Investigation on the arc light spectrum in GTA welding[J]. Journal ofAchievements in Materials and Manufacturing Engineering,2007,20(1):519522
    [91] David Naso, Biagio Turchiano, Paolo Pantaleo. A Fuzzy Logic Based Optical Sensorfor Online Weld Defect Detection[J]. IEEE Transactions On Industrial Informatics,2005,1(4):259273
    [92]胡胜钢,李俊岳,李桓,等.脉冲MIG焊熔滴过渡光谱控制法的研究[J].机械工程学报,2001,37(9):1823,29
    [93]李桓,胡连海,李国华,等.焊接过程光电信号测试分析系统的研制及应用[C].高效化焊接方法、设备、材料的理论与应用研讨会论文集.2002:8791
    [94]娄亚军.基于熔池图象传感的脉冲GTAW动态过程智能控制[D].哈尔滨工业大学,1998
    [95] K.Y. Bae, T.H. Lee, K.C. Ahn.An optical sensing system for seam tracking and weldpool control in gas metal arc welding of steel pipe[J]. Journal of Materials ProcessingTechnology,2002,120(13):458465
    [96] T.W.Liao. Fuzzy reasoning based automatic inspection of radiographic welds: weldrecognition[J]. Journal of Intelligent Manufacturing,2004,(15):6985
    [97] Marjan Golob, Arpad Koves. Fuzzy logic based quality monitoring in short circuit gasmetal arc welding[J]. International Journal of Materials and Product Technology,2007,29(1):228243
    [98]王广伟.基于视觉技术的GMAW S熔滴过渡瞬时过程研究[D].上海交通大学,2008
    [99]李芳,华学明,王卫彬,等.脉冲熔化极气体保护焊熔滴过渡电信号特征及建模[J].焊接学报,2009,30(7):97100
    [100]黄石生,文元美,薛家祥,等.弧焊熔滴过渡的高速摄像与电信号测试分析[J].华南理工大学学报(自然科学版),2008,36(4):15
    [101]朱艳丽,李桓,高莹,等.焊接多信息同步采集系统构建[J].焊接,2010,(5):5255
    [102]张光先.逆变焊机原理与设计[M].北京:机械工业出版社,2008,3:613
    [103]王清,张相军,吴林,等.全桥逆变电阻焊电源零电压的开通条件[J].焊接学报,2000,21(3):2023+4
    [104] Sabate, J.A., Vlatkovic, V., Ridley, R.B., e tal. Design considerations for high voltagehigh power full bridge zero voltage switched PWM converter [C]. Applied PowerElectronics Conference and Exposition,1990. APEC '90, Conference Proceedings1990, Fifth Annual. Los Angeles,CA,USA,1990:275284
    [105] Jung Goo Cho, Sabate, J.A., Guichao Hua, e tal. Zero voltage and zero currentswitching full bridge PWM converter for high power applications[J]. IEEETransactions on Power Electronics,1996,11(4):622–628
    [106]阮新波.脉宽调制DC/DC全桥变换器的软开关技术[M].北京:科学出版社,2001:520
    [107]刘和平,刘平,王华斌,等.数字信号控制器原理及应用基于TMS320F2808[M].北京:北京航空航天大学出版社,2011.7:110
    [108] Chol J H, Lee J Y, Yoo C D. Simulation of dynamic behavior in a GMAW system[J].Welding Joural,2001,80(10):239245
    [109] Kang M.J., Rhee, S. Arc stability estimation and fuzzy control for arc stabilisation inshort circuit transfer mode of CO2arc welding[J]. Science and Technology ofWelding&Joining,2001,6(2):94102
    [110] Fan D, Li B, Ma Y Z. Computer simulation of neural network control system for CO2welding process[J]. Acta Metallurgica Sinica (English Letters),2000,13(1):187193
    [111]韩敬华,单平,胡绳荪,等.基于DSP的脉冲MIG焊数字控制系统的建模与仿真[J].焊接学报,2006,27(6):9193
    [112] Zheng Zhi Luo, Yi Su Pan. Numerical Simulation and Experiment Analysis of MIGWelding for Aluminum Alloy Extrusion[J]. Advanced Materials Research,2012,430432(1):13111314
    [113] Ding Fan, Jiankang Huang, Lihui Lu,e tal. Simulation of Decoupling Control ofPulsed MIG Welding for Aluminum Alloy[J]. Lecture Notes in ElectricalEngineering,2011,88(3):279284.
    [114] Seong Jeub Jeon.A Zero Voltage and Zero Current Switching Full Bridge DC DCConverter with Transformer Isolation[J]. IEEE Transactions on Power Electronics,2001,16(5):573580
    [115]勒成梁,陈国柱.一种适合于宽负载条件运行的有限双极性软开关DC/DC变换器[J].电源技术应用,2006,10(9):15
    [116]韩成功.有限双极性软开关控制CO2焊波控电源的研究[D].广州:华南理工大机械工程学院,2007
    [117] M Ushioa, W Mao. Modelling of an arc sensor for DC MIG/MAG welding in openarc mode: Study of improvement of sensitivity and reliability of arc sensors in GMAwelding (1st Report)[J]. Welding International,1996,10(8):622631
    [118]卜士瑞.基于DSP的软开关弧焊逆变电源控制系统及其仿真研究[D].合肥:合肥工业大学,2010:4043
    [119]陈晶,吴胜昔,顾幸生.一种针对火电厂流量计数据特点的数据处理算法[J].华东理工大学学报,2009,35(3):475480
    [120] Zadeh, Lotfi A, Ragazzini, John R. An Extension of Wiener's Theory of Prediction[J].Journal of Applied Physics,1950,21(7):645655
    [121] Mohinder S. Grewal, Angus P. Andrews.Kalman Filtering:Theory and Practice usingMATLAB [M]. Second Edition. NEW YORK: A Wiley Interscience Publication,2001:16
    [122]段彬,孙同景,李振华,等.基于小波的全数字逆变焊机信号处理[J].机械工程学报,2010,46(4):6064
    [123]周漪清,薛家祥,何宽芳,等.埋弧焊方波电弧信号的指数衰减型阈值消噪[J].焊接学报,2011,32(6):58
    [124]何振亚.自适应信号处理[M].北京:科学出版社,2002:119165
    [125] Haykin S. Adaptive Filter Theory[M].4th edition.Beijing:Publishing House ofElectronics Industry,2002,7:183243
    [126] Ananthakrishnan K S, Dogancay K. Analysis of Gradient Adaptive Lattice Filteras aPre Processor in Speech Separation System[C]. TENCON,2006:14
    [127] Paleologu C, Ciochina S, Enescu A A. Gradient Adaptive Lattice Algorithm Suitablefor Fixed Point Implementation[C]. ICDT2008:4146
    [128]刘军,徐岩.自适应最小二乘格型算法在大线阵列中的应用[J].信息技术.2006,(12):6365
    [129]齐海兵,孙松.梯度自适应格型滤波联合算法的性能分析[J].探测与控制学报,2009,31(2):3740.
    [130] Kim D I, Wilde P De. Performance analysis of the self orthogonalising adaptivelattice filter[J]. IEEE Trans Signal processing,2000,80:23792406
    [131] Ni G, Tzes A. Re configurable internal model control based on adaptive latticefiltering [J]. Mathematics and Computers in Simulation,2002,60:303314
    [132] F. N. David. Karl Pearson, Encyclopedia of Statistical Science(6)[M]. New York:Wiley,1985:653656
    [133] David Freedman, Robert Pisani,Roger Purves. Statistics Fourth Edition [M]. NewYork:: W. W. Norton&Company,2007,2
    [134] Burges C J C. A tutorial on support vector machines for pattern recognition [J].Knowledge Discovery and Data Mining,1998,2(2):121167
    [135] Vapnik V N. An overview of statistical learning theory[J]. IEEE.Transactions onNeural Networks,1999,10(5):988–999
    [136] Wang X X, Lowe D, Chen S, et al. Parsimonious Least Squares Support VectorRegression Using Orthogonal Forward Selection with the Generalised KernelModel[J]. Int. J. of Modelling, Identification and Control2006,1(4):245256
    [137] C.J.C. Burges. A tutorial on support vector machines for pattern recognition[J]. DataMining and Knowledge Discovery,1998,2(2):121167
    [138] Cherkassky.V, Ma. Y. Comparison of model selection for regression[J]. NeuralComputation,2003,15(7):1691–1714
    [139] Cristianini N, Shawe Taylor J.李国正,王猛,曾华军,等译.支持向量机导论[M].北京:电子工业出版社,2004:100106
    [140] B. Boser, I. Guyon, V. Vapnik. A training algorithm for optimal margin classifiers[M].Proceedings of the5th Annual ACM Workshop on Computational Learning Theory.ACM Press,1992:144152
    [141]田英杰.支持向量回归机及其应用研究[D].中国农业大学,2005:2843
    [142]王书舟.支持向量机方法及其应用研究[D].哈尔滨工业大学,2009:1921
    [143] Kim Kyoung jae. Financial time series forecasting using support vector machines[J].Neurocomputing,2003,55(12):307319
    [144] Tay F E H, Cao L J. Application of support vector machines in financial time seriesforecasting[J]. Omega,2001,29(4):309317.
    [145] Chapelle O, Vapnik V, Bousquet O, et al. Choosing kernel parameters for supportvector machines[J]. Machine Learning,2001,46(1):131160.
    [146] Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noiseestimation for SVM regression[J]. Neural Networks,2004,17(1):113126
    [147] Chapelle O, Vapnik V, Bousquet O, e tal. Choosing Multiple Parameters for SupportVector Machines[J]. Machine Learning,2002,46(1):131159
    [148] ItoK, Nakano R. Optimizing Support Vector Regression Hyper parameters Based OnCross Validation [C]. Proceedings of the International Joint Conference on NeuralNetworks,2003,3(7):20772082
    [149] Duan K, Keerthi S S, Poo A N. Evaluation of Simple Performance Measures forTuning SVM Hyperparameters [J]. Neurocomputing,2003,51:4159
    [150] Lunts A, Brailovskiy V. Evaluation of attributes obtained in Statistical DecisionRules[J]. Engineering Cybemetics,1967,3(1):9821009
    [151]王鹏,朱小燕.基于RBF核的SVM的模型选择及其应用[J].计算机工程与应用,2003,39(24):7273
    [152]刘靖旭,蔡怀平,谭跃进.支持向量回归参数调整的一种启发式算法[J].系统仿真学报,2007,19(7):15401547
    [153] Eberhart R C, Shi Y. Particle swarm optimization:developments, applications andresourees[C].Proceedings of the IEEE Congress on EvolutionaryComputation.Piscataway, NJ:IEEE Service Center,2001:8186
    [154] Ioan Cristian Trelea.The particle swarm optimization algorithm: convergence analysisand parameter selection[J]. Information Processing Letters,2003,85(6):317325
    [155]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):8794
    [156] Kennedy J, Eberhart R C.Particle swarm optimization[C]. Proceedings of IEEEInternational Conference on Neural Networks.Piscataway, New Jersey: Institute ofElectrical and Electronics Engineers, Inc.,1995:19421948
    [157] Ebethart R.C., Kennedy J. A new optimizer usnig particle swarm theory[C].Proeeednigs of the Sixth Intemational SymPosium on Micro Machine and HumanScience, Nagoya, JaPan,1995:3943
    [158] Carlisle A, Doziert G. An off the shelf PSO.Proceedings of the workshop on Particleswarm Optimization[C]. Indianapolis, USA,2001:16
    [159]刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009:2024
    [160] Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Improving particle swarmoptimizer by function”stretching”.Hadjisavvas N,Pardalos P.Advances in ConvexAnalysis and Global Optimization[M]. The Netherlands:Kluwer AcademicPublishers,2001:445457
    [161] Trelea I C. The Particle swarm Optimization Algorithms: Convergence Analysis andParameter Seleeion [J]. Information Proeessing Letters,2003,8(5):317325
    [162] Li Ping Z, Huan jun Y, Shang xu H.Optirnal choice of parameters for particle swarmoptimization[J].Journal of Zhejiang University Science A,2005,6(6):528534
    [163] Shi Y H, Eberhart R. C..Fuzzy Adaptive Particle swarm Optimization[C]. Proceedingsof the2001Congress on Evolutionary Computation IEEE.Seoul, South Korea:IEEE Press,2001:101106
    [164] Eberhart R. C., Yuhui Shi.Particle swarm optimization: developments, applicationsand resources[C]. Proceedings of the2001Congress on Evolutionary ComputationIEEE.Seoul, South Korea: IEEE Press,2001:8186
    [165] Clerc M, Kennedy J. The particle swarm explosion, stability and convergence in amultidimensional complex space[J]. IEEE Transactions on EvolutionaryComputation.2002,6(1):58–73
    [166] Zhan Z H, Zhang J, Li Y, e tal. Adaptive particle swarm optimization[J]. IEEETransactions on Systems Man, and Cybernetics—Part B: Cybernetics,39(6):13621381
    [167] Astorm. K J, Hagglund T. PID controllers:theory,design,and tuning[M].2nd ed.Research Triangle Park, NC:Instrument Society of Amercia,1995
    [168] K J Astrom, T Hagglund. The future of PID control[J]. Control Engineering Prartice,2001,9:11631175
    [169] P Cominos, N Nunro.PID controller: recent tuning methods and design tospecification[J]. IEEE proceeding of Control Theory and Applications,2002,149(1):4653
    [170] Lee, C.C. Fuzzy logic in control systems: fuzzy logic controller. I[J]. Systems, Manand Cybernetics, IEEE Transactions on.1990,20(2):404418
    [171] He S Z, Tan S H, Xu F L, e tal. Fuzzy self tuning of PID controllers[J]. Fuzzy Setsand Systems.1993,56(1):3746
    [172] G K I Mann, Bao Gang Hu Bao Gang Hu,e tal. Two level tuning of fuzzy PIDcontrollers[J]. IEEE transactions on systems man and cybernetics Part B Cyberneticsa publication of the IEEE Systems Man and Cybernetics Society,2001,31(2):263269
    [173] Bandyopadhyay R, Chakraborty U K, Patranabis D. Autotuning a PID controller:afuzzy genetic approach[J]. Journal of Systems Architecture,2001,47(1):663673
    [174] Huang Y, Yasunobu S. A General Practical Design Method for Fuzzy PID Controlfrom Conventional PID Control[C]. Fuzzy Systems,2000. FUZZ IEEE2000. TheNinth IEEE International Conference on, San Antonio, TX, USA2005,2(5):969972
    [175] Mamdani E H. Application of fuzzy algorithms for control of simple dynamic plant[J].Proceedings of the Institution of Electrical Engineers,1976,121(12):15851588
    [176] Lu J L, Chen G R, Ying H.Predictive fuzzy PID control: theory, design andsimulation[J]. Information Science,2001,137(1):157187
    [177]谢仕宏. MATLAB R2008控制系统动态仿真实例教程[M].北京:化学工业出版社,2009,1:327344
    [178] Meng Guangwu, Zhang Xingfang. The operational rule of fuzzy numbers[J]. FuzzySystems and Mathermatics,2001,15(3):2529
    [179] Mizumoto M, Tanaka K. Some properties of fuzzy sets of type2[J]. Information andControl,1976,31(4):312340
    [180]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.1:6878
    [181]叶高文.模糊控制查询表的MATLAB实现[J].工业控制计算机,2010,23(11):6466
    [182]张静.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007,5:310316
    [183]方建军,田建君,郑清春.光机电一体化系统设计[M].北京:化学工业出版社,2003,10:125140.
    [184]杨运强,李俊岳,张晓固,等.脉冲MIG焊熔滴过渡的新进展[J].机械工程学报,2002,38(11):1216
    [185] Shinoda T, Kaneda H, Takeuchi Y. An Evaluation of Short Circuiting Arc Phenomenain GMA Welding. W elding and Metal Fabrication,1989,57(12):522525
    [186]温建力.MIG焊质量监控的研究——电弧声信号[J].华章,2009,(15):154155
    [187]薛家祥,贾林,易志平. CO2焊过程电信号的统计分析[J].华南理工大学学报(自然科学版),2003,31(4):3740
    [188] D L Donoho. Denoising by soft thresholding [J]. IEEE Trans. Inform.Theory,1995,41(3):613627
    [189]易志平,薛家祥. CO2焊电信号的小波分析[J].华南理工大学学报(自然科学版),2003,30(6):2729
    [190] Pincus S M. Approximate Entropy (ApEn) as a complexity measure.[J]. Chao s,1995,5(1):110117
    [191] Pincus S M. Approximate entropy as a meansure of system complexity [J].Proceedings of the National Academy of Sciences of the United States of America,1999,88(6):22972301
    [192] Tolle C R, Laviolette R A, Smartt H B, et al. Is there evidence of determinism indroplet detachment within the gas metal arc welding process?[C].6TH Internationalconference on Trends in Welding Research. APRIL,2002:16
    [193]吕小青,林建平,曹彪,等. CO2焊不同过渡形态下电流信号的近似熵分析[J].焊接学报,2008,29(07):1721+113114
    [194]聂晶,石玗,黄健康,等.铝合金P MIG焊稳定性近似熵神经网络预测[J].焊接学报,2010,31(08):7780+116117
    [195] Richman J S, Moorman J R. Physiological time—series analysis using approximateentropy and sample entropy[J]. Am J Physiol Heart Circ Physiol,2000,278(6):203949
    [196] Alcaraz R, Rieta J J. A novel application of sample entropy to the electrocardiogramof atrial fibrillation[J]. Nonlinear Analysis: Real World Applications,2010,11(2):10261035
    [197] Lake D E, Richrnan J S, Griffin MP, et al. Sample entropy analysis of neonatal heartrate variability[J].Am J Physiol Regul Integr Comp Physiol,2002,283(3):789797
    [198] Rehfeldt D, Schmitz Th. A system for process quality evaluation in GMAW[J].Welding in the world,1994,34(4):227234
    [199] Rehfeldt D, Bollmann A. Using statistical signal analysis for analyzing andmonitoring GMAW processes[C]. Brazil: IIW Latin American Regional WeldingCongress (IIW Congresso Regional Latino Americano de Soldagem),1992,4,2:839844
    [200] Rehfeldt D, Bollmann A, Korbe T, et al. Computer Aided Quality Control by ProcessAnalyzing, Monitoring, and Documentation[A]. Joining/Welding2000(Assemblage/Soudage2000[C], The Hague, The Netherlands,1991,7,371382
    [201] T. Polte, C.S.WU, D.Rehfeldt. A fuzzy logic system for process monitoring andquality evaluation in GMAW[J]. Weld Journal,2001,80(2):3338
    [202] Yudo dibroto B Y B, Hermans M J M, Richardson I M. Process stability analysisduring tandem wire arc welding [C]. Proceedings of the IIW InternationalConference. Que bec City: Canada: IIW,2006,5264
    [203]石玗,聂晶,黄健康,等.基于电弧电压概率密度铝合金脉冲MIG焊稳定性分析[J].焊接学报,2010,31(05):1316+113
    [204]王飞,华学明,马晓丽,等. CO2气体保护药芯焊丝双丝焊接电信号稳定性分析[J].上海交通大学学报,2010,44(04):457462
    [205]聂晶.铝合金脉冲MIG焊过程稳定性分析[D].兰州理工大学,2009:3543
    [206]王勇,王宝.不锈钢焊条工艺稳定性分析与评价[J].中国机械工程,2008,19(2):245248
    [207] A. EManz. Wedling Arc Sounds[J]. Welding Journat,1981,60(5):2327
    [208] S Nakamura, M Sakurai, K Kamimuki, et al. Detection technique for transitionbetween deep penetration mode and shallow penetration mode in CO2laser weldingof metals[J]. Journal of Physics D: Applied Physics,2000,33(22):29412948
    [209] P Duhamel, M. Vetterli.Fast Fourier Transforms: A Tutorial Review and a State of theArt[J]. Signal Processing,1990,19(4):259299
    [210] M Frigo, S. G. Johnson.FFTW: An Adaptive Software Architecture for the FFT[J].Proceedings of the International Conference on Acoustics, Speech, and SignalProcessing,1998,(3):13811384
    [211] A.V.Oppenheim, R.W. Schafer. Discrete Time Signal Processing[M].New Jersey,USA: Prentice Hall,1989:447448
    [212]葛哲学,陈仲生. Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006,1:141145
    [213]何佳若,曾向阳.声信号的可视化特征提取方法[J].电声技术,2011,35(7):6164+74
    [214]孔旭,关佶红.以声谱图相似度为度量的波形音乐检索[J].计算机工程与应用,2009,45(13):136141
    [215]彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社,2002:122176
    [216]孟凡军,朱胜,曹勇,等.脉冲MAG堆焊成形焊道表面质量模糊综合评价[J].焊接学报,2008,29(7):2528
    [217]李向伟,兆文忠,郑成德,等.基于质量模糊评判模型的焊缝疲劳寿命评估[J].焊接学报,2010,31(8):4952
    [218]魏艳红,唐彬,梁宁,等.基于模糊综合评判模型的焊接方法选择评价系统[J].焊接学报,2011,32(4):7174
    [219] GB/T194182003.钢的弧焊接头、缺陷质量分级指南[S].
    [220] Yao P, Xue J X, Huang W C, et al. Analysis of droplet transfer of pulsed MIG weldingbased on electrical signal and high speed photography[J]. China welding,2009,18(1):6772
    [221]李东涛,潘存海,杜素梅,等.基于粗糙集的点焊多信息融合的质量判定[J].焊接学报,2009,30(7):2124
    [222]潘存海,杜素梅,宋永伦,等.铝合金电阻点焊多信息融合与质量分类[J].机械工程学报,2007,43(8):181185
    [223]陈波.脉冲GTAW过程多传感器信息融合处理方法研究[D].上海交通大学,2010
    [224] S. Goecke, J. Hedegard.Tandem MIG/MAG Welding[J]. Svetsaren,2001,56(2):2428
    [225] T. Morehead.Automatic multiwire GMAW multiples productivity[J]. Welding Journal,2003,82(6):4043
    [226]牛永,薛海涛,李桓,等.脉冲电压峰值对双丝脉冲MIG焊熔滴过渡及焊缝成形的影响[J].焊接学报,2010,31(1):5054
    [227]文元美,黄石生,吴开源,等.脉冲双丝MAG焊接电流相位关系对成形的影响[J].焊接学报,2010,31(9):1720
    [228] Ueyama, T Ohnawa, K Yamazaki, et al. High speed welding of steel sheets by thetandem pulsed gas metal arc welding system[J]. Transactions of JWRI,2005,34(1):1118
    [229] Marcelo F. Motta, Jair Carlos Dutra, Raul Gohr Jr, et al. A Study on out of phasecurrent pulses of the double wire MIG/MAG process with insulated potentials oncoating applications–Part I[J]. Journal of the Brazilian Society of MechanicalSciences and Engineering,2007,29(2):202206
    [230]王飞,华学明,马晓丽,等.双丝GMAW焊接的电弧干扰和中断分析[J].焊接学报,2011,32(7):109112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700