多元科学指标视角下的新兴研究领域识别探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于科学的加速增长已经给人类社会带来了重要的影响,对于新兴研究领域的关注,已经不仅仅是科学家们的工作,其他各行各业的人们出于对科学技术的利用,也逐渐开始关注科学的发展,对新兴研究领域的研究已经成为各个国家科技与经济实力竞争的焦点。因此,识别新兴研究领域无论是对一国创新能力的提升和科技政策的制定,还是帮助科研人员识别本领域中的最新研究方向,都具有重要的意义。
     本研究分别从科学计量学、科学增长的宏观理论、微观定量分析以及可视化识别的四种角度,及其相应的四种与识别新兴研究领域相关的基本思想,即普赖斯的科学前沿理论,库恩的科学发展模式,门纳德关于科学增长变化的探讨以及陈超美的研究前沿识别及可视化,建构了多视角识别新兴研究领域的理论框架,从主体和客体两个层面归纳出新兴研究领域的基本特征和过程特征。根据该理论构想,针对研究领域兴起的5个环节,即“科学家个体”、“主题词”、“文献”、“学科”以及“同行认可”,设计了“新作者数量”、“突现主题词共现”、“突现重要文献数量”、“引文年龄”、“学科跨度指数”、“基金资助项目数量”以及“基金项目资助额度”用于综合识别新兴研究领域的7个科学指标。
     研究选取了“量子计算”、“RNA干扰”、“语义网”和“h指数及h类指数”四个新兴研究领域作为研究对象,前两项属于自然科学领域,后两项属于人文社会科学领域。为了研究结论的可靠性,本文还选取了一个衰退研究领域,即“冷聚变”,进行了相应的分析。结果显示,7个科学指标可以从新兴研究领域兴起的5个环节中,较好地识别出新兴研究领域。“突现主题词共现”在探测与识别某一新兴研究领域核心概念形成中起到基础作用。“突现重要文献数量”和“引文年龄”则可以标志新兴研究领域的发展成熟度。“新作者数量”、“学科跨度指数”、“基金资助项目数量”和“基金项目资助额度”则在反映研究领域的新兴程度、交叉程度及持续生命力方面起到支撑作用。
     研究还总结了新兴研究领域形成过程的多元科学指标时序结构模式,一个研究领域的兴起与发展是由科学家,尤其是新兴科学家带动起来的,他们带来了许多新的科学想法,进而形成核心概念,并产生研究文献,有的文献对该领域的研究产生重要影响,从而成为重要文献,该领域在从最初的兴起向蓬勃发展的过渡中,吸引了来自多学科领域的科学家们进行更多的相关研究,体现出高度的学科交叉性,随后科学家们则倾向将研究理论投入实际应用,或者获得更多的资助来进行更深入的研究,表现为同行认可。
Since the acceleration of science brought significant influence to human society, the identification of emerging research trends is of key interest to diverse stakeholders, not only to scientists. Especially, the emerging research areas have become the competition focus of science, technology and economy of each countries worldwide. Hence, the identification of emerging research areas means much to the innovation capacity and science policy of one country, and helping scientists to recognize the newly research direction as well.
     Based on four basic theories which are scientific fronts theory of Price, scientific development pattern of Kuhn, scientific growth and change research of Menard, and identification and visualization of scientific fronts of Chen, this study constructed the theoretical framework of identifying emerging research areas which is based on the summary the characteristics and the forming process and development of emerging research area from the level of research subject and object. These four basic theories are from different angles scientometrics. macro-theory, micro-quantification and visualization of scientific growth. According to this proposed theoretical conceptualization, this study designed seven science indicators to identify emerging research areas systematically, which is from the loops of individual, research topic, paper and peer review. They are "number of new author""co-occurrence of bursting topic words","bursting key references'","citation age""interdisciplinary","number of awards" and "amount of awards"
     This study adopted four datasets of "Quantum Computation","RNA interference""Semantic Web" and "h index and h-type indices" research areas. The former two are from natural science and the latter two are from social science. Simultaneously, for the reliability of the conclusion, the dataset of "Cold Fusion" research area was also introduced here as a declined area which provided a comparative analysis. The results indicate that these seven science indicators can indentify emerging research areas from the five loops effectively. It should be noted that "co-occurrence of bursting topic words" can detect and identify the forming and shift of core concepts in emerging research areas precisely and play a basic role in this loop. The indicators of "number of bursting key references" and "citation age" can be viewed as indicating the mature of emerging research areas. The indicators of "number of new authors","interdisciplinarity"."number of awards" and "amount of awards" play the supportive roles in indicating the emerging, interdisciplinary and continous vitality of new research areas.
     The temporal structure mode of multiple science indicators in the forming process of emerging research areas was proposed in this study. A certain research area is always driven up by scientists, especially those young scientists and they bring in fresh and diverse scientific idea which form the core concepts in later period. Furthermore, these core concepts are manifested by research literatures and some of them impact the areas quite a lot. which become the key references. This certain research area attracts many scientists from diverse background which proceed more relevant studies and shows very high interdisciplinarity. Afterwards, more scientists tend to apply their research into practice or gain more awards to demonstrate deep going studies which shows the highly agreement of peer reviews.
引文
[1]Lee WH. How to identify emerging research fields using scientometrics:An example in the field of Information Security[J]. Scientometrics,2008,76(3):503-525.
    [2]普赖斯.小科学,大科学[M].宋剑耕,戴振飞译.上海:世界科学社,1982.
    [3]Moon YH. Monitoring and Early Warning of Technological Progress[R]. KISTI,2004.
    [4]Wagner CS. The new invisible college:Science for development[M]. Washington, D.C. Brookings Institution Press,2008.
    [5]中华人民共和国科学技术部.国际科学技术发展报告2010[R].北京:科学出版社,2010.
    [6]王续琨,常东旭.远缘跨学科研究与交叉科学的发展[J].浙江社会科学,2009,1(1):16-21.
    [7]Law J, Whittaker J. Mapping acidification research:A test of the co-word method[J]. Scientometrics,1992,23(3):417-461.
    [8]张建伟.当代教育技术学研究领域的基本架构[J].教育研究,2002,4:44-91.
    [9]陈振明.从公共行政学、新公共行政学到公共管理学——西方政府管理研究领域的“范式”变化[J].政治学研究,1999,1:79-88.
    [10]魏顺平,王冰洁,路秋丽.高等教育研究领域研究人员科研绩效评价[J].高等教育研究,2008,(12):50-59.
    [11]储节旺.国内外知识管理研究领域、主要成就及未来趋势[J].情报资料工作,2006,(5):36-39.
    [12]郑粉莉.浅谈我国士壤侵蚀学科亟待加强的研究领域[J].水土保持研究,1999,(2):26-31.
    [13]沈立新,魏东芝,叶勤.代谢工程——生物工程学科的新兴研究领域[J].微生物学杂志,2000,(3):47-49.
    [14]顾红芳,白鹏,肖奚安,朱梧槚.数理逻辑之研究对象、学科归属、定义及研究领域[J].自然杂志,2000,(5):294-299.
    [15]王建邦.浅议国际贸易学科研究领域与方向的拓展[J].国际经贸探索,2006,(6):80-84.
    [16]王续琨.交叉科学结构论[M].大连:大连理工大学出版社,2003.
    [17]肖兴安,刘建辉.既是“学科”又是“研究领域”:对当代中国高等教育学定位的再思考[J].黑龙江高教研究,2012,2(214):36-41.
    [18]Jennex M, Croasdell D. Knowledge Management as a discipline [M]//Jennex M. Knowledge Management in Modern Organizations. Hershey:Idea Group Publishing,2007:10-17.
    [19]覃红霞.走向开放的科举学研究:在学科与专学之间[J].厦门大学学报(哲学社会科学版)2004,(3):15-20.
    [20]刘海峰.高等教育学:在学科与领域之间[J].高等教育研究,2009,30(11):45-50.
    [21]华勒斯坦等.学科·知识·权力[M].北京:生活·读书·新知三联书店,1999.
    [22]Takeda Y, Kajikawa Y. Optics:a bibliometric approach to detect emerging research domains and intellectual bases[J]. Scientometrics,2009,78(3):543-558.
    [23]Serenko A, Bontis N, Booker L, et al. A scientometric analysis of knowledge management and intellectual capital academic literature (1994-2008)[J]. Journal of Knowledge Management, 2010,14(1):3-23.
    [24]Watts RJ, Porter AL. R&D cluster quality measures and technology maturity [J]. Technological Forecasting and Social Change,2003,70(8):735-758.
    [25]Van Raan Al7J-On Growth, Ageing, and Fractal Differentiation of Science [J]. Scientometrics,2000,47(2):1588-2861.
    [26]Braun T, Schubert A, Zsindely S. Nanoscience and nanotechnology on the balance[J]. Scientometrics,1997,38(2):321-325.
    [27]Zitt M, Bassecoulard E. Delineating complex scientific fields by an hybrid lexical-citation method:An application to nanosciences[J]. Information Processing and Management,2006,42(6):1513-1531.
    [28]Small H. Tracking and predicting growth areas in science [J]. Scientometrics,2006,68(3): 595-610.
    [29]Griffith BC, Mullins NC. Coherent social groups in scientific change[J]. Science, 1972,(177):959-964.
    [30]Zitt M, Bassecoulard E. Challenges for scientometric indicators:data de-mining, knowledge flows measurements and diversity issues[J]. Ethics in science and environmental politics 2008,(8):49-60.
    [31]Lewison G. The scientific output of the EC's less favoured regions[J]. Scientometrics, 1991,21(3):383-402.
    [32]Chen C. CiteSpace Ⅱ:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology,2006,57(3):359-377.
    [33]Bettencourt L, Kaiser D, Kaur J, et al. Population modeling of the emergence and development of scientific fields[J]. Scientometrics,2008,75(3):495-518.
    [34]Ding Y, Chowdhury GG, Foo S. Bibliometric cartography of information retrieval research by using co-word analysis[J]. Information processing & management,2001,37(6):817-842.
    [35]Sugimoto CR, McCain KW. Visualizing changes over time:A history of information retrieval through the lens of descriptor tri-occurrence mapping[J]. Journal of Information Science,2010,36(4):481.
    [36]Menard HW. Science:Growth and change[M]. Cambridge, MA:Harvard Univ Press,1971.
    [37]Price DJ. Networks of scientific papers[J]. Science,1965,149(3683):510.
    [38]Small H, Griffith BC. The structure of scientific literatures Ⅰ:Identifying and graphing specialties[J]. Science studies,1974,4(1):17-40.
    [39]Braam RR, Moed HF, Raan AFJv. Mapping of science by combined co-citation and word analysis:II:Dynamical aspects[J]. JASIS,1991,42(4):252-266.
    [40]Persson O. The intellectual base and research fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science,1994,45(1):31-38.
    [41]Morris SA, Yen G, Wu Z, et al. Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology,2003,54(5):413-422.
    [42]Roco M. Science and technology integration for increased human potential and societal outcomes[C]. Annals of the New York Academy of Sciences.2004:1-16.
    [43]刘则渊,陈悦,侯海燕等.技术科学前沿图谱与强国战略[M].北京:人民出版社,2012.
    [44]栾春娟.“纳米-生物”会聚技术的测度及启示[J].科研管理,2012,33(7):48-58.
    [45]李晓强,张平,邹晓东.学科会聚:知识生产的新趋势[J].科技进步与对策,2007,(6):36.
    [46]张宁,罗长坤.“会聚技术”及其对科技管理的影响[J].研究与发展管理,2005,17(5):97-100.
    [47]吕乃基.会聚技术——高技术发展的最高阶段[J].科学技术与辩证法,2008,5:62-65.
    [48]Roco MC. The emergence and policy implications of converging new technologies integrated from the nanoscale[J]. Journal of Nanoparticle Research,2005,7(2-3):129-143.
    [49]Geum Y, Kim M-S, Park Y,等. The Convergence of Manufacturing and Service Technologies: A Patent Analysis Approach[J]. Convergence,2013,5(2):99-107.
    [50]Meadows A, O'Connor J. Bibliographical statistics as a guide to growth points in science[J]. Social Studies of Science,1971,1(1):95-99.
    [51]Price DJ. Citation measures of hard science, softscience, technology, and nonscience[M].//Nelson CE, Pollock DK. Communication among scientists and Engineers. Massachusetts:Heath Lexington Books,1970:3-12.
    [52]Burton RE, Kebler RW. The "half-life" of some scientific and technical literatures[J]. American Documentation,1960,11(1):18-22.
    [53]Garfield E, Small H. Identifying the changing frontiers of science[C]//Kranzberg M, Elkana Y, Tadmor Z. Innovation at the Crossroads between Science and Technology. International Workshop on Innovation at the Crossroads between Science and Technology, Technion, Israel. Technion City:S. Neaman Press,1989:51-65.
    [54]陈立新,刘则渊.引文半衰期与普赖斯指数之间的数量关系研究[J].图书情报知识,2007,(1):25-28.
    [55]Leydesdorff L, Cozzens S, Van den Besselaar P. Tracking areas of strategic importance using scientometric journal mappings[J]. Research Policy,1994,23(2):217-229.
    [56]Klavans R, Boyack KW, Small H. Indicators and Precursors of'Hot Science'[C]// Proceedings of 17th International Conference on Science and Technology Indicators, Montreal, Canada. Montreal:Science-Metrix and OST,2012:475-487.
    [57]Xie Y, Raghavan VV. A random walk model based approach for quantifying technology emergence and impact for research articles[C]//2012 IEEE International Conference on Granular Computing. IEEE International Conference on Granular Computing, Hangzhou, China. IEEE Conference Publications,2012:553-555.
    [58]Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery,2003,7(4):373-397.
    [59]Mane K, Borner K. Mapping topics and topic bursts in PNAS[J]. Proceedings of the National Academy of Sciences,2004,101(Suppl1):5287.
    [60]Ord TJ, Martins EP, Thakur S, et al. Trends in animal behaviour research (1968-2002): Ethoinformatics and the mining of library databases[J]. Animal behaviour,2005,69(6): 1399-1413.
    [61]Takahashi Y, Utsuro T, Yoshioka M, et al. Applying a burst model to detect bursty topics in a topic model [J]. Advances in Natural Language Processing,2012:239-249.
    [62]Pottenger WM, Yang T-h. Detecting emerging concepts in textual data mining[M]//Berry MW. Computational information retrieval. Proceedings of Computational Information Retrieval Conference, October 22,2000, North Carolina University, Raleigh, North Carolina. Philadelphia: SIAM,2001:89-106.
    [63]Small H, Upham P. Citation structure of an emerging research area on the verge of application[J]. Scientometrics,2009,79(2):365-375.
    [64]Kajikawa Y, Takeda Y. Structure of research on biomass and bio-fuels:A citation-based approach[J]. Technological Forecasting and Social Change,2008,75(9):1349-1359.
    [65]Kajikawa Y, Yoshikawaa J, Takedaa Y, et al. Tracking emerging technologies in energy research:Toward a roadmap for sustainable energy [J]. Technological Forecasting and Social Change,2008,75(6):771-782.
    [66]Shibata N, Kajikawa Y, Takeda Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technovation, 2008,28(11):758-775.
    [67]Shibata N, Kajikawa Y, Takeda Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology,2009,60(3):571-580.
    [68]Shibata N, Kajikawa Y, Matsushima K. Topological analysis of citation networks to discover the future core articles[J]. Journal of the American Society for Information Science and Technology,2007,58(6):872-882.
    [69]Leydesdorff L, Schank T. Dynamic animations of journal maps:Indicators of structural changes and interdisciplinary developments[J]. Journal of the American Society for Information Science and Technology,2008,59(11):1810-1818.
    [70]Chen C, Chen Y, Horowitz M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of Informetrics,2009,3(3):191-209.
    [71]Boyack KW, Klavans R, Small H, et al. Characterizing emergence using a detailed micro-model of science:Investigating two hot topics in nanotechnology[C]//Technology Management for Emerging Technologies (PICMET).2012 Proceedings of PICMET'12, Vancouver, Canada. IEEE Conference Publications,2012:2605-2611.
    [72]Fujita K, Kajikawa Y, Mori J, et al. Detecting Research Fronts Using Different Types of Combinational Citation[C]//Indicators PotlCoSaT. Proceedings of 17th International Conference on Science and Technology Indicators, Montreal, Canada. Montreal:Science-Metrix and OST,2012:273-284.
    [73]LUC.IO-ARIAS D, LEYDESDORFF L. Knowledge emergence in scientific communication:From "fullerenes" to "nanotubes"[J]. Scientometrics,2007,70(3):603-632.
    [74]Scharnhorst A, Garfield E. Tracing scientific influence[J]. Dynamic of Socio-Economic System,2010,2(1):1-33.
    [75]Vlachy J. Mobility in science. Bibliography of scientific career migration, field mobility, international academic circulation and brain drain[J]. Scientometrics,1979,1(2): 201-228.
    [76]Merton RK. Science, Technology & Society in 17th Century England[M]. Howard Fertig, 1970.
    [77]Bettencourt L, Kaiser DI, Kaur J. Scientific discovery and topological transitions in collaboration networks[J]. Journal of Informetrics,2009,3(3):210-221.
    [78]Leydesdorff L, Rafols I. Local emergence and global diffusion of research technologies: An exploration of patterns of network format ion[J]. Journal of the American Society for Information Science and Technology,2011,62(5):846-860.
    [79]Liu X, Jiang T, Ma F. Collective dynamics in knowledge networks:Emerging trends analysis[J]. Journal of Informetrics,2013,7(2):425-438.
    [80]Goffman W, Newill VA. Generalization of epidemic theory:An application to the transmission of ideas[J]. Nature,1964,204(4955):225-228.
    [81]Goffman W. A mathematical method for analyzing the growth of a scienti fie discipl ine[J]. Journal of Association for Computing Machinery,1971,18(2):173-185.
    [82]Goffman W. Mathematical approach to the spread of scientific ideas:The history of mast cell research[J]. Nature,1966,212(5061):499-452.
    [83]Goffman W, Harmon G. Mathematical approach to the prediction of scientific discovery [J]. Nature,1971,229 (5280):103-104.
    [84]Garfield E. The epidemiology of knowledge and the spread of scientific information[J]. Current Contents,1980,(35):5-10.
    [85]Borner K, Bettencourt LMA, Gerstein M, et al. Knowledge Management and Visualization Tools:In Support of Discovery[R]. NSF Workshop Report. Indiana University, Los Alamos Nat ional Laboratory, Yale University, and New York Hall of Science,2009.
    [86]Bettencourt L, Cintron-Arias A, Kaiser DI, et al. The power of a good idea:Quantitative modeling of the spread of ideas from epidemiological models[J]. Physica A:Statistical Mechanics and its Applications,2006,364:513-536.
    [87]Sun X, Kaur J, Milojevic S, et al. Social Dynamics of Science[J]. Scientific Reports, 2013, (3):1-6.
    [88]王续琨,冯欲杰,周心萍,于刚.社会科学交叉科学学科辞典[M].大连:大连海事大学,1999.
    [89]Boyack K. Mapping knowledge domains:Characterizing PNAS[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(Suppl 1):5192.
    [90]Sci2 Team. Science of science (sci2) tool:Indiana university and scitech strategies, inc. [EB/OL]. https://sci2.cns.iu.edu.
    [91]Leydesdorff L. The challenge of scientometrics:the development, Measurement, and self-organization of scientific communications[M]. Leiden:DSWO Press,1995.
    [92]Popper K. The Logic of Scientific Discovery.[M]. London:Hutchinson,1959.
    [93]卡尔·波普尔.科学发现的逻辑[M].查汝强,邱仁宗译.香港:中国美术出版社,2008.
    [94]卡尔·波普尔.猜想与反驳:科学知识的增长[M].傅季重,纪树立,周昌忠,浆弋译.上海:上海译文出版社,2005.
    [95]Popper K. Conjectures and Refutations:The Growth of Scientific Knowledge[M]. London: Hutchinson,1963.
    [96]托马斯·库恩.科学革命的结构[M].金吾伦,胡新和译.北京:北京大学出版社,2003.
    [97]Kuhn TS. The Structure of Scientific Revolutions[M]. Chicago:University of Chicago Press,1962.
    [98]Kuhn TS. The Structure of Scientific Revolutions[M]. Chicago:University of Chicago Press,1970.
    [99]伊姆雷·拉卡托斯,艾兰·马斯格雷夫.批判与知识的增长[M].周寄中译.北京:华夏出版社,1987.
    [100]Lakatos I, Musgrave A. Criticism and the Growth of Knowledge[M]. Cambridge:Cambridge University Press,1970.
    [101]拉里·劳丹.进步及其问题——科学增长理论刍议[M].方在庆译.上海:上海译文出版社,1991.
    [102]Laudan L. Progress and Its Problems:Toward a Theory of Scientific Growth[M]. London: Rout ledge and Kegan Paul,1977.
    [103]Stegmuller W, Wohlhueter W. The structure and dynamics of theories[M]. New York: Springer-Verlag,1976.
    [104]Niiniluoto I. Scientific Progress[EB/OL]. http://plato.stanford.edu/archives/win2008/entries/scientific-progress/
    [105]Ben-David J. Roles and innovations in medicine[J]. The American Journal of Sociology, 1960,65(6):557-568.
    [106]弗霍伊登塔尔.本一大卫的生平和工作[J].科学文化评论,2007,4(3):74-97.
    [107]Ben-David J. Scientific productivity and academic organization in nineteenth century medicine[J]. American Sociological Review,1960,25(6):828-843.
    [108]默顿.十七世纪英格兰的科学技术与社会[M].范岱年译.北京:商务印书馆,2000.
    [109]普赖斯.巴比伦以来的科学[M].任元彪译.石家庄:河北科技出版社,2002.
    [110]Price D.J. Science Since Babylon [M]. New Haven:Yale University Press,1961.
    [111]Price DJ. Little science, big science[M]. Columbia University Press,1963.
    [112]Price DJ. The exponential curve of science[J]. Discovery,1956,17(6):240-243.
    [113]刘则渊,陈悦,侯海燕等.科学知识图谱:方法与应用[M].北京:人民出版社,2008.
    [114]Garfield E. In tribute to Derek John de Solla Price:a citation analysis of little science, big sicence[J]. Scientometrics,1985,7(3):487-503.
    [115]May KO. Quantitative growth of the mathematical literature[J]. Science, 1966,154(3757):1672.
    [116]Tague J. The law of exponential growth:evidence, implications and forecasts[J]. Library Trends,1981,30(1):125-145.
    [117]King DA. The scientific impact of nations[J]. Nature,2004,430(6997):311-316.
    [118]Davidson Frame J, Narin F. The growth of chinese scientific research,1973-84[J]. Scientometrics,1987,12(1):135-144.
    [119]Zhou P, Leydesdorff L. The emergence of China as a leading nation in science[J]. Research Policy,2006,35(1):83-104.
    [120]Glanzel W, Leta J, Thijs B. Science in Brazil. Part 1:A macro-level comparative study[J]. Scientometrics,2006,67(1):67-86.
    [121]Glanzel W, Danell R, Persson 0. The decline of Swedish neuroscience:Decomposing a bibliometric national science indicator[J]. Scientometrics,2003,57(2):197-213.
    [122]刘则渊.科学学文选:历程·理论·前沿[M].大连:大连理工大学WISE实验室,2010.
    [123]刘则渊.知识图谱的若干问题思考[R].学术报告文稿.大连理工大学WISE实验室,2010.
    [124]Chen C. Mapping scientific frontiers:The quest for knowledge visualization[M]. London: Springer Verlag,2003.
    [125]刘则渊,陈悦.现代科学技术与发展导论[M].大连:大连理工大学出版社,2011:94.
    [126]Albritton C. A Call for Unity[J]. Science,1972,176(4035):639-641.
    [127]Tseng YH, Lin YI, Lee YY,等. A comparison of methods for detecting hot topics[J]. Scientometrics,2009,81(1):73-90.
    [128]国家自然科学基金委员会.国家自然科学基金“十二五”发展规划[R].北京:国家自然科学基金委员会,2011.
    [129]Klavans R, Boyack K. Toward a consensus map of science[J]. Journal of the American Society for Information Science and Technology,2009,60(3):455-476.
    [130]Borner K, Klavans R, Patek M, et al. Design and Update of a Classification System: The UCSD Map of Science[J]. PloS one,2012,7(7):e39464.
    [131]Rao CR. Diversity:Its measurement, decomposition, apportionment and analysis. [J]. The Indian Journal of Statistics, Series A,1982,44(1):1-22.
    [132]Stirling A. A general framework for analysing diversity in science, technology and society[J]. Journal of the Royal Society Interface,2007,4(15):707-719.
    [133]Porter AL, Rafols I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time [J]. Scientometrics,2009,81(3):719-745.
    [134]庞景安.科学计量研究方法论[M].北京:科学技术文献出版社,1999.
    [135]Lotka AJ. The frequency distribution of scientific productivityt[J]. Journal of Washington Academy Sciences,1926,16:317-323.
    [136]Wikipedia. Social network[FEB/OL]. http://en. wikipedia. org/wiki/Social_netwark_analysis.
    [137]Barnes JA. Class and committees in a Norwegian island perish[J]. Human Relations, 1954, (7):39-58.
    [138]Wasserman S, Faust K. Social network analysis:Methods and appl ications[M]. Cambridge: Cambridge University Press,1994.
    [139]Freeman I.C. The development of social network analysis:A study in the sociology of science[M]. Vancouver:Empirical Press,2004.
    [140]NSF. Awards Simple Search[RB/OL]. http://ndf.gov/award.scarch/.
    [141]Weingart S, Guo H, Borner K, et al. Science of Science Sci2 Tool User Manual[EB/OL].http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/Science+of+Science+%28Sci2% 29+Tool+Manual;jsessionid=77331416AB5761054FD7D8A510C4D5B5.
    [142]Guo H, Weingart S, Borner K. Mixed-indicators model for identifying emerging research areas[J]. Scientometrics,2011,89(1):421-435.
    [143]Benjamins R, Contreras J, Corcho 0, et al. White Paper Six Challenges for the Semantic Web[R]. Intelligent Software Components Intelligent Software for the Networked Economy (isoco) 2002:1-15.
    [144]Bizer C. The emerging web of linked data [J]. Intelligent Systems, IEEE,2009,24(5): 87-92.
    [145]Thomson Reuters.Web of Science[EB/OL]. http://scientific.thomsonreuters.com/products/wos/.
    [146]Sci2 Team. Stop Word List[EB/OL]. http://nwb.cns.iu.edu/svn/nwb/trunk/plugins/preprocessing/edu.iu.nwb.preprocessing.text.no rmalization/src/edu/iu/nwb/preprocessing/text/normalization/stopwords.txt.
    [147]Benioff P. Quantum mechanical Hamiltonian models of turing machines[J]. Journal of Statistical Physics,1982,29(3):515-546.
    [148]Feynman RP. Simulating physics with computers[J]. International journal of theoretical physics,1982,21(6):467-488.
    [149]Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer[C]//Mark W. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences. London:Royal Society,1985,400(1818):97-117.
    [150]Shor PW. Algorithms for quantum computation:discrete logarithms and factoring[C]// 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science.35th Annual Symposium on Foundations of Computer Science, Nov 20-22,1994, Santa Fe, NM. IEEE Conference Publication,1994:124-134.
    [151]Grover LK. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. New York:ACM,1996:212-219.
    [152]Cory DG, Fahmy AF, Havel TF. Ensemble quantum computing by NMR spectroscopy[C]. Proceedings of the National Academy of Sciences,1997,94(5):1634-1639.
    [153]居琛勇.量子计算中的新计算模式和新物理实现体系研究[D].合肥:中国科学技术大学,2010.
    [154]白雨虹,杨秀彬,严寒.量子光学与量子信息领域中的中国[J].光学精密工程,2007,15(5):684-698.
    [155]徐海潭.任意子和拓扑量子计算[D].杭州:浙江大学,2009.
    [156]Gershenfeld NA, Chuang IL. Bulk spin-resonance quantum computation[J]. Science, 1997,275(5298):350-356.
    [157]秦玉新,蒙凌华,丁健.RNA干扰技术的研究进展[J].中国药理学通报,2007,(4):421-424.
    [158]唐少冰,周冬根.RNA干扰技术及其在植物研究中的应用[J].生物技术通报,2007,(5):65-67,75.
    [159]李方华,侯玲玲,苏晓华,郑扬,庞全海,关伟军,马月辉.RNA干扰的研究进展及应用[J]].生物技术通讯,2010,21(5):740-745.
    [160]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,411(6836):494-498.
    [161]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science Signalling,2001,294(5543):853.
    [162]Berners-Lee T, Hendler J, Lassila 0. The semantic web[J]. Scientific american, 2001,284(5):28-37.
    [163]刘柏嵩.基于知识的语义网:概念、技术及挑战[J].中国图书馆学报,2003,(2):18-21.
    [164]Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them?[J]. Intelligent Systems and Their Applications, IEEE,1999,14(1):20-26.
    [165]Anhalt J, Smailagic A, Siewiorek DP, et al. Toward context-aware computing: experiences and lessons[J]. Intelligent Systems, IEEE,2001,16(3):38-46.
    [166]McIlraith SA, Son TC, Zeng H. Semantic web services[J]. Intelligent Systems, IEEE, 2001,16(2):46-53.
    [167]Hirsch J. An index to quantify an individual's scientific research output[J]. Proceedings of the National Academy of Sciences,2005,102(46):16569-16572.
    [168]Egghe L. The Hirsch index and related impact measures[J]. Annual review of information science and technology,2010,44(1):65-114.
    [169]Egghe L. Theory and practise of the g-index[J]. Scientometrics,2006,69(1):131-152.
    [170]Bornmann L, Mutz R, Daniel HD. Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine[J]. Journal of the American Society for Information Science and Technology,2008,59(5):830-837.
    [171]Jin B, Liang L, Rousseau R, et al. The R-and AR-indices:Complementing the h-index[J]. Chinese Science Bulletin,2007,52(6):855-863.
    [172]Jin B. H-index:An evaluation indicator proposed by scientist[J]. Science Focus, 2006,1(1):8-9.
    [173]Rousseau R. New developments related to the Hirsch index[J]. Science focus,2006,1(4): 23-25.
    [174]Jin B. The AR-index:complementing the h-index[J]. ISSI newsletter,2007,3(1):6.
    [175]Molinari J, Molinari A. A new methodology for ranking scientific institutions[J]. Scientometrics,2008,75(1):163-174.
    [176]Mol inari A, Molinari J. Mathematical aspects of a new criterion for ranking scienti fie institutions based on the h-index[J]. Scientometrics,2008,2:339-356.
    [177]Ibanez A, Larranaga P, Bielza C. Using Bayesian networks to discover relationships between bibliometric indices. A case study of computer science and artificial intelligence journals[J]. Scientometrics,2011,89(2):523-551.
    [178]Serenko A, Dohan M. Comparing the expert survey and citation impact journal ranking methods:Example from the field of Artificial Intelligence[J]. Journal of fnformetrics, 2011,5(4):629-648.
    [179]Bornmann L, Daniel H-D. Does the h-index for ranking of scientists really work?[J]. Scientometrics,2005,65(3):391-392.
    [180]Glanzel W. On the h-index-a mathematical approach to a new measure of publication activity and citation impact[J]. Scientometrics,2006,67(2):315-321.
    [181]王龙.“冷聚变”研究现状[J].科技导报,1996,1:31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700