靶向Hsp90β siRNA对Jurkat细胞生长抑制及化疗敏感性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨RNA干扰技术沉默Hsp90β(Heat shock protein 90 beta)基因表达对Jurkat细胞生长的抑制作用及化疗敏感性的影响。
     方法:1.采用Real-Time PCR检测Jurkat、Raji、K562、HL-60细胞株Hsp90βmRNA表达的情况,筛选出高表达Hsp90β的细胞株。2.针对Hsp90β基因全长cDNA序列Hsp90B1(NM_003299.1),设计并构建3对Hsp90β干扰序列和一对随机对照序列,分别克隆获得质粒pSOS-Hsp90βi1, pSOS-Hsp90βi2, pSOS-Hsp90βi3及pSOS-Hsp90βicontrol;应用Lipofectamine? LTX将质粒分别转染入高表达Hsp90β的细胞中, Real-Time PCR检测Hsp90βmRNA水平的变化,筛选出沉默效果最好的Hsp90βsiRNA干扰片段;Western印迹法检测Hsp90β蛋白表达水平。3.MTT法和流式细胞仪检测Hsp90βsiRNA对Jurkat细胞生长抑制作用。4.检测Hsp90βsiRNA对Jurkat细胞化疗敏感性的影响,选不同浓度的长春新碱、阿霉素和依托泊苷,通过MTT法抗癌药物敏感试验检测干扰前后对Jurakt细胞化疗敏感性的变化。
     结果:1.Real-Time PCR结果显示Hsp90β在Jurkat细胞中的表达明显高于其它三株白血病细胞株(Raji,K562,HL-60),表达差异有统计学意义(P<0.05)。2.应用RNA干扰技术成功构建Hsp90β基因三条特异性真核载体pSOS-Hsp90βi1、2、3并分别转染Jurkat细胞,发现pSOS-Hsp90βi2的沉默效果最明显,Jurkat细胞Hsp90βmRNA及蛋白表达均明显降低(P<0.05)。3.Hsp90β基因表达沉默后,Jurkat细胞增殖明显受抑,细胞凋亡率比空白对照组及转染pSOS-Hsp90βicontrol组明显增加,差异具有显著意义(P<0.05)。4.转染了pSOS-Hsp90βi2的Jurkat细胞对VCR、ADM和VP16药物的IC50显著低于其余两组(P<0.05)。
     结论:不同的白血病细胞株Hsp90β的表达存在差异,在Jurkat、Raji、K562、HL-60中Jurkat细胞表达Hsp90β最高;成功构建了3种真核表达载体pSOS-Hsp90βsiRNA,并筛选出沉默效果最好的pSOS-Hsp90βi2;靶向pSOS-Hsp90βi2可下调Hsp90β表达,对人白血病Jurkat细胞有明显的生长抑制作用,显著增加了Jurkat细胞对长春新碱、阿霉素和依托泊苷的敏感性,为白血病基因治疗的靶向性奠定理论依据。
Objective To investigate the effect of Hsp90β(Heat shock protein 90 beta) gene silencing by small interfering RNA (siRNA) on the growth inhibition and chemosensitivity of Jurkat cells.
     Methods 1.The cell line overexpressing Hsp90βgene was distinguished by means of Real-Time PCR from the cells of Jurkat, Raji, K562 and HL-60. 2.According to Hsp90βgene cDNA sequence Hsp90B1(NM_003299.1), three specific interference sequences and a random controlled sequence were inserted into the pSOS-HUS, respectively. The recombinant eukaryotic expression plasmids pSOS-Hsp90βi1, pSOS-Hsp90βi2, pSOS-Hsp90βi3 and pSOS-Hsp90βicontrol were constructed and transfected into Jurkat cells by Lipofectamine ? LTX with PLUS ? Reagent. The gene silencing efficiency of recombinant plasmid pSOS-Hsp90βi was monitored by real-time PCR and effective Hsp90β-specific RNAi sequences were screened as well. Western blotting was used to detect the protein expression of Hsp90β. 3.The changes in Hsp90βsiRNA, the cell growth and apoptotic rate were determined by MTT assays and flow cytometry. 4. The gradient concentrations of Vincristine, Adriamycin and Etopodide were applied respectively in the cell culture medium of Jurkat before and after the Hsp90βsiRNA transfection. The cell sensitivity to chemotherapy drugs was measure by MTT.
     Results 1. Real-Time PCR results revealed that Jurkat cell had a highest expression level of Hsp90βof four leukemia cell lines (Raji, K562, HL-60), the expression difference was statistically significant (P<0.05); 2. Recombinant plasmid pSOS-Hsp90βi1, 2, 3, eukaryotic vector targeting Hsp90βwas successfully constructed. The expression of Hsp90βin the cells transfected with pSOS-Hsp90βi2 were inhibited significantly at both mRNA and protein levels (P<0.05). 3. MTT assays and flow cytometry showed that Hsp90βsiRNA inhibited the proliferation of Jurkat cells and induced apoptosis of leukemia cells. 4. pSOS-Hsp90βi2 transfection can increase the sensibility of Jurkat cells to anticancer drugs (for example, VCR, ADM and VP16). The IC50 of drugs were lower than that of two control groups (p<0.05).
     Conclusion Hsp90βis expressed higher in Jurkat cells than that in other leukemia cell lines(Raji, K562, HL-60); The successfully constructed eukaryotic expression vector pSOS-Hsp90βsiRNA. Highly interference pSOS-Hsp90βi2 was screen; The chemically synthesized specific siRNA targeting Hsp90βcould effectively reduce the expression of Hsp90βgene, inhibit growth and increase the sensitivity of Jurkat cells to VCR, ADM and VP16. In conclusion, it laid a good foundation for further prepare a condition for targeted gene therapy in leukemia.
引文
[1]杨锡强,易著文,李文益等.儿科学[M]. (第6版).北京:人民卫生出版社,2004. 426-436.
    [2] Beck R,Verrax J,Gonze T,et al. Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death[J]. Biochem Pharmacol, 2009, 77(3): 375-83.
    [3] Hannon GJ. RNA interference [J] . Nature, 2002,418 (6849):244-251.
    [4] Falschlehner C,Sreinbrink S,Erdmann G, et al.High-throughput RNAi screening to dissect cellular pathways: A how-to guide [J].Biotechnol J,2010,5(4): 368-376.
    [5] Qing Luo,Quan Kang,Wen-Xin Song,et al.Silection and validation of optimal siRNA targetsites for RNAi-mediated gene silencing[J].Gene,2007, 395(1-2) :160 -169.
    [6] Embleton ML,Vologodskii AV,Halford SE.Dynamics of DNA loop capture by the SfiI restriction endonuclease on supercoiled and relaxed DNA.J Mol Biol.2004 , 339(1):53-66.
    [7] McManus MT,Sharp PA.Gene silencing in mammals by small interfeting RNAs[J].Nat Rev Genet,2002,3:737—747.
    [8] Davenport RJ. Gene silencing. A faster way to shut down genes[J].Science,2001,292:1469-1471.
    [9] Caplen NJ,Fleenor J,Fire A,et al.dsRNA—mediated gene silencing in cultured Drosophila cells:a tissue culture model for the analysis of RNA interference[J].Gene,2000,252(1-2):95-105.
    [10] Pushparaj PN,Aarthi JJ, Manikandan J, Kumar SD.siRNA, miRNA, and shRNA: in vivo applications[J]. J Dent Res. 2008, 87(11):992-1003.
    [11] Bingbing Yuan, Robert Latek, Markus Hossbach,et, al. siRNA Selection Server: an automated siRNA oligonucleotide prediction server[J]. Nucleic Acids Res. 2004, 1(32) 130-134.
    [12] Shu-Mei Liang,Cheng-Chin Kuo, Chi-Ming Liang, et al. Oligodeoxynucleotide antiapoptotic effect of CpG-B Hsp90beta but not Hsp90alpha in involvement of heat shock protein[J]. J Immunol, 2007, 178:6100-6108.
    [13] Manik Chatterjee, Sarika Jain, Thorsten Stuhmer, et al. STAT3 and MAPKsignaling maintain overexpression of heat shock proteins 90αandβin multiple myeloma cells, which critically contribute to tumor-cell survival[J]. BLOOD, 2007,109(2):720-728.
    [14] Giana Angelo, Stefania Lamon-Fava, Larry A. Sonna, et al. Heat shock protein 90b: A novel mediator of vitamin D action.[J]. Biochemical and Biophysical Research Communications, 2008, 367: 578–583.
    [15] Carmel T. Chan, Ramasamy Paulmurugan, Olivier S, et al. Molecular Imaging of Heat Shock Protein 90 Inhibtors in Living Subjets[J]. Cancer Res, 2008, 68(1): 216-26.
    [16] Manik Chatterjee, Sarika Jain, Thorsten Stuhmer, et al. STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90αandβin multiple myeloma cells, which critically contribute to tumor-cell survival [J]. Blood, 2007, 109(2):720-728.
    [17] Blagosklonny MV, Fojo T, Bhalla KN, et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy[J]. Leukemia, 2001, 15(10): 1537-1543.
    [18] Dias S, Shmelkov SV, Lam G, et al. VEGF (165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition[J]. Blood, 2002 , 99:2532-2540.
    [19] Minami Y, Kiyoi H, Yamamoto Y, et.al. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors[J]. Leukemia, 2002, 6(8): 1535-1540
    [20] Gorre ME, Ellwood-Yen K, Chiosis G, et al . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90[J]. Blood, 2002, 100(15):3041-3044.
    [21] Manabu Kurokawa, Chen Zhao, Tannishtha Reya. Inhibition of Apoptosome Formation by Suppression of Hsp90βPhosphorylation in Tyrosine Kinase-Induced Leukemias[J]. Molecular AND Cellular Biology,2008, 28(17):5494-5506.
    [22] Kurokawa M, Zhao C, Reya T, et al. Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias[J]. Mol Cell Biol, 2008, 28(17):5494-506.
    [23] Wu LX, Xu JH, Zhang KZ, et al. Disruption of the Bcr-Abl/Hsp90 protein complex :a possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin[J]. Leukemia, 2008, 22(7): 1402-9.
    [24] Peng C, Brain J, Hu Y, et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells [J]. Blood, 2007, 110(2): 678-85.
    [25] Lu Z, Jin Y, Qiu L, et al. Celastrol, a novel HSP90 inhibitor, depletes Bcr-Abl and induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T3151 mutation [J]. Cancer Lett, 2010, 290(2): 182-91.
    [26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method [J]. Methods, 2001, 25 (4) : 402 - 408.
    [27] Nachmias B,Lazar I,Elmalech M,et al. Subcellular localization determines the delicate balance between the anti-and pro-apoptotic activity of Livin [J]. Apoptosis,2007,12(7): 1129-1142.
    [28] J ameel A , Skilton RA , Campbell TA , et al . Clinical and biological significance of HSP90αin human breast cancer[J]. I nt J Cancer , 1992 ; 50 :409 - 415.
    [29] Mileo AM , Fanuele M , Bat taglia F , et al . Selective overexpression of mRNA coding for 90kDa st ress protein in human ove rian cancer[J]. A nt icancer Res ,1990 ;10 :903 - 906.
    [30] Nanbu K , Konshi I , Komat su T , et al . Expression of heat shock proteins HSP70 and HSP90 in endomet rial carcinomas[J]. Cancer ,1996 ; 77 :330 - 338.
    [31] Yano M , Naito Z , Tanaka S , et al . Expression and roles of heat shock proteins in human breast cancer[J]. J p n J Cancer Res , 1996 ;87 :908 - 915.
    [32] Yamada T , Nakamura R , Kido K, et al . Function of HSP90 in differentiation and apoptosis of human EC cells[J]. Trans Soc Pat hol J pn , 1995 ; 84 :217 - 221.
    [33] Yano M , Naito z,Tanaka S, et al. Expression and roles of heatshock proteins in human breast cancer [J] . Jpn J Cancer Res,1996, 87 (3):908- 915.
    [34] Christina L,McDowell,R. Bryan Suttonb,et al. Expression of Hsp90 chaperome proteins in human tumor tissue[J]. International Journal of Biological Macromolecules, 2009, 45:310-314.
    [35]刘宪玲,叶苓,王建波,等.热休克蛋白HSP90β在人胃癌组织及耐药细胞系中的表达.第四军医大学学报[J],2000,21(2):131-134.
    [36]赵菊梅,刘涛,田聆,等.鼻咽癌Hsp90β的表达及临床意义[J].中华肿瘤杂志,2005,34(11):1307-1309.
    [37]朱勤,胡煜,龚连生,等.Hsp90β在结肠癌组织和细胞中的表达及其与化疗耐药的关系[J].中国普通外科杂志,2009,4(18):353-357.
    [38] Chant. I. D, Rose. P. E, Morris. A. G. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry[J]. Br. J. Haematol, 1995, 90, 163-168.
    [39] Thomas. X, Campos. L, Mounier. C, et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia[J]. Leuk. Res, 2005, 29, 1049-1058.
    [40] Anensen. N, Oyan. A. M., Bourdon. J. C, et al. A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia[J]. Clin. Cancer Res, 2006, 12, 3985-3992.
    [41] Irish. J. M., Hovland. R., Krutzik. P. O, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells[J]. Cell ,2004, 118, 217-228.
    [42] Soupir. C. P, Vergilio. J. A, Dal Cin. P, et al. Philadelphia chromosomepositive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis[J]. Am. J. Clin. Pathol. 2007, 127, 642-650.
    [43] Larizza L, Magnani I, Beghini A. The Kasumi-1 cell line: a t (8;21)-kit mutant model for acute myeloid leukemia[J]. Leuk Lymphoma, 2005, 46(6): 247-255.
    [44] Stromskaya TP, Rybalkina EY, Zabotina TN, et al. Influence of RARa gene on MDR1 expression and P-glycoprotein function in human leukemic cells[J]. Cancer CeIl Int, 2005,5: 15.
    [45]郑改焕,金先庆,罗庆,徐酉华,等.新基因HAll7最佳siRNA的筛选及重组腺病毒构建构建.第三军医大学报.2007, 31(7):641-643.
    [1] H. Reikvam1, E. Ersv?, Bruserud, et al. Heat Shock Protein 90– a Potential Target in the Treatment of Human Acute Myelogenous Leukemia[R]. Current Cancer Drug Targets, 2009, 9, 761-776.
    [2] Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivatea heat—denatured protein[J]. Plant Physiol, 2000. 122(1):l89- l98.
    [3] S tanglK, Gu ntherC ,FrankT ,et al. Inhibition of the Ublquitln-Proteasome Pathway Induces Differential Heat-Shock Protein Response in Cardiomyocytes and Renders Early Cardiac Protection[J]. Biochem Biophys Res Commun,2002,291:542-549
    [4] Panaretou B, Siligardi G, Meyer P, et al. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone Ahal[J]. Mol Cell, 2002, 10:1307-1318.
    [5] Mclaughlin SH, Smith HW, Jackson SE. Stimulation of the weak ATPase activity of human hsp90 by a client protein[J]. J Mol Biol, 2002, 315(4): 787-798.
    [6] Chant. I. D, Rose. P. E, Morris. A. G. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry[J]. Br. J. Haematol, 1995, 90, 163-168.
    [7] Thomas. X, Campos. L, Mounier. C, et al. Expression of heat-shock proteins isassociated with major adverse prognostic factors in acute myeloid leukemia[J]. Leuk. Res, 2005, 29, 1049-1058.
    [8] Flandrin. P, Guyotat. D, Duval. A, et al. Significance of heat-shock protein (HSP: )90 expression in acute myeloid leukemia cells[J]. Cell Stress Chaperones,2008, 13, 357-364.
    [9] Sullivan. W. P, Owen. B. A, Toft. D. O. The influence of ATP and p23 on the conformation of hsp90[J]. J. Biol. Chem, 2002, 277,45942-45948.
    [10] Tronstad,.K. J, Bruserud. O, Berge. K, et al. Antiproliferative effects of a non-beta-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures[J]. Leukemia, 2002, 16, 2292-2301.
    [11] Kawai. M., Chen. J, Cheung. C. Y, et al. Transcript profiling of cytochrome P450 genes in HL-60 human leukemic cells:upregulation of CYP1B1 by all-trans-retinoic acid[J]. Mol. Cell Biochem,2003, 248, 57-65.
    [12] Anensen. N, Oyan. A. M., Bourdon. J. C, et al. A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia[J]. Clin. Cancer Res, 2006, 12, 3985-3992.
    [13] Irish. J. M., Hovland. R., Krutzik. P. O, et al. Single cell profiling of potentiated phospho-protein networks in cancer cells[J]. Cell ,2004, 118, 217-228.
    [14] Reikvam. H, Olsnes. A, Gjertsen. B. T, et al. Nuclear Factor-κB signalling– a contributor in leukemogenesis and a target for pharmacological intervention in human acute myelogenous leukemia[J]. Crit. Rev. Oncog, 2009, In press.
    [15] Knapper. S. FLT3 inhibition in acute myeloid leukaemia[J]. Br. J.Haematol, 2007, 138, 687-699.
    [16] Bruserud. O, Hovland. R, Wergeland. L, et al. Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities[J]. Haematologica 2003, 88, 416-428.
    [17] Frostad. S, Bruserud. O. In vitro effects of insulin-like growth factor-1 (IGF-1) onproliferation and constitutive cytokine secretion by acute myelogenous leukemia blasts[J]. Eur. J. Haematol.1999, 62, 191-198.
    [18] Soupir. C. P, Vergilio. J. A, Dal Cin. P, et al. Philadelphia chromosomepositive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis[J]. Am. J. Clin. Pathol. 2007, 127, 642-650.
    [19] Chim. C. S, Wong. A. S, Kwong. Y. L. Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias[J]. Ann. Hematol.2003, 82, 738-742.
    [20] Pillozzi. S, Brizzi. M. F, Balzi. M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors[J]. Leukemia 2002, 16, 1791-1798.
    [21] Roth. A, Vercauteren. S, Sutherland. H. J, et al. Telomerase is limiting the growth of acute myeloid leukemia cells[J].Leukemia 2003, 17, 2410-2417.
    [22] Kuittinen. O, Savolainen. E. R, Koistinen. P, et al. Gelatinase A and B (MMP-2, MMP-9) in leukaemia MMP-2 may indicate a good prognosis in AML[J]. Anticancer Res,1999, 19, 4395-4400.
    [23] Smadja. D. M, Laurendeau. I, Avignon. C, et al. The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells[J]. J. Thromb. Haemost.2006, 4, 2051-2058.
    [24] Citri. A, Harari. D, Shohat. G, Ramakrishnan. P, et al. Hsp90 recognizes a common surface on client kinases[J]. J. Biol. Chem. 2006, 281, 14361-14369.
    [25] Grosjean-Raillard. J, Ades. L, Boehrer. S, et al. Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia[J]. Apoptosis 2008, 13, 1148-1161.
    [26] Baldus. C. D, Mrozek. K, Marcucci. G, et al. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review [J]. Br. J. Haematol. 2007, 137, 387-400.
    [27] Saori Sato, Naoya Fujita, Takashi Tsuruo, et al. Modulation of Akt kinase activity by bindingto Hsp90[J]. Proc Natl Acad Sci U S A. 2000, 97(20):10832-7.
    [28] Manabu Kurokawa, Chen Zhao, Tannishtha Reya, et al. Inhibition of Apoptosome Formation by Suppression of Hsp90βPhosphorylation in Tyrosine Kinase-Induced Leukemias[J]. Molecular and Cellular Biology, 2008, 28(17): 5494-5506.
    [29] Skorski. T, A. Bellacosa, M. Nieborowska-Skorska, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway [J]. EMBO J, 1997, 16:6151–6161.
    [30] Adida C, Crotty PL, McGrath J, et al. Developmental regulated expression on of the novel cancer anti-apoptosis gene surviving human and mouse differentiation[J]. Am J Pathol, 1998, 152(1): 43-49.
    [31] Suzuki A, Hayashida M, et al. Survivin intiates cell cycle entry by the competitive interaction with Cdk4/P16(INL4a) and Cdk2/cyclinE complex activation[J]. Oncogene, 2000, 19(29): 3225-3234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700