污泥衍生吸附剂的制备及其对Pb~(2+)、Cu~(2+)、SO_2的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外城市污水处理厂的数量和规模都迅速增长,然而在处理污水的过程中会产生大量剩余的污泥,并且污泥的储存、处理和处置过程中均可能危害环境,污泥的管理已成为一个世界性的社会和环境问题。本研究提出将城市污水厂污泥通过一定的手段改制成一种高效吸附剂并应用于重金属离子、二氧化硫等有害物的治理过程中。
     本课题主要针对污泥衍生吸附剂的制备条件及制备工艺进行研究,采用正交试验与单因素试验相结合的方法得到制取污泥衍生吸附剂的最佳条件,利用相关的物理、化学的方法对吸附剂的性能进行测定。探索该吸附剂吸附溶液中Pb~(2+)、Cu~(2+)的应用,利用污泥衍生吸附剂吸附模拟的二氧化硫烟气,研究影响二氧化硫去除效率和吸附容量的因素,研究二氧化硫在污泥衍生吸附剂中的吸附机理。
     实验结果表明,在一定的升温速率下,污泥热解存在3阶段的失重过程,每一阶段的热解机理不同,但都符合一定热解模型。污泥衍生吸附剂孔径分布比较均匀,且大都在0.1~0.4μm之间,属于微孔和过渡孔,其中微孔占大部分。其表面物理化学性能如下:真密度2.8g/cm~3;视密度0.54g/cm~3;比表面积298m~2/g;比孔容积0.729g/cm~3;孔隙率0.807;微孔容积0.528g/cm~3。
     污泥衍生吸附剂对溶液l中金属离子如pb~(2+)、Cu~(2+)具有很好的去除作用,其吸附容量分别6.18mg/g、4.20mg/g。污泥衍生吸附剂吸附pb~(2+)的活化能为Ea=26.5KJ/mol,吸附的频率因子Ko=6900S~(-1)。非线性拟合求得的pb~(2+)等温吸附方程模型参数比较可靠。污泥衍生吸附剂对气体中的二氧化硫具有较好的去除效果。在吸附剂含水率3g/10g吸附剂,烟气流量300L/h,二氧化硫进口浓度1500ppm,吸附剂用量为30g的条件下,二氧化硫的吸附容量为60mg/g。
In resent years, the quantity and the scale of municipal wastewater treatment plants in both domestic and aboard are increasing rapidly. During the disposal of wastewater, large amounts of sludge are produced; furthermore, the process of storage, treatment as well as disposal of sludge may pollute the nature environment, which becomes one of the social and environmental problems throughout the world. This paper proposes a useful method to utilize the excessive sludge to make up effective adsorbent for adsorbing poisonous substances such as heavy metals in wastewater and sulfur dioxide in polluted atmosphere.
    The main subject of this paper is to study the making condition and the making process of the sludge ramification adsorbent. The optimum condition is found by the method combining orthogonal experiment with single-factor ones, and the capability of the adsorbent is measured with certain physical and chemical methods. This adsorbent is used to adsorb Pb2+and Cu2+ in simulated wastewater as well as sulfur dioxide in simulated flue gas, and the influencing factors of the removal efficiency and adsorption capacity to sulfur dioxide as well as the adsorption mechanism are also studied.
    The experiment results show that at certain rising-rate of the temperature, the process of sludge pyrolysis can be divided into 3 stages, and the phrolysis mechanism of each stage fits to certain pyrolysis model. The dimension distribution of the aperture on the surface of the adsorbent belongs to micropore and mesopore, varying from 0.1 to 0.4 um. The physical and chemical characteristic of the surface of adsorbent are as follows: real density 2.8 g/cm , inspective density 0.54 g/cm , special surface area 298m2/g, special porosity 0.729 g/cm3, hole ratio 0.807, microporosity 0.528 g/cm3.
    The sludge ramification adsorbent has perfect effect on removing heavy metal ion in water solution, such as Pb2+ and Cu2+, and the adsorption capacity is 6.18mg/g and
    
    
    4.20mg/g, respectively. The activation energy for adsorbing Pb2+ is about 26.5KJ/mol, and the adsorption frequency factor is 6900S-1. The model parameters solved by non-linear fit is more credible than that by linear fit in simulating the process of Pb2+ adsorption. At the same time, the sludge ramification adsorbent also has good effect on adsorbing sulfur dioxide. On the condition that the percentage of water in adsorbent is about 3 g/lOg (adsorbent), the flux of fume gas about 300L/h, the concentration of sulfur dioxide on the inlet around ISOOppm, and the quantity of
    adsorbent 30 g, the adsorption capacity of sulfur dioxide is 60mg/g.
引文
[1] 顾夏生,黄铭荣,王占生等.水处理工程.北京:清华大学出版社,1985:2-5
    [2] 牛樱,陈季华.污泥处理技术进展.东华大学学报,2000,26(4):100-106
    [3] 牛樱,陈季华.剩余污泥处理技术进展.工业用水与废水,2000,31(5):4-6
    [4] 熊振湖.我国污水厂污泥的处理与资源化研究.天津城市建设学院学报,1999,5(3):6-9
    [5] 何品晶,顾国维,李笃中等.城市污泥处理与利用.北京:科学出版社,2003:1-18
    [6] 肖锦.城市污水处理及回用技术.北京:化学工业出版社,2002:2-6
    [7] 周寿荣.草坪地被与人类环境.成都:四川科学技术出版社,1996:23-24
    [8] 何品晶,顾国维.污水厂污泥热化学转化制油关键技术研究.上海市环境保护科学技术发展基金报告.上海:同济大学,1998:80-82
    [9] 陈涛,雄先哲.污泥的农林处置与利用.环境保护科学,2000,26(99):32-34
    [10] 乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响.土壤,2000,32(2):79-85
    [11] Tay J H, Hong S Y, Show K Y. Reuse of sludge as palletized aggregate. Journal of Environmental Engineering, 2000,126(3): 279-286
    [12] Fouhy K, Moore S. Raking money from muck. Chem. Eng., 1994,72(7): 33-37
    [13] 王诗元,崔玉波,王翠兰等.污泥处理技术展望.吉林建筑工程学院学报,2000(1):25-28
    [14] 姚刚.德国的污泥利用和处置(Ⅱ)(续).城市环境与城市生态,2000,13(2):24-26
    [15] 陈鸣.城市污水处理厂污泥最终处置方式的探讨.中国给水排水,2000,16(8):23-24
    [16] 袁守军,朱宛华.合肥市污水处理厂污泥处置途径探讨.合肥工业大学学报(自然科学版),2001,24(4):538-542
    [17] 杨朝晖,杨霞.污水处理厂的污泥处置.环境科学与技术,1995,23(4):40-42
    [18] 刘英对,王峰,温琰茂.城市污泥的资源化与防治措施.资源开发与市场,1998,14(6):271-273
    [19] 黄懂宁.城市污泥处置概述.环境科学动态,1999(4):27-29
    [20] 韦朝海,陈传好.污泥处置、处理与利用现状分析.城市环境与城市生态,1998,11(4):10-13
    [21] Schulz R, Romheld V. Recycling of municipal and industrical organic wastes in agriculture benefits, limitations and means of improvement (reprinted from plant
    
    nutrition for sustainable food production and environment). Soil Science and Plant Nutrition, 1997, 43(3): 1051-1056
    [22] S.Jeyaseelan, Lu Gao Qing. Development of adsorption/catalyst from municipal wastewater sludge. Wat. Sci. Tech., 1996, 34(3): 499-505
    [23] Bayer B, M Kutubuddin.Temperature conversion of sludge and Waste to Oil from K Jthome Kozmiendsy Eds. Proceedings of the International Recycling Congress, Berlin, 1978:134-135
    [24] Campbell H W. Sewage Sludge Treatment and Use: New Development. London: Elsevier Applied Science, 1989:26-34
    [25] Bridle.T.R.,I.Hammerton,C.K.Hertle. Control of heavy metals and organochlorines using the oil from sewage process. Wat. Sci. Tech., 1990, 22(12): 249-258
    [26] Frost R C, A M Bruce.Alternative Uses for Sewage Sludge. Oxford: Pergamon Press, 1991:45-48
    [27] 何晶晶,顾国维,邵立明等.污水污泥低温热解处理技术研究.中国环境科学,1996,16(4):254-257
    [28] 欧国荣,陈奇洲.生活水污油化试验研究.环境污染与防治,1996,18(4):20-21
    [29] 何晶晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究.中国环境科学,1998,18(1):39-42
    [30] 胡光埙,洪云希.城市污泥合成燃料的应用研究.中国给水排水,1996,12(2):13-15
    [31] 唐黎华,朱子彬,赵庆祥等.活性污泥作为气化用型煤粘结剂—污泥在粉煤中的分散性与型煤质量的关系.华东理工大学学报,1998,24(5):506-509
    [32] 唐黎华.活性污泥作为化用型煤粘结剂的研究.环境科学学报,1999,19(1):87-90
    [33] 王敦球,谢庆林,李金城等.城市污水污泥农用资源化研究.重庆环境科学,1999,21(6):50-52
    [34] 国家环境保护局编.水污染防治及城市污水资源化技术.北京:科学出版社,2002:33-36
    [35] 曲颂华,陈绍伟.城市垃圾与污水厂污泥的混合研究.环境保护,1998(10):15-16
    [36] 蔡文金.城市污泥处理利用的探索.环境工程,1991,9(4):22-23
    [37] 赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展.中国给水排水,2001,17(6):
    
    2-25
    [38] 卞华松,张仲燕,刘芝玲.有机污泥改制含炭吸附剂工艺及应用.环境科学,1999,20(6):56-59
    [39] Chiang P. C, You J. H. Use of sewage sludge for manufacturing adsorbents. J. Chem. Eng. (Canada), 1987, 65(3): 922-930
    [40] Xiaoge Chen, S.Jeyaseelan. Study of sewage sludge pyrolysis mechanism and mathematical modeling. Journal of environmental engineering, 2000, 126(7): 585-592
    [41] 张德见,魏先勋,曾光明等.化学活化法制取污泥衍生吸附剂的实验研究.安全与环境学报,2003,3(5):44-46
    [42] G.Q.Lu, J.C.F.Low, C.Y.Liu, et al. Surface area development of sewage sludge during pyrolysis. Fuel, 1995,74(3): 344-348
    [43] Andrey Bagreev, Teresa J. Bandosz, David C.locke. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 2001, 39(4): 1971-1979
    [44] S.Bashkova,A.Begreev, T. J.Bandosz. Adsorption of Methyl Mercaptan on Activated Carbons. Environ Sci. Technol., 2002.36(5): 2777-2782
    [45] Bagreev A., Bashkova S., Locke D. C., et al. Sewage Sludge Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environ. Sci. Technol., 2001, 35(3): 1537-1543
    [46] 吴键,乔华.利用污水污泥制取活性炭的试验研究.给水与废水处理国际会议论文集,1994:7-12
    [47] 马志毅,侯红娟,刘瑞强等.污水厂污泥作吸附剂的试验研究.中国给水排水,1997,13(4):10-13
    [48] 杨昌竹主编.环境工程原理.北京:冶金工业出版社,1998:65-81
    [49] 朱步瑶编.界面化学基础.北京:化学工业出版社,1993:47-49
    [50] 陈中兰.固体吸附剂在环保中的应用.四川师范学院学报(自然科学版),1997,18(3):142-145
    [51] 田建民.生物吸附法在含重金属废水处理中的应用.太原理工大学学报,2000,31(1):74-77
    [52] 黄民生,郑乐平.微生物对重金属的吸附与解吸.化工装备技术,2000,21(2):17-22
    [53] Geene.B. Interaction of Gold (ⅰ) and gold (ⅱ) Complexes with Algat Biomass.
    
    Environ. Sci. Technol., 1986, 20(4): 627-632
    [54] Tsezos M. A batch reactor mass transfer kinetic model for immobilized biomass biosorption. Biotechnol. Bioeng, 1998,32(4): 545-550
    [55] Mark Spinti. Evaluation of immobilized biomass beads for removing heavy metals from wastewaters. Water Environment Research, 1995, 67(6): 943-952
    [56] 汪明光,陈湛.活性炭纤维吸附甲苯废气的中试研究.化工设计通讯,2000,26(1):36-39
    [57] 芮延年,刘文杰.活性炭纤维滤布与吸附机理的研究.黄金,2000,21(4):43-45
    [58] 郑礼胜,王士龙.矿渣对废水中铅、铬的吸附去除实验.上海环境科学,1999,18(4):165-172
    [59] G.Q.(max)Lu. Preparation and evaluation of adsorbents from waste carbonaceous materials for SO_x~- and NO_x~- removal. Environmental Progress, 1996, 15(1): 12-18
    [60] 李昌贤.煤质活性炭.北京:煤炭工业出版社,1993:61-63
    [61] 周润兰,喻胜华.应用概率统计.北京:科学出版社,1999:49-52
    [62] G.Q.(max)Lu and D.D.Lau. Characterisation of sewage sludge-derived adsorbents for H_2S removal Part 2: Surface and pore structure evolution in chemical activation. Gas.Sep.Purif., 1996, 10(2):111-113
    [63] C. P. Chu, D. J. Lee, C. Y. Chang. Thermogravimetric analysis of activated sludge with flocculated with polyelectrolyte. Journal of Environmental Engineering, 2000, 126(12): 1082-087
    [64] 王红,周浩生,孙学信等.应用TGA-FITR研究污泥与煤的热解规律.华中理工大学学报,1999,27(9):38-40
    [65] R. Font, A. Fullana, J. A. Conesa,F. Llavador. Analysis of the pyrolysis and combustion of different sewage sludge by TG. Journal of Analytical and Applied Pyrolysis, 2001, 59(4): 927-941
    [66] Xiaoge Chen, S. Jeyaseelan, N.Graham. Physical and chemical properties of the activated carbon made from sewage sludge. Waste Management Research, 2002, 22(6): 755-760
    [67] F. Rozada, L. F. Calvo, A. I. Garcia. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresourcse Technology, 2003, 87(3): 221-230
    [68] 卞华松,张仲燕,刘芝玲.有机污泥改制含碳吸附剂工艺及应用.环境科学,1999,
    
    20(11):59-63
    [69] 万洪云.利用活性污泥制造活性炭的研究.干旱环境监测,2000,14(4):202-208
    [70] Conesa J.A, Marcilla A., Prats D., et al. Kinetic study of the pyrolysis of sewage sludge. Waste Management Research, 1997,15(3): 293-305
    [71] Dumplemann R., Richarz W., Stammbach M. R. Kinetic studies of the sewage sludge by TGA and comparison with fluidized beds. J. Chem. Eng. (Canada), 1991, 69(4): 953-963
    [72] 刘振海.化学分析手册——热分析.北京:化学工业出版社,2000:35-40
    [73] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985:124-127
    [74] 赵由才,宋立杰,张华.实用环境工程手册(固体废物污染控制与资源化).北京:化学工业出版社,2002:281-285
    [75] Wendiant W W. Thermal Methods of Analysis. New York: Wiley, 1974:234-238
    [76] 于伯龄,姜胶东.实用热分析.北京:纺织工业出版社,1990:89-94
    [77] Ahuja P., Singh EC., Upadhyay, S. N., et al. Kinetics of biomass and sewage sludge pyrolysis:Thermogravimetric and sealed reactor studies. Int. J. Chem. Technol., 1996,25(3): 306-312
    [78] 张建梅,韩志萍.重金属废水的回收和利用综述.湖州师范学院学报,2002,24(3):48-52
    [79] 刘剑彤,黄毅.曝气混凝一体法去除碱性废水中砷的研究.中国环境科学,1997,17(2):184-187
    [80] 王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社,1993:65-69
    [81] 丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望.环境科学,1992,13(2):59-62
    [82] 刘森,董德明.光催化法处理电镀台镐废水的研究.吉林大学自然科学学报,1998,33(4):98-102
    [83] 陈红,叶兆杰.不同状态MnO_2对废水中As~(3+)的吸附性能研究.中国环境科学,1998,18(2):126-130
    [84] Chen Jiayong, Yun Shuqiu, Liu huizhou, et al. New mixed solvent systems for the extraction and separation of ferric ion in sulphate solutions, Hydrometallury, 1992, 30(1-3): 401-408
    [85] 杨骏,秦涨峰,陈戊英.活性碳吸附水中铅离子的动态研究.环境科学,1997,16(5):423-427
    
    
    [86] Bieam W F, Mcdride M B. Chemistry of adsorbed Cu(Ⅱ) in aqueous titanium dioxide suspensions. Journal of Colloid and Interface Science, 1985, 115(2): 335-346
    [87] 杨智宽.用蛇纹石处理含钢废水的研究.环境科学技术,1997,10(2):15-17
    [88] 刘频,赵黔榕,袁朗白等.改性硅藻土对Pb(Ⅱ)的吸附作用.云南化工,2003,30(5):11-13
    [89] 朱利中.酸性膨润上处理含重金属废水初探.环境污染与防治,1993,15(1):34-37
    [90] Curkovic L. Metal ion exchange by natural and modiFieg Zeolite. Wat. Res., 1997, 31(6): 1379-1386.
    [91] Takeda M, Koizomi J, Matsuora H., et al. Factors Affecting the Activity of Fermentation and Bioflocculant produced by Nocardia Amarae. Journal of Fermentation and Bioengineering, 1992, 74(6): 408-409
    [92] Domingues L. Construction of a flocculent Saaharomyces Cereoisial fermenting lactose. Appl. Mictobiol. Biotechnol., 1999, 51(5):621-626
    [93] 辛宝平,庄源溢,李彤等.生物絮凝剂的研究和应用.环境科学进展,1998,6(5):57-62
    [94] 莫健伟,姚兴东.海藻去除水中双偶氮染料机理及重金属离子研究.中国环境科学,1997,17(3):24-243
    [95] 李明春,姜恒,侯文强等.酵母菌对重金菌离子吸附的研究.菌物系统,1998,17(4):367-373
    [96] 彭清涛.植物在环境污染治理中的应用.环境保护,1998(2):24-27
    [97] 华东理工大学化学教研组等.分析化学.北京:高等教育出版社,1995;78-86
    [98] 付献彩.物理化学(下册).北京:高等教育出版社,1990:248-252
    [99] 张德见,魏先勋,曾光明等.基于非线性拟合的污泥衍生吸附剂对铅离子等温吸附特性研究.离子交换与吸附,2004,20(1):1-6
    [100] 张力,刘伟.活性炭吸附烟气脱硫的展望.辽宁化工.1996(5):16-17
    [101] 倪建宁,洪业汤.原煤燃烧前脱硫技术的研究进展,地质地球化学,1997(3):64-69
    [102] 段建中.炉内喷钙脱硫对燃烧效率的影响.燃料化学学报,2003,24(6):984-987
    [103] 郭汉贤,苗茂,张允强等.我国脱硫技术的发展与展望.煤化工,2003,31(2):51-54
    
    
    [104] 冯治宇,金应培.活性炭吸附法脱除烟气中SO_2的实验研究.环境保护科学,1994,20(4):37-39
    [105] 韩道汶,徐国荣.循环流化床锅炉脱硫实验分析.锅炉技术 2001,32(12):31-32
    [106] Ruhland F. The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspension. Chem. Eng. Sci., 1991, 46(4): 939-947
    [107] 姚玉英.化工原理.天津科学技术出版社.1999:49-67
    [108] Daley M A, Mangun C L, DeBarr J A, et al. Adsorption of SO 2 onto oxidized and heat-treated activatedcarbon fibers (ACFS). Carbon, 1997, 35(3): 411-417
    [109] Moreno-Castilla C, Carrasco Marin F, et al. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Fuel, 1997, 36(2): 145-151
    [110] CL Mangun, MA Daley, RD Braatz, and J. Economy. Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers. Carbon, 1998, 36(1-2): 123-129
    [111] 安向阳.几种碳质材料吸附性能分析.轻金属,1998(4):47-49
    [112] 刘义,曹子栋.活性炭法烟气脱硫工艺中硫酸转化条件的实验研究.西安交通大学学报,2002,36(1):108-110
    [113] 程振民,蒋正兴.活性炭脱硫研究(Ⅰ):SO_2-N_2-O_2体系中SO_2的氧化反应机理.环境科学学报,1997,17(3):268-272
    [114] 程振民,蒋正兴.活性炭脱硫研究(Ⅱ):水蒸气存在下SO_2的氧化反应机理.环境科学学报,1997,17(3):273-277
    [115] 蔡光宇,王作周.消除及回收烟气中的二氧化硫的糖醛渣活性炭研究.环境科学,1993,14(2):2-6
    [116] 赵修松,蔡光宇,王作周等.糠醛渣活性炭的制备和性能研究.林产化学与工业,1994,14(2):57-60
    [117] 大连化物所802组.活性炭催化剂用于消除和回收烟气中的低浓度二氧化硫.催化学报,1982,3(3):198-204
    [118] 梁肃臣.常用吸附剂的基础性能及应用.低温与特气,1995(4):55-60
    [119] 郑晓红,吴曙平.湿炭、干炭吸附性能的比较测定.林产化工通讯,1994,28(14):38-39
    [120] 李开喜,凌立成.不同反应温度下活性炭纤维脱除二氧化硫的能力.新型碳材料,1999,14(1):8-11
    
    
    [121] 徐息.活性炭吸附烟气脱硫技术的工业性实验.电力环境保护,2001,17(1):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700