半集中式处理系统灰水处理模块技术经济分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对上海城市地区和青岛市的居住密度分析,并以上海安亭新镇新建社区和青岛市—典型小区的数据调研,提出半集中式处理系统概念(Semi-centralized Treatment Systems)。本文将这一概念应用于半集中式处理系统灰水处理模块的计算,在课题前期模型的基础上,进一步对处理单元的居住区域和建筑物等简化设计,即以占地面积500,000m~2,人口当量11520人的低层居民小区为1个计算单元,从理论上计算不同规模的半集中式处理系统灰水收集和处理模块的投资和运行费用,从技术经济角度来分析适合的半集中式灰水处理和回用系统的最佳规模。
     研究表明,对于一个灰水处理单元而言,综合管网投资费用为4424元/(m~3.d~(-1))。通过比较IMBBR(一体化移动床生物反应器)、BAF(曝气生物滤池)和MBR(膜生物反应器)三种工艺作为灰水处理单元主体处理工艺的投资和运行费用差异表明,三个工艺用于处理灰水的投资费用分别为3558、3627和5224元/(m~3.d~(-1));随着处理单元的增加,管网投资费用呈现上升趋势,而污水处理系统的投资和运行费用均呈现下降趋势:当处理规模达到4个单元时,管网投资费用达到4607元/(m~3.d~(-1));IMBBR、BAF、MBR三种工艺的投资费用分别为2362、2154和4134元/(m~3.d~(-1))。
     技术经济分析表明,半集中式处理系统的投资和运行费用与小区中水处理系统或分散式处理系统相比具有技术经济优势。
     综合考虑灰水处理装置和中水管网的投资、运行费用以及水价对投资回收期的影响,模拟计算的结果表明,在上海地区,半集中式灰水处理回用系统的最佳规模为4-8个单元,即日处理量3000m~3/d-6000m~3/d,相应的人口当量约为5-10万人。在这样的规模条件下,IMBBR、BAF和MBR工艺不含折旧的制水成本分别为0.59、0.62和0.67元/m~3;含折旧的成本分别为1.8、1.8和2.7元/m~3左右;IMBBR、BAF和MBR的投资回收期分别为12年、12年和16年。而对于我国北方地区而言,1个单元以上规模已比较适宜,但4-8个单元更佳,在此规模下,它们相应的投资回收期分别可降到6年和8年。
Based on fundamental data from the Chinese residential aera (Shanghai and qingdao), we proposed the concept of "Semi-centralized supply and treatment systems". In this paper, the concept is applied to analyze the economical and techinical feasibility of the greywater treatment and reuse system in Chinese residential area. Alike the prototype, the so-called supra cell is developed based on data from shanghai residential aera, which covers an area of 500,000 m~2 and includes 11,520 inhabitants. From the technical and economical point of view, the simulation of the investment and operation cost on such semi-centralized greywater reuse system is performed in order to determine its appropriate size for Chinese residential aera.
     The result shows that the specific investment cost of pipeline for one supra cell is 4424 yuan/Cm~3.d~(-1)), while the specific investment costs of the corresponding greywater treatment process of IMBBR(Integrated Moving Bed Biofilm Reactor), BAP(Biological Aerated Filter) and MBR(Membrane Biological Reactor) are 3558, . 3627 and 5224 yuan/(m~3.d~(-1)), respectively. The specific investment cost of pipeline increases with the number of supra cells, whereas the specific investment cost of treatment process is the opposite: when the scale reaches 4 supra cells, the specific cost of pipeline and the two treatment processes are respectively 4607、2362、2154 and 4134 yuan(m~3.d~(-1)).
     With comparison to the decentralized traditional "cluster" and "on-site" treatment system, "semi-centralized greywater treatment and reuse system " is confirmed to be more suitable for Chinese residential area.
     Finally, through the calculation on investment and operation cost of pipeline and treatment plant along with the influence of water price on investment payback period, the simulation indicate that in the shanghai region, the optimal size of semi-centralized greywater reuse system is between 4 and 8 cells, i.e. the treatment capacity between 3000 and 6000m~3/d which correspond to 50,000 and 10,000 inhabitants. In such scale, the opearation costs of MBBR、BAF and MBR are approximately 0.59、0.62 and 0.67 yuan/m~3(depreciation cost not included), whereas if the depreciation cost is considered, the costs are 1.8、1.8 and 2.7 yuan/m~3 respetively, the corresponding investment payback period are 12 and 16 years respetively. While in north China region, over 1 cell is believed to be appropriate, but bewteen 4~8 cells is also confirmed to be optimal, in such sacle, the investment payback period of the two treatment process are 6 and 8 years respectively.
引文
[1]马志武.对城市污水由集中处理向分散处理转变的分析.黑龙江水利科技.2005,5(33):22.
    [2]任晓鲲,徐伟朴.城市污水中水回用的分散与集中处理对比研究.河北建筑工程学院学报.2004,22(1):65-67.
    [3]任德胜.城市污水:分散处理和集中处理.建筑科技.2004,17:40-41.
    [4]Ralf Otterpohl,Matthias Grottker and Jorg Lange.Sustainable Water and Waste Management In Urban Areas.Wat.Sci.Tech.,35(9);121-133.
    [5]Tillman,A.,Lundstrom,H.and Svingby,M.Life Cycle Assessment of alternative wastewater systems in Bergsjon and Hamburgsund,Subteport from the ECO-GUIDE project,Department of Environmental Planning,report,1996,1.
    [6]贺墨梅,刘焱.污水集中式与分散式处理技术的比较研究.西南给排水.2006.28(4):20-23.
    [7]P.伦敦,G.泽曼,G.莱廷格.分散式污水处理和再利用——概念、系统和实施,(王晓昌,彭党聪,黄廷林译).北京:化学工业出版社,2004年5月.
    [8]向连诚.中国分散型污水处理系统的现状及发展.北京建筑工程学院学报.2005,21(4):55-58.
    [9]王效琴,王启山,胡晓亮.生态卫生系统—面向中国水资源可持续性利用.中国给水排水.2006,22(增刊),198-201.
    [10]Ralf Otterpohl,Andrea Albold and Martin Oldenburg.Source Control in Urban Sanitation and Waste Management:Ten Systems With Reuse of Resources.Wat.Sci.Tech,39(5):153-160.
    [11]M.Henze.Waste Design For Households With Respect to Water,Organics and Nutrients.Wat.Sci.Tech,35(9):113-120.
    [12]B.Jefferson,A.Laine,S.Parsons,et al.Technologies for domestic wastewater recycling.UrbanWater,1999,1:285-292.
    [13]Weizhen Lu,Andrew Y.T.Leung.A preliminary study on potential of developing shower/laundry wastewater reclamation and reuse system.Chemosphere,2003,52:1451-1459.
    [14]Ayres,R.U.Statistical measures of unsustainability.Ecological Economics,1996,16:239-255.
    [15]Tove A.Larsen and Willi Gujer.Separate Management of Anthropogenic Nutrient Soluions(Human Urine).Wat.Sci.Tech.,1996,34(3-4):87-94.
    [16]V.Lazarova,S.Hills and R.Birks.Uing recycled water for non-potable,urban uses:a review with particular regerence to toilet flushing.Water Science and Technology,2003,Vol 3(4):69-77.
    [17]Imke Fittschen and Janusz Niemczynowicz.Experiences With Dry Sanitation and Greywater Treatment In The Ecovillage Toarp,Sweden.Wat.Sci.Tech.,1997,35(9):161-170.
    [18]Stewart Dallas,Brian Scheffe,Goen Ho.Reedbeds for greywater treatment-case study in Santa Elena-Monteverde,Costa Rica,Central America.Ecological Engineering,2004,23:55-61.
    [19]J.L.Garland,L.H.Lebine,N.C.Yorio,et al.Graywater Processing in Recirculating Hydroponic Systems:Phytotoxixity,Surfactant Degradation,and Bacterial Dynamics.Wat.Res,2000,34(12): 3075-3086.
    [20]Hang-Sik Shin,Sang-Min Lee,In-Seok,et al.Pilot-Scale SBR and MF Operation For the Removal of Organic and Nitrogen Compounds from Greywater.Wat.Sci.Tech,1998,38(6):79-88.
    [21]Erwin Nolde.Greywater reuse systems for toilet flushing in multi-storey buildings-over ten years experience in Berlin.Urban Water 1(1999):275-284.
    [22]Lazarova,V.Role of water reuse in enhancing integrated water management in Europe.Final Report of the EU project CatchWater,2001:708-712.
    [23]马建芳.建筑中水发展趋势及其技术应用.山西建筑,2003,29(11):76-77.
    [24]白昊阳,邢国平,徐斌等.复合MBR处理洗浴废水并回用.中国给水排水,2004,20(9):90-92.
    [25]付婉霞,李蕾.膜生物反应器处理盥洗废水运行参数的选择.北京建筑工程学院学报,2002,17(4):22-25.
    [26]Harald Hiessl,Rainer Walz,Dominik Toussaint.Design and Sustainabiliry Assessment of Scenarios of Urban Water Infrastructure Systems.Fraunhofer Institute Systems and Innovation Research(ISI),Breslauerstr.48,76139 Karlsruhe,Germany,2001.
    [27]Imke Fittschen,Janusez Niemczynowicz.Experiences with dry sanitation and greywater treatment in the ecovillage Toarp,Sweden[J].Water Sci Technol,1997,35(9):161-170.
    [28]www.gtz.de.
    [29]丁昀,杨庆,赵家慧,陈海.中水工程应用的技术经济分析.兰州交通大学学报.2004,23(3):136-139.
    [30]褚俊英,陈吉宁,王志华,温宗国,徐一剑.中水回用的经济与中水利用潜力分析.中国给水排水,2002,18(5):83-86.
    [31]许吉现,李素燕,李思敏,张胜,司化民.住宅小区中水回用系统技术经济比较.河北建筑科技学院学报,2003,20(3):15-17.
    [32]莫慧,刘建华,钟新华,胡卫卿.居住区中水处理系统方案及经济比较.中国给水排水,2002,18(2):60-62.
    [33]冯萃敏,张雅君.北京市中水处理规模与成本分析.城镇供水,2005,5:46-48.
    [34]邢淑芳.浅谈城市污水资源化中的中水之回用.太原大学学报.2001,2(3):66-68.
    [35]刘建斌,王飘扬,范飞.北京师范大学中水处理站设计与运行.中国给水排水.2004,20(9):81-83.
    [36]李显峰.大连雅景华庭中水处理设计体会.房材与应用.2003,31(1):29-30.
    [37]安沁生.山西省委大院中水处理及回用工程设计.山西建筑.2001,27(5):147-148.
    [38]张韵.北京市污水资源化示范工程分析.北京水利.2005,1:9-11.
    [39]高廷耀,顾国维.水污染控制工程下册(第二版).高等教育出版社.1999:124-125.
    [40]张林生.水的深度处理与回用技术.北京:化学工业出版社,2004:140-147.
    [41]肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究.环境科学,1999,20(3):86-88.
    [42]孙娜,林波,李风琴,杨圣云,左艳君.水处理填料的研究进展.江西化工.2005,4:8-10.
    [43]傅钢,董滨,汪波等.新型悬浮填料滤池取代二沉池研究.中国给排水,2005,21(8):14-18.
    [44]王涛,汪波,董滨等.悬浮填料滤池取代传统二沉池的中试研究.环境科学与技术,2006,29(6):89-91.
    [45]董滨,柳翠,傅钢等.悬浮填料固定床固液分离新技术的研究.给水排水,2006,32(4):28-31.
    [46]傅钢.悬浮填料滤池及生物氧化固液分离一体化废水处理新工艺的中试试验研究[工学博士论文].上海:同济大学,2005.
    [47]汪波.生物氧化固液分离一体化新工艺研究[工学硕士论文].上海:同济大学,2005.
    [48]王涛.一体化悬浮填料滤池固液分离器研究[工学硕士论文].上海:同济大学,2005.
    [49]郑祥,刘俊新.膜生物反应器的技术经济分析.给水排水,2002,28(3):105-108.
    [50]任伟.建筑小区中水利用工艺技术探讨.节能与环保,2004,6:23-25
    [51]付婉霞,冯萃敏.一体式膜生物反应器用于中水处理的经济效益分析.给水排水.2002,28(8):53-55.
    [52]北京市城市节约用水办公室.中水工程实例及评析.北京:中国建筑工业出版社,2003.
    [53]国家环保局.生物接触氧化处理废水技术.北京:中国环境科学出版社,1991.
    [54]冯萃敏,张雅君.北京市两种中水处理工艺的成本分析.北京建筑工程学院学报.2003,19(2):23-26.
    [55]冯萃敏,张雅君.北京市中水处理规模与成本分析.城镇供水.2004,5:46-48.
    [56]付婉霞,冯萃敏.一体式膜生物反应器用于中水处理的经济效益分析.给水排水.2002,28(8):53-55.
    [57]郭焕晓,王彦斌.MBR工艺在车站站房污水回用中的经济分析.铁路工程造价管理.2006,21(3):26-28.
    [58]尹艳华,徐文国等.膜生物反应器处理餐饮废水的实验研究及经济核算.工业水处理,2004,24(1):30-32.
    [59]梁鸿杰.某住宅小区400m~3/d生活污水处理回用工程设计方案.深圳土木与建筑,2005,2(1):50-52.
    [60]王丽艳,于清江,张立秋.膜生物反应器的设计与经济性分析.林业科技情报,2005,37(3):45-46.
    [61]苏德俭,李春明,苏蕾.中水工程的经济分析.水利天地.2003,9:46.
    [62]陈洪斌,屈计宁,何群彪.悬浮填料生物膜工艺的研究进展.应用与环境生物学报.2005,11(4):514-520.
    [63]于凤.半集中式处理系统灰水处理技术研究.同济大学硕士学位论文,2007.
    [64]陈洪斌,庞小东,李建忠,周光霞,唐贤春.悬浮填料生物接触氧化法处理炼油废水.中国给水排水.2002,18(9):42-44.
    [65]傅国伟.给水排水系统优化导论.中国给水排水,1987,4:45-50.
    [66]严煦世,刘遂庆.给水排水管网系统.建筑工业出版社.2002:23-24.
    [67]E.Friedler and N.I.Galil,On-site greywater reuse in multi-storey buildings:Sustainable solution for water saving.Efficient 2003,2nd Int.Conf.on Efficient Use and Management of Urban Water Supply,Tenerife,Canary Islands,Spain.IWA,AWWA and AEAS,2003.
    [68]《建筑中水设计规范》(GB50336-2002)
    [69]梁鲁沂,俞国平,徐衍忠.给水管道单位成本计算公式的推导.工业用水与废 水.2003,34(5):51-53.
    [70]杨云龙,张计宏,陈启斌.排水管网常用管材技术经济比较.科技情报开发与经济.2004,14(1):121-122.
    [71]白昊阳,邢国平等.复合MBR处理洗浴废水并回用.中国给水排水,2004,20(9):90-92.
    [72]谭远友.改进折流式生物反应器净化洗浴废水.城市环境与城市生态.2003,16(2):16-18.
    [73]陈洪斌,于凤.集中式污水处理系统的最佳规模研究.中国给水排水.2006,22(21):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700