鸭LXRα、Adiponectin和ApoVLDL-Ⅱ基因遗传变异、表达及其与肉质性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪沉积过多是现今肉鸭育种中面临的一个重要难题,脂肪过度沉积导致饲料利用率降低和胴体品质下降,更为重要的是人体摄入过多脂肪导致的相关疾病引起了广泛关注,这在一定程度上制约了养鸭业的发展。脂肪沉积作为一个数量性状,受多基因调控。但是,目前对鸭脂肪沉积相关候选基因的研究报道较少,急切需要进一步开展相关研究工作。本研究采用气质联用(GC-MS)技术和血液自动生化分析仪对10周龄樱桃谷鸭、金定鸭、苏牧麻鸭和白羽番鸭4个群体的胸肌脂肪酸组成和9项血清生化指标甘油三酯(TG)、总胆固醇(TC)、白蛋白(Alb)、总蛋白(TP)、胆碱酯酶(ChE)、碱性磷酸酶(ALP)、免疫球蛋白A(IgA)、球蛋白(GLO)和白/球比值(Alb/GLO)进行测定和分析;采用RT-PCR法对樱桃谷鸭和白羽番鸭LXRα基因cDNA进行克隆测序和生物信息学分析;采用PCR-SSCP和DNA测序相结合研究了4个群体3个脂肪沉积相关候选基因LXRα、Adiponectin和ApoVLDL-II的遗传变异及其与肉质性状的相关性;采用实时荧光定量PCR法研究了3个基因在10周龄金定鸭12个组织(心、肝、胸肌、小肠、大肠、小脑、大脑、下丘脑、肾、肺、脾和腺胃)的表达差异以及白羽番鸭和金定鸭肝脏组织在不同发育时期(0d、2w、4w、6w、8w和10w)的表达规律,旨在对鸭的育种或遗传改良工作提供科学参考依据。研究主要取得如下成果:
     1.鸭胸肌脂肪酸组成分析4个群体中均检测到16种脂肪酸,以油酸(C18:1)、棕榈酸(C16:0)、硬脂酸(C18:0)和亚油酸(C18:2)为主要成分,占脂肪酸质量分数的95%左右。脂肪酸组成在群体间存在一定的差异,除C14:1不存在群体效应外(P>0.05),其它脂肪酸均存在群体效应,其中C15:0存在显著的群体效应(P<0.05),其它脂肪酸均存在极显著的群体效应(P<0.01),所有脂肪酸均不存在性别效应和群体×性别的互作效应(P>0.05)。樱桃谷鸭的UFA最高,而PUFA和EFA最低,白羽番鸭恰好相反。
     2.鸭血清生化指标测定结果4个群体的9项血清生化指标均存在极显著的群体效应(P<0.01),TG存在显著的性别效应(P<0.05),TC和ALP存在极显著的性别效应(P<0.01),公鸭TG、TC和ALP显著高于母鸭(P<0.05);TG和TC存在极显著的群体×性别的互作效应(P<0.01)。
     3.鸭LXRα基因的克隆和生物信息学分析首次克隆了樱桃谷鸭和白羽番鸭LXRα基因cDNA序列1626 bp,GenBank登录号分别为FJ966078和GU132847,包括部分5′-UTR序列73 bp、CDS全序列1230 bp和3′-UTR序列323 bp,编码409个氨基酸,樱桃谷鸭和白羽番鸭LXRα基因共存在14个核苷酸(CDS区:9个;UTR区5个)和3个氨基酸(Ser163Gly、Gln171Glu和Asn361Lys)的差异。鸭LXRα蛋白与哺乳动物和鱼类的同源性在74%-78%,与鸡的同源性高达97%。聚类分析显示:哺乳动物、禽类和鱼类各为一类。生物信息学分析表明:鸭LXRα蛋白含有17个磷酸化位点、2个低组分复杂性区域、1个ZnF-C4和1个HOLI结构域,无信号肽,无跨膜螺旋;2条LXRα基因CDS区碱基差异和氨基酸差异导致了RNA折叠结构、蛋白二级结构和糖基化位点发生了改变。
     4.鸭LXRα基因遗传变异及其与肉质性状的关联分析在鸭LXRα基因LXR-E5位点检测到C277G同义突变,LXR-E12位点检测到G1396C突变和LXR-I6位点检测到C44T突变,其它6个位点LXR-E4、LXR-E6、LXR-E7、LXR-E8、LXR-E10和LXR-E11均没有检测到多态;关联分析表明:LXR-E5位点与嫩度显著相关(P<0.05),LXR-E12和LXR-I6位点与pH、失水率、IMF、TC、TG、UFA、PUFA和EFA显著相关(P<0.05);LXR-E5×LXR-I6互作与UFA显著相关(P<0.05),BBCC组合基因型最高;LXR-E12×LXR-I6互作与pH、嫩度和TC显著相关(P<0.05),分别是BBDD、ABCC和BBDD组合基因型最高。
     5.白羽番鸭LXRα基因遗传变异及其与肉质性状的关联分析在白羽番鸭LXRα基因LXR-E4和LXR-E12位点分别检测到G53A和-1483/T突变,其它7个位点均没有检测到多态;关联分析表明:LXR-E4位点与IMF、UFA和肉色显著相关(P<0.05),LXR-E4×LXR-E12互作与UFA显著相关(P<0.05),BBCC组合基因型最高。
     6.鸭Adiponectin基因遗传变异及其与肉质性状的关联分析在鸭Adiponectin基因4个位点ADP1、ADP2、ADP3和ADP4中发现了15个SNPs,其中3′-UTR区1个:G887A,CDS区12个:C86T、C104T、C146T、C155T、C456T、A574G、C651T、C684T、T768C、G784A、A801C和C807T,内含子2个:C273T和C295T。A574G、G784A和A801C为有义突变,分别导致氨基酸序列中144位的Thr(T)变成Ala(A)、214位的Ile(I)变成Val(V)和219位的Asp(D)变成Glu(E);相关分析结果表明:ADP1位点与IMF、UFA、PUFA和EFA显著相关(P<0.05);ADP2位点与失水率、IMF、TC和UFA显著相关(P<0.05);ADP4位点与失水率、TC、UFA和PUFA显著相关(P<0.05);ADP1×ADP3和ADP2×ADP3互作与UFA显著相关(P<0.05),分别是组合基因型CDBC和AACC最高;ADP1×ADP4和ADP3×ADP4互作与失水率和IMF显著相关(P<0.05),失水率分别是组合基因型CDAC和CCBB最高,IMF分别是组合基因型DDAA和CCAA最高。
     7.白羽番鸭Adiponectin基因遗传变异及其与肉质性状的关联分析在白羽番鸭Adiponectin基因3个位点ADP1、ADP2和ADP4中发现了3个SNPs,其中CDS区2个:A167G和G711A,均为同义突变;内含子1个:C290T;ADP3位点没有检测到多态。关联分析表明:ADP1和ADP2位点与IMF和失水率显著相关(P<0.05);ADP1×ADP4和ADP2×ADP4互作与UFA显著相关(P<0.05),分别是组合基因型BBFF和TTFF最高。
     8.鸭ApoVLDL-II基因遗传变异及其与肉质性状的关联分析本研究获得鸭ApoVLDL-II基因组DNA序列(GQ 180104),并对该基因的5个位点Exon1、Exon2、Exon3、Exon4和Intron1进行SSCP检测,结果发现:Exon1和Exon2没有检测到多态,在另外3个位点中检测到了12个SNPs:T667C、C669G、T673C、G674A、G683A、G688A、C708G、T715G、G2106A、T2723C、C2743T和A2944C,2个插入/缺失:764位后插入/缺失TG,1910位碱基后插入/缺失CC,除A2944C突变发生在外显子4非编码区外,其它突变均在内含子内,整个编码区没有检测到突变;相关分析表明:Exon3和Exon4位点与失水率、嫩度、IMF、UFA、PUFA和EFA显著相关(P<0.05),Intron1位点与pH、失水率、IMF、TC、TG和UFA显著相关(P<0.05),Exon3×Exon4互作与TC显著相关(P<0.05),组合基因型CCBB最高;Exon3×Intron1互作与UFA显著相关(P<0.05),组合基因型DDBB最高。
     9.白羽番鸭ApoVLDL-II基因遗传变异及其与肉质性状的关联分析本研究获得白羽番鸭ApoVLDL-II基因组DNA序列(GQ 180103),5个位点中仅Exon3、Exon4和Intron1检测到多态,共发现了3个SNPs和1个插入/缺失:外显子3发生T1986C突变,为沉默突变;外显子4的UTR区检测到C2901T突变;内含子1检测到A720G突变和在687 bp碱基之后插入/缺失1个长度为13 bp的序列AAAATCTTGTTTA;相关分析表明:Intron1位点与IMF和TG显著相关(P<0.05),Exon3/Exon4×Intron1互作没有对肉质性状产生显著性影响(P>0.05)。
     10. LXRα、Adiponectin和ApoVLDL-II基因的组织表达规律分析实时荧光定量PCR法检测结果表明:LXRα基因在金定鸭的肝脏中表现为高度表达,肺、脾、肾、心和下丘脑表现为中度表达,胸肌、小脑、大脑、腺胃、小肠和大肠表现为低度表达;金定鸭和白羽番鸭肝脏组织LXRα基因的发育性表达规律相似,均表现为0日龄下降到2周龄,随后逐渐增加,且公鸭的表达量均低于母鸭的表达量,白羽番鸭公母鸭各个时期的表达量均低于金定鸭。Adiponectin基因在鸭的胸肌、大肠和心表现为高度表达,肺、肝、小肠、脾和肾表现为中度表达,腺胃、下丘脑、小脑和大脑表现为低度表达,公母鸭Adiponectin基因表达量均随日龄的增加而降低,公鸭Adiponectin基因在不同时期的表达量均高于母鸭,0-4周龄公、母金定鸭均高于白羽番鸭,6-10周龄则低于白羽番鸭;金定鸭在4-6周龄表达量下降最快,而白羽番鸭则为6-8周龄。肝脏ApoVLDL-II基因在公鸭的表达量一直呈缓慢下降趋势,而母鸭呈缓慢上升趋势,说明ApoVLDL-II基因的表达存在性别差异,并且在不同性别中可能发挥不同的生物学作用。
     11. LXRα、Adiponectin和ApoVLDL-II基因表达调控关系基因的表达调控分析结果表明:3个基因在金定鸭和白羽番鸭中的表达调控关系一致,0-2周龄,公鸭肝脏组织的3个基因彼此间呈正调控关系,母鸭LXRα和Adiponectin基因与ApoVLDL-II基因呈负调控关系,而LXRα和AMP1基因呈正调控关系。4-10周龄,公鸭的LXRα基因与ApoVLDL-II和Adiponectin基因呈负调控关系,ApoVLDL-II与Adiponectin基因呈正调控关系;母鸭的Adiponectin基因与ApoVLDL-II和LXRα则为负调控关系,ApoVLDL-II与LXRα基因呈正调控关系。协同表达分析结果说明:3个基因的表达调控存在性别差异。
At present, excessive fat deposition is one of the main problems encountered by the duck industry, which makes feed utilization decrease and carcass quality decline. More importantly, that the diseases caused by excessive intake of fat-related has aroused widespread interest, and to some extent, it restricted the duck industry. Fat deposition, as a quantitative trait, is regulated by multi-gene. However, the current reported studies are still lacking in duck fat deposition related to candidate genes, and further research is very necessary. In this study, 4 populations, Cherry Valley duck, Jinding duck, White Muscovy, and Sumu Sheldrake (10w) were used. The fatty acid content of breast muscle and 9 Serum biochemical parameters, including triglyceride (TG), total cholesterol (TC), albumin (Alb), total protein (TP), cholinesterase (ChE), alkaline phosphatase (ALP), immunoglobulin A (IgA), globulin (GLO) and Alb/GLO ratio were determined and evaluated by GC-MS and Blood Automatic Biochemical Analyzer. LXRαgene was cloned from Cherry Valley and White Muscovy by using RT-PCR method, and it’s structure and function were further predicted by bioinformatics. Genetic variation of LXRα, Adiponectin, and ApoVLDL-II genes and its relationship with meat quality traits in 4 populations were studied by using PCR-SSCP and DNA sequencing. Real fluorescent quantitative PCR was conducted to investigate expression pattern of LXRα, Adiponectin, and ApoVLDL-II genes in 12 tissues (heart, liver, chest muscle, small intestine, large intestine, cerebellum, brain, hypothalamus, kidney, lung, spleen and proventriculus) of 10-week-old Jinding duck and the developmental expression pattern in liver of White Muscovy and Jinding duck at different developmental stages (0d, 2w, 4w, 6w, 8w and 10w). Probably, the achievement of this study will contribute to duck breeding or genetic improvement and provide reasonable scientific ground. The main results were showed as following:
     1. Analysis of fatty acid content in breast muscle of duck 16 fatty acids were detected in each duck population, among which oleic acid (C18: 1), palmitic acid (C16:0), stearic acid (C18:0) and linoleic acid (C18:2) were the main composition, accounted for 95% or so. Fatty acids content were distinct from each other among populations, and all fatty acids except C14:1 (P>0.05) exhibited population effect, and C15: 0 was significant (P<0.05) and the rest showed extremely significant population effect (P<0.01). No fatty acid existed sex effect, and the population and sex interaction effect existed (P>0.05). UFA of Cherry Valley duck was the highest, whereas PUFA and EFA were the lowest, however, White Muscovy just the opposite.
     2. Analysis of serum biochemical parameters The 9 serum biochemical parameters of all populations exhibited a very significant population effect (P<0.01), among which TG showed a significant sex effect (P<0.05), and TC and ALP presented significant sex effect (P<0.01), and TG, TC, and ALP of the male was significantly higher than the female (P<0.05); The interaction effect for TG and TC between population and sex was significant (P<0.01).
     3. LXRαgene cloning and bioinformatics LXRαgene cDNA was cloned, whose size was 1626 bp, in Cherry Valley Duck and White Muscovy for the first time, and GenBank accession number were FJ966078 and GU132847 respectively. It embraces 5'-UTR sequence of 73 bp, CDS all sequence of 1230 bp and 3'-UTR sequence of 323 bp, and encoded 409 amino acids. There were 14 nucleotides (9 CDS and 5 UTR) and 3 amino acids (Ser163Gly, Gln171Glu and Asn361Lys), which were different between these 2 populations. LXRαprotein in duck had 74-78% homology with mammals and fish, and up to 97% with chicken. Cluster analysis revealed that probably mammals, birds and fishes, each of these belonged to different categories separately. Bioinformatics analysis indicated that duck LXRαprotein contained 17 phosphorylation sites, two low compositional complexity region, a ZnF-C4 and a HOLI domain, without signal peptide and transmembrane helix; The diversity of CDS and the structure of amino acids in 2 LXRαgenes resulted in the RNA folding, protein secondary structure and O-glycosylation sites differences.
     4. Associations of genetic variations of LXRαgene with meat quality traits in duck It was the first time that silent mutation 277(C/G) was identified in LXR-E5 locus, and 1396(G/C) mutation and 44(C/T) mutation were found in LXR-E12 locus and LXR-I6 locus of duck LXRαgene respectively. Other 6 loci (LXR-E4, LXR-E6, LXR-E7, LXR-E8, LXR-E10 and LXR-E11) had no polymorphism. Correlation analysis showed that LXR-E5 locus of LXRαgene significantly associated with tenderness (P<0.05), and LXR-E12 and LXR-I6 loci were significantly related to pH, water loss rate, IMF, TC, TG, UFA , PUFA and EFA (P<0.05). Interaction between LXR-E5 and LXR-I6 loci had a significant impact on UFA (P<0.05), and that BBCC genotype was the highest. Interaction between LXR-E12 and LXR-I6 loci had an extremely significant effect on tenderness, pH, and TC (P<0.05), and that ABCC, BBDD, and BBDD were the highest respectively.
     5. Associations of genetic variations of LXRαgene with meat quality traits in White Muscovy There were 53(G/A) and 1483(-/T) mutations first found in LXR-E4 and LXR-E12 loci of White Muscovy LXRαgene respecticely. There were no polymorphism in other 7 loci(LXR-E5、LXR-E6、LXR-E7、LXR-E8、LXR-E10, LXR-E11 and LXR-I6). Correlation analysis suggested that LXR-E4 locus had a significant genetic effect on IMF, UFA and meat color (P<0.05). Interaction between LXR-E4 and LXR-E12 loci had a significant effect on UFA (P <0.05), and that BBCC was the highest.
     6. Associations of genetic variations of adiponectin gene with meat quality traits in duck 15 SNPs were discovered in 4 loci of ADP1, ADP2, ADP3 and ADP4 of duck adiponectin gene, of which G887A of 3'-UTR, 12 SNPs (C86T, C104T, C146T, C155T, C456T, A574G, C651T, C684T, T768C, G784A, A801C and C807T) of CDS, C273T and C295T of intron 2. A574G, G784A, and A801C were missense mutations, resulting in amino acid sequence altered, that were 144 of Thr(T) into Ala(A), 214 of Ile(I) into a Val(V), and 219 of Asp(D) into Glu(E). Association results showed that ADP1 locus of duck adiponectin gene presented significant genetic effects on IMF, UFA, PUFA and EFA (P<0.05). ADP2 locus showed significant genetic effects on water loss rate, IMF, TC, and UFA (P<0.05). ADP4 locus conducted significant genetic effect on water loss rate, TC, UFA and PUFA (P<0.05). Interactions between ADP1 and ADP3, and ADP2 and ADP3 had a significant influence on UFA (P<0.05), and genotypes of AACC and CDBC were the highest respectively. Interactions between ADP1 and ADP4, and ADP3 and ADP4 on water loss rate and IMF appeared a significant effect (P<0.05), and genotypes of CDAC and CCBB for water loss rate, and DDAA and CCAA for IMF were the highest, respectively.
     7. Associations of genetic variations of adiponectin gene with meat quality traits in White Muscovy 3 SNPs were first found in White Muscovy adiponectin gene, including A167G and G711A of CDS, and C290T of intron, which were nonsense mutations. ADP1 and ADP2 loci of adiponectin gene conducted significant effect on water loss rate and IMF (P<0.05). Interactions between ADP1 and ADP4, and ADP2 and ADP4 on UFA appeared a significant influence (P<0.05), and genotypes of BBFF and TTFF showed the highest respectively.
     8. Associations of genetic variation of ApoVLDL-II gene with meat quality traits in duck Genomic DNA sequence(GQ 180104) of duck ApoVLDL-II were first cloned, and 5 loci of Exon1, Exon2, Exon3, Exon4 and Intron1 were detected by PCR-SSCP. There were no polymorphism in Exon1 and Exon2, whereas 12 SNPs (T667C, C669G, T673C, G674A, G683A, G688A, C708G, T715G, G2106A, T2723C, C2743T, and A2944C), and insertion/deletion TG and CC after the 764 bp and 1910 bp respectively were discovered in another 3 loci. In addition to A2944C mutation located in exon 4 UTR, others were in introns, and the complete coding region mutation was not detected. Correlation analysis showed that Exon3 and Exon4 loci had significant genetic effects on water loss rate, tenderness, IMF, UFA, PUFA and EFA (P<0.05), and Intron1 locus had a significant genotype effect on the pH, water loss rate, IMF, TC, TG and UFA (P<0.05). Interactions between Exon3 and Exon4 had a significant impact on TC (P<0.05), and the genotype of CCBB presented the highest. Interactions between Exon3 and Intron1 had a significant influence on UFA (P<0.05), and the genotype of DDBB was the highest.
     9. Associations of genetic variation of ApoVLDL-II gene with meat quality traits in White Muscovy Genomic DNA sequence (GQ 180103) of White Muscovy ApoVLDL-II gene was first discovered. Only Exon3, Exon4 and Intron1 of 5 loci exhibited polymorphism, while exon 3 occured T1986C was silent mutation, C2901T mutation was detected in UTR of exon 4, and A720G mutation and insertion/deletion 13bp sequence AAAATCTTGTTTA after the 687bp was discovered in intron1. Association analysis suggested that Intron1 had a significant genetic effect on IMF and the TG in White Muscovy (P<0.05). Interactions between Exon3/Exon4 and Intron1 exhibited no significant impact on all traits detected (P>0.05).
     10. Tissue expression pattern analysis of LXRα, Adiponectin, and ApoVLDL-II genes By real-time fluorescent quantitative PCR, the results revealed that LXRαgene in Jinding duck given the performance of highly specific expression of liver, and then lung, spleen, kidney, heart and hypothalamus showed moderate expression, and last chest muscle, cerebellum, brain, proventriculus, small intestine and large intestine presented low expression. Developmental expression pattern of LXRαgene in liver of Jinding duck was in agreement with White Muscovy, performing that the level from 0-day-old dropped to 2 weeks, and then gradually increased, and male was lower than female. Regardless of male or female, levels of expression of White Muscovy were lower than Jinding duck during various periods. Adiponectin gene performed highly specific expression in Jinding duck breast muscle, intestine and heart, and showed moderate expression in lung, liver, small intestine, spleen and kidneys, presented low expression in proventriculus, hypothalamus, cerebellum and brain. With age increasing, level of Adiponectin gene expression decreased in male and female. However, male showed higher than female at different phases. 0-day-old to 4-week-old male and female Jinding duck was higher than White Muscovy, whereas 6-10 weeks lower. The sharpest decline for Jinding duck was the 4-6 weeks, while the 6-8 weeks for White Muscovy. ApoVLDL-II gene expression level in liver of the male had shown a slow decline, whereas a slowly rising for the female, indicating that sex affects ApoVLDL-II gene expression, and may play a special biological role in diferent genders.
     11. Associations of LXRα, Adiponectin and ApoVLDL-II genes expression and regulation Analysis of gene expression and regulation of 3 genes in Jinding duck and White Muscovy reveled that they positively regulated with each other in liver tissue of male during 0 day to 2 weeks, but in female, ApoVLDL-II negatively regulated by LXRαand Adiponectin, and LXRαand Adiponectin presented a positive control. During 4-10 weeks of age, LXRαwas negatively regulated by ApoVLDL-II and Adiponectin, while ApoVLDL-II and Adiponectin gene was up-regulated relationship in male; Adiponectin gene was negatively controlled by ApoVLDL-II and LXRα, while there was the up-regulated relationship between ApoVLDL-II and LXRαgene in female. Results of synergistic expression analysis showed that: There were sex differences in gene expression and regulation of 3 genes.
引文
[1]陈国宏,王克华,王金玉,等.中国禽类遗传资源[M].上海科学技术出版社, 2004.
    [2]王晓通,王晓娜,娄义洲.候选基因法在动物育种中的应用[J].畜牧与饲料科学, 2004, 25(3): 36-39.
    [3]薛慧良.遗传标记辅助选择及其在动物育种中的应用[J].生物学教学, 2007, 32(9): 6-7.
    [4]魏丕芳,王慧,李同树,等.标记辅助选择在动物育种中的应用[J].山东农业大学学报(自然科学版), 2006, 37(2): 316-318.
    [5] Hillgartner F B, Charron T, Chesnut K A. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism [J]. Biochem J., 1996, 319 (1): 263-368.
    [6] Wu J J, Li W M, Zhao R X, et al. The effects of the polymorphism in exon 3 of the FAS gene on the death of chicken embryos during the incubation period [J]. Anim Genet, 2008, 39(5): 558-560.
    [7] Sato K, Seol H S, Kamada T. Tissue distribution of lipase genes related to triglyceride metabolism in laying hens (Gallus gallus) [J]. Comp Biochem Physiol B Biochem Mol Biol, 2010, 155(1): 62-66.
    [8] Wu Y, Zhang H L, Wang J, et al. Discovery of a SNP in exon 7 of the lipoprotein lipase gene and its association with fatness traits in native and Cherry Valley Peking ducks [J]. Anim Genet, 2008, 39(5): 564-566.
    [9] Shi H, Wang Q, Zhang Q, et al. Tissue expression characterization of chicken adipocyte fatty acid-binding protein and its expression difference between fat and lean birds in abdominal fat tissue [J]. Poult Sci, 2010, 89(2): 197-202.
    [10] Hérault F, Saez G, Robert E, et al. Liver gene expression in relation to hepatic steatosis and lipid secretion in two duck species [J]. Anim Genet, 2010, 41(1): 12-20.
    [11] Yang Y X, Guo J, Yoon S Y, et al. Early energy and protein reduction: effects on growth, blood profiles and expression of genes related to protein and fat metabolism in broilers [J]. Br Poult Sci, 2009, 50(2): 218-227.
    [12]周长海,王淑杰,田中桂一,等.肉鸭和肉鸡脂肪酸及脂类合成能的对比研究[J].营养学报, 2006, 28(1): 87-88.
    [13]樊红平,侯水生.家禽体内脂肪沉积调控的研究进展[J].动物营养学报, 2004, 16(4): 1-6.
    [14]顾志良,赵万里,周勤宜.肉鸡脂肪沉积规律的研究[J].中国家禽, 1993, 15(1): 24-26.
    [15]张阳德.生物信息学(21世纪高等院校教材·生物科学系列) [M].北京:科学出版社, 2009.
    [16]刘智珺.生物信息学中数据库技术的应用[J].计算机与数字工程, 2009, 37(5): 157-159.
    [17]施卫萍.生物信息学研究进展[J].安徽农学通报, 2009, 15(10): 32-33.
    [18]刘子朋,章宏九,李雅晴,等.生物信息学方法在判断DNA结合蛋白质和预测结合位点中的应用[J].药学进展, 2009, 33(11): 486-490.
    [19]郭顺,姜青山,王备战,等.一种新的蛋白质序列模式挖掘算法[J].计算机工程, 2009, 35(8): 208-210.
    [20]张树波,赖剑煌.蛋白质亚细胞定位预测的机器学习方法[J].计算机科学, 2009, 36(4): 29-33.
    [21] Apfel R, Benbrook D, Lernhardt E, et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily [J]. Mol Cell Biol., 1994, 14(10): 7025-7035.
    [22] Song C, Kokontis J M, Hiipakka R A, et al. Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors [J]. Proc Natl Acad Sci USA., 1994, 91(23): 10809-10813.
    [23] Ulven S M, Dalen K T, Gustafsson J A, et al. LXR is crucial in lipid metabolism [J]. Prostaglandins Leukot Essent Fatty Acids, 2005, 73(1): 59-63.
    [24] Willy P J, Umesono K, Ong E S, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway [J]. Genes Dev., 1995, 9(9): 1033-1045.
    [25] Repa J J, Mangelsdorf D J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis [J]. Annu Rev Cell Dev Biol., 2000, 16: 459-481.
    [26] Chen M, Bradley M N, Beaven S W, et al. Phosphorylation of the liver X receptors [J]. FEBS Lett, 2006, 580(20): 4835-4841.
    [27] Wu W J, Niles E G, Hirai H, et al. Evolution of a novel subfamily of nuelear receptors with members that each contain two DNA binding domains [J]. BMCEvolutionaryBiology, 2007, 7(27): 1186-1196.
    [28] Prufer K, Boudreaux J. Nuclear localization of liver X receptor alpha and beta is differentially regulated [J]. J Cell Biochem., 2007, 100(1): 69-85.
    [29] Jenwitheesuk E, Samudrala R. Identifying inhibitors of the SARS coronavirus proteinase [J]. Bioorg Med Chem Lett., 2003, 13(22): 3989-3992.
    [30] Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K, et al. Liver X receptors (LXRs).Part I: structure, function, regulation of activity, and role in lipid metabolism [J]. Postepy Hig Med Dosw, 2007, 61: 736-759.
    [31] Lehmann J M, Kliewer S A, Moore L B, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway [J]. J Biol Chem., 1997, 272(6): 3137-3140.
    [32] Mitro N, Mak P A, Vargas L, et al. The nuclear receptor LXR is a glucose sensor [J]. Nature, 2007, 445(7124): 219-223.
    [33] Anthonisen E H, Berven L, Holm S, et al. Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose [J]. J Biol Chem., 2010, 285(3): 1607-1615.
    [34] Vedin L L, Lewandowski S A, Parini P, et al. The oxysterol receptor LXR inhibits proliferation of human breast cancer cells [J]. Carcinogenesis, 2009, 30(4): 575-9.
    [35] Janowski B A, Willy P J, Devi T R, et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha [J]. Nature, 1996, 383(6602): 728-731.
    [36] Collins J L, Fivush A M, Watson M A, et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines [J]. J Med Chem., 2002, 45(10): 1963-1966.
    [37] Mitro N, Vargas L, Romeo R, et al. T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR [J]. FEBS Lett., 2007, 581(9): 1721-1726.
    [38] Chiang J Y, Kimmel R, Stroup D. Regulation of cholesterol 7 alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXR alpha) [J]. Gene, 2001, 262(1-2): 257-265.
    [39] Goodwin B, Watson M A, Kim H, et al. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha [J]. Mol Endocrinol., 2003, 17(3): 386-394.
    [40] Repa J J, Turley S D, Lobaccaro J A, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers [J]. Science, 2000, 289(5484): 1524-1529.
    [41] Venkateswaran A, Repa J J, Lobaccaro J M, et al. Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols [J]. J Biol Chem., 2000, 275(19): 14700-14707.
    [42] Zhang Y, Repa J J, Gauthier K, et al. Regulation of lipoprotein lipase by the oxysterol receptors, LXR alpha and LXR beta [J]. J Biol Chem., 2001, 276(46): 43018-43024.
    [43] Grefhorst A, Elzinga B M, Voshol P J, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles [J]. J Biol Chem., 2002, 277(37): 34182-34190.
    [44] Repa J J, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXR alpha and LXR beta [J]. Genes Dev., 2000, 14(22): 2819-2830.
    [45] Griffin M J, Sul H S. Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c [J]. IUBMB Life., 2004, 56(10): 595-600.
    [46] Wang B, Cheng L J, Gao Z N, et al. Activation of liver X receptor regulates fatty acid synthase expression in diabetic liver [J]. Zhonghua Yi Xue Za Zhi, 2008, 88(12): 848-852.
    [47] Laffitte B A, Repa J J, Joseph S B, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes [J]. Proc Natl Acad Sci USA, 2001, 98(2): 507-512.
    [48] Luo Y, Tall A R. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element [J]. J Clin Invest., 2000, 105(4): 513-520.
    [49] Laffitte B A, Joseph S B, Chen M, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions [J]. Mol Cell Biol., 2003, 23(6): 2182-2191.
    [50] Dalen K T, Ulven S M, Bamberg K, et al. Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha [J]. J Biol Chem., 2003, 278(48): 48283-48291.
    [51] Wooton-Kee C R, Coy D J, Athippozhy A T, et al. Mechanisms for increased expression of cholesterol 7alpha-hydroxylase (Cyp7a1) in lactating rats [J]. Hepatology, 2010, 51(1): 277-285.
    [52] Wi?niewska A, Mazerska Z. Cytochrome P450 isoenzymes in metabolism of endo- and exogenic compounds [J]. Postepy Biochem, 2009, 55(3): 259-271.
    [53] Baranowski M. Biological role of liver X receptors [J]. Journal of Physiology and Pharmacology, 2008, 58(7): 31-55.
    [54] Yu L, York J, von Bergmann K, et al. Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8 [J]. J Biol Chem., 2003, 278(18): 15565-15570.
    [55] Ouvrier A, Cadet R, Lobaccaro JM, et al. LXR regulate cholesterol homeostasis in the proximal mouse epididymis [J]. Folia Histochem Cytobiol, 2009, 47(5): 75-79.
    [56] Zhou X, Yin Z, Guo X, et al. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux [J]. J Biol Chem., 2010, 285(9):6316-6326.
    [57] Laffitte B A, Joseph S B, Walczak R, et al. Autoregulation of the human liver X receptor alpha promoter [J]. Mol Cell Biol, 2001, 21(22): 7558-7568.
    [58] Steffensen K R, Schuster G U, Parini P, et al. Different regulation of the LXR alpha promoter activity by isoforms of CCAAT/enhancer-binding proteins [J]. Biochemical and Biophysical Research Communications, 2002, 293(5): 1333-1340.
    [59] Steffensen K R, Holter E, Alikhani N, et al. Glucocorticoid response and promoter occupancy of the mouse LXR alpha gene [J]. Biochemical and Biophysical Research Communications, 2003, 312(3): 716-724.
    [60] Mitro N, Mak P A, Vargas L, et al. The nuclear receptor LXR is a glucose sensor [J]. Nature, 2007, 445(7124): 219-223.
    [61] Ulven S M, Dalen K T, Gustafsson J A, et al. Tissue-specific autoregulation of the LXR alpha gene facilitates induction of apoE in mouse adipose tissue [J]. J Lipid Res., 2004, 45(11): 2052-2062.
    [62] Yamamoto T, Shimano H, Inoue N, et al. Protein kinase A suppresses sterol regulatory elementbinding protein-1C expression via phosphorylation of liver X receptor in the liver [J]. J Biol Chem, 2007, 282(16): 11687-11695.
    [63] Cruz-Garcia L, Minghetti M, Navarro I, et al. Molecular cloning, tissue expression and regulation of liver X Receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology, Part B, 2009,153: 81–88.
    [64] Amena Archer, Gilbert Lauter, Giselbert Hauptmann, et al. Transcriptional Activity and Developmental Expression of Liver X Receptor (lxr) in Zebrafish [J]. Developmental Dynamics, 2008, 237(4): 1090–1098.
    [65] Annicotte J S, Schoonjans K, Auwerx J. Expression of the liver X receptor alpha and beta in embryonic and adult mice [J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 277(2): 312–316.
    [66]于浩,刘娣,丁镌.猪LXRα基因的克隆、序列分析及表达研究[J].中国农学通报, 2009, 25(18): 18-21.
    [67]韩春春,黄晓宇,王继文.鹅LXRα基因的克隆及填饲对其mRNA水平的影响[J].畜牧兽医学报, 2009 ,40 (9): 1405-1409.
    [68]苏胜彦,李齐发,刘振山,等.朗德鹅肝脏和脂肪组织LXRα基因表达水平的比较[J].农业生物技术学报, 2008, 16 (3): 421-425.
    [69]黄晓宇.鹅LXRα基因的序列变异、表达特性及其在脂质代谢中的作用研究[D].雅安:四川农业大学, 2007.
    [70] Yu M, Geiger B, Deeb N. Rothschild1 liver X receptor alpha and beta genes have the potential role on loin lean and fat content in pigs [J]. J Anim Breed Genet, 2006, 123(2): 81- 88.
    [71] Scherer P E, Willians S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes [J]. J Biol Chem.,1995, 270 (45) : 2646-2649.
    [72] Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin - binding protein ( GBP28) [J]. Gene, 1999, 229 (2): 67-73.
    [73] Saito K, Tobe T, Yoda M, et al. Regulation of gelatin -binding protein 28 (GBP28) gene expression by C/EBP [J]. Biol Pharm Bull, 1999, 22(11): 1158-1162.
    [74] Iwaki M, Matsuda M, Maeda N, et al. Induction of adiponectin, a fat - derived antidiabetic and antiatherogenic factor, by nuclear receptors [J]. Diabetes, 2003, 52(7): 1655-1663.
    [75] Yuan J, Liu W, Liu Z L, et al. cDNA cloning, genomic structure, chromosomal mapping and expression analysis of ADIPOQ (adiponectin) in chicken [J]. Cytogenet Genome Res, 2006, 112(1-2):148-151.
    [76] Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose - specific protein, adiponectin, in type 2 diabetic patients [J]. Arterioscler Thromb Vasc Biol, 2000, 20 (6): 1595-1599.
    [77] Berg A H,Combs T P, Scherer P E. ACRP30/adiponectin:an adipokine regulation glucose and lipid metabolism [J]. Trends Endocrinol Metab, 2002, 13(2): 84-89.
    [78] Maeda K, Okubo K, Shimomura I , et al. cDNA cloning and expression of a novel adipose specific collagen - like factor, apM1 (AdiPose Most abundant Gene transcript 1) [J]. Biochem Biophys Res Commun, 1996, 221(2) :286-289.
    [79]万春燕,刘芬,傅正伟.脂联素的病理生理学研究进展[J].细胞生物学杂志, 2009, 31(2): 163-168.
    [80] Bonnard C, Durand A, Vidal H, et al. Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice [J]. Diabetes & Metabolism, 2008, 34(1): 52-61.
    [81] Yano W, Kubota N, Itoh S, et al. Molecular mechanism of moderate insulin resistance in adiponectin-knockout mice [J]. Endocr J., 2008, 55(3): 515-522.
    [82] Tsao T S, Tomas E, Murrey H E, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways [J]. J Biol Chem., 2003, 278(50): 50810-50817.
    [83] Rosen E D, Spiegelman B M. Adipocytes as regulators of energy balance and glucose homeostasis [J]. Nature, 2006, 444(7121): 847-853.
    [84] Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS [J]. FEBS Lett, 2008, 582(1): 74-80
    [85] Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis [J]. J Biol Chem., 2003, 278(4): 2461-2468.
    [86] Tiller G, Fischer-Posovszky P, Laumen H, et al. Effects of TWEAK (TNF superfamily member 12) on differentiation, metabolism, and secretory function of human primary preadipocytes and adipocytes [J]. Endocrinology, 2009, 150(12): 5373-5383.
    [87] Damcott C M, Ott S H, Pollin T I, et al. Genetic variation in adiponectin receptor 1 and adiponectin receptor 2 is associated with type 2 diabetes in the old order amish [J]. Diabetes, 2005, 54(7): 2245-2250.
    [88] Hara T, Fujiwara H, Shoji T, et al. Decreased plasma adiponectin levels in Young obese meles [J]. J Atheroscler Thromb, 2003, 10(4): 234.
    [89] Yamauchi T, Oike Y, Kamon, et al. Increased insulin sensitivity despite lipodystrophy in crebbp heterozygous-mice [J]. Nat Genet, 2002, 30 (2): 221-226.
    [90] Bloomgarden Z T. Adiposity and diabetes [J]. Diabetes Care, 2002, 25 (12): 2342-2349.
    [91] Frystyk J, Berne C, Berglund L, et al. Serum adiponectin is a predictor of coronary heart disease : a population– based 10 - year follow - up study in elderly men [J]. Clin Endocrinol Metab, 2007, 92 (2): 571-576.
    [92] Schulze M B, Shai I, Rimm E B, et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes [J]. Diabetes, 2005, 54 (2): 534-539.
    [93] Chen MP, Tsai J C, Chung F M, et al. Hypoadiponectinemia is associated with ischemic cerebrovascular disease [J]. Arterioscler Thromb Vasc Biol, 2005, 25(4): 821-826.
    [94] Wang P H, Ko Y H, Liu B H, et al. The expression of porcine adiponectin and stearoyl coenzyme A desaturase genes in differentiating adipocytes [J]. Asian-Aust J Animal Sci, 2004, 17(4): 588-593.
    [95] Ding S T, Liu B H, Ko Y H, et al. Cloning and expression of porcine adiponectin andadiponectin receptor 1 and 2 genes in pigs [J]. Journal of Animal Science, 2004, 82(11): 3162-3174.
    [96] Dai M H, xia T, Zhang G D, et al. Cloning, expression and chromosome localization of porcine adiponectin and adiponectin receptors genes [J]. Domestic Animal Endocrinology, 2006, 30(2): 117-125.
    [97] Jacobi S K, Ajuwon K M, Weber T E, et al. cloning and expression of porcine adiponectin, and its relationship to adiposity, lipogenesis and the acute phase response [J]. Journal of Endocrinology, 2004, 182(1): 133- 144.
    [98] Lord E, Ledoux S, Ledoux S, et al. Expression of adiponectin and its receptors in swine [J]. American Society of Animal Science, 2005, 83(3): 565- 578.
    [99] Tomas E, Tsao T S, Saha A K, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP - activated protein kinase activation [J]. Proc Natl Acad Sci USA, 2002, 99( 25): 16309-16313.
    [100] Sreenivasa Maddineni, Shana Metzger, et al. Adiponectin gene is expressed in multiple tissues in the chicken: food deprivation influences adiponectin messenger ribonucleic acid expression [J]. Endocrinology, 2005, 146(10): 4250-4256.
    [101] Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin [J]. Circ Res, 2004, 94(4): 27-31.
    [102] Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes: Molecular structure and multimer formation of adiponectin [J]. J Biol Chem, 2003, 278(41): 40352- 40363.
    [103] Yamamoto Y, Hirose H, Saito I, et al. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population [J]. Clin Sci(Lond), 2002, 103(2): 137-142.
    [104]朱枫桥,周杰,郑智勇,等.皖西白鹅与朗德鹅脂肪基因表达的比较[J].中国草食动物, 2009, 29(3): 5-8.
    [105]徐国庆,龚道清,储冬生,等.鹅脂联素基因的克隆、序列分析及组织表达[J].农业生物技术学报, 2008, 16(6): 941~946.
    [106] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians [J]. Human molecular genetics, 2002, 11(21): 2607-2614.
    [107] Stumvoll M, Tschritter O, Fritsche A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity:interaction with family history of type 2 diabetes [J]. Diabetes, 2002, 51(1): 37-41.
    [108] Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population [J]. Diabetes, 2002, 51(2): 536-540.
    [109] Kondo H, Shimomura I, Matsukawa Y, et al. Association of adiopnectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome [J]. Diabetes, 2002, 51(7): 2325-2328.
    [110]赵海燕,孙崴,张霞,等.脂联素基因5′端调控区211391GPA核苷酸多态性与2型糖尿病发病的相关性[J]. 2009, 47(2): 62-64.
    [111]李乐华,吴仁容,赵靖平.脂联素基因+45T/G和+276G/T多态性与抗精神病药物所致体质量增加[J].中南大学学报(医学版), 2009, 34 (8) : 693-697.
    [112]董飚,龚道清,孟和,等.鸭脂联素基因单核苷酸多态性检测及群体遗传分析[J].遗传, 2007, 29(8): 995-1000.
    [113]刘大林,俞亚波,魏岳,等.脂联素基因对京海黄鸡体重及屠体性状的遗传效应[J].扬州大学学报(农业与生命科学版), 2009, 30(1): 31-34.
    [114] Eva Zsigmond, Melinda K. Nakanishi, Franca E. Ghiselli. Transgenic mouse model for estrogen-regulated lipoprotein metabolism: studies on apoVLDL-II expression in transgenic mice [J]. Journal of Lipid Research, 1995, 36(7): 1453-1462.
    [115] Eugene A. Berkowitz, Marilyn I. Evans. Functional analysis of regulatory regions upstream and in the first intron of the estrogen-responsive chicken very low density apolipoprotein II Gene [J]. The Journal of Biological Chemistry, 1992, 267(10): 7134-7138.
    [116] Robert J.G.Hache, Roger G.Deeley. Organization, sequence and nuclease hypersensitivity ofrepetitive elements flanking the chicken apoVLDL II gene: extended sequence similarity to elements flanking the chicken vitellogenin gene [J]. Nucleic Acids Research, 1988, 16(1): 97-113.
    [117] Binder R, MacDonald C C, Burch J B, et al. Expression of endogenous and transfected apolipoprotein II and vitellogenin II genes in an estrogen responsive chicken liver cell line [J]. Mol Endocrinol., 1990, 4(2): 201-208.
    [118] Shelness G S, Williams D L. Apolipoprotein II messenger RNA. Transcriptional and splicing heterogeneity yields six 5'-untranslated leader sequences [J]. J Biol Chem., 1984, 259(15): 9929-9935.
    [119] Shuler F D, Chu W W, Wang S, et al. A composite regulatory element in the first intron of the estrogen-responsive very low density apolipoprotein II gene [J]. DNA Cell Biol., 1998, 17(8): 89-97.
    [120] Maclachlan I, Steyrer E, Hermetter A, et al. Molecular characterization of quail apolipoprotein very-low-density lipoprotein II: disulphide-bond-mediated dimerization is not essential for inhibition of lipoprotein lipase [J]. Biochem J.,1996, 317(2): 599-604.
    [121] Schneider W J, Carroll R, Severson D L, et al. Apolipoprotein VLDL-II inhibits lipolysis of triglyceride-rich lipoproteins in the laying hen [J]. J Lipid Res., 1990, 31(3): 507-513.
    [122] Johannes N, Wolf G J S. Receptor-mediated lipoprotein transport in laying hens [J]. J Nutr., 1991, 121 (9): 1471-1474.
    [123] Zsigmond E, Nakanishi MK, Ghiselli FE, et al. Transgenic mouse model for estrogen-regulated lipoprotein metabolism: studies on apoVLDL-II expression in transgenic mice [J]. J Lipid Res., 1995, 36(7): 1453-1462.
    [124] Douaire M, Langlois P, Flamant F, et al. ApoVLDLII gene transcription in immature cockerels without estradiol stimulation [J].Comp Biochem Physiol B. 1990,97(1):55-58.
    [125] Yen C F, Jiang Y N, Shen T F, et al. Cloning and Expression of the Genes Associated with Lipid Metabolism in Tsaiya Ducks [J]. Poultry Science, 2005, 84(1): 67-74.
    [126] Musa H H, Cheng J H, Bao W B, et al. Genetic differentiation and phylogeny relationships of functional ApoVLDL-II gene in red jungle fowl and domestic chicken populations [J]. Pak J Biol Sci., 2007, 10(15): 2454-2459.
    [127] Li H, Deeb N, Zhou H, et al. Chicken quantitative trait loci for growth and body composition associated with the very low density apolipoprotein-II gene [J]. Poult Sci, 2005, 84(5): 697-703.
    [128] Musa H H, Chen G H, Wang K H, et al. Relation between serum cholesterol level, lipoprotein concentration and carcass characteristics in genetically Lean and fat chicken breeds [J]. Journal of Biological Sciences, 2006, 126(6): 616-620.
    [129] Musa H H, Chen G H, Cheng J H, et al. PCR-RFLP analysis of apoVLDL-II gene in chicken and its relation with meat quality [J]. Indian Vet.J., 2007, 84(5): 496-499.
    [130] Musa H H, Chen G H, Li B C. The effect of interaction between lipoprotein lipase and apoVLDL-II genes on fat and serum biochemical levels [J]. Journal of Biotechnology, 2007, 127(6): 847-852.
    [131] Musa H H, Chen G H. Association of polymorphisms in avian apoVLDL-II gene with body weight and abdominal fat weight [J]. Journal of Biotechnology, 2007, 6(17): 2009-2013.
    [132] Musa H H, Chen G H, Bao W B, et al. The combine effect of mutation in lipoprotein lipase and apoVLDL-II genes on meat quality [J]. Research Journal of Biological Sciences, 2007, 2(1): 96-99.
    [133] Wu S L, Musa H H, Bao W B, et al. Mutation in exon 4 of apoVLDL-II gene is a candidate for meat tenderness in chicken [J]. Journal of Animal and Veterinary Advances, 2008, 7(10): 1624-1627.
    [134]程金花,赵文明,陈清,等.鸡Apo VLDL II基因内含子多态性与肉质关联分析[J].扬州大学学报(农业与生命科学版), 2008, 29(1): 37-40.
    [135] Jung K C, Lee Y J, Bhuiyan M S A, et al. Genotype analysis of apoVLDL-II gene in Korean chicken breeds [J]. Korean Journal of Poultry Science, 2008, 35(4) : 123-167.
    [136]赵紫琴,陆凤先.实时荧光定量聚合酶链反应技术及应用[J].中国药物与临床, 2006, 6(4): 248.
    [137]徐波,张建超.实时荧光定量PCR技术及在畜牧兽医中的应用[J].畜禽业, 2009, (12): 10-12.
    [138]纪冬,辛绍杰.实时荧光定量PCR的发展和数据分析[J].生物技术通讯, 2009, 20(4): 598-600.
    [139]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志, 2007, 16(4): 492-497.
    [140]吴绍强,李海艳,林祥梅,等.贝类派琴虫实时荧光定量PCR检测方法的建立和应用[J].渔业科学进展, 2009, 30(5): 58-63.
    [141]薛春阳,汪秀星,王晓娜,等.苏太猪肌内脂肪沉积相关基因SRC-1的差异显示反转录PCR鉴定[J].南京农业大学学报, 2009, 32(3): 126-129.
    [142]杨晓燕,程安春,汪铭书,等.鸭瘟病毒强毒株在感染鸭实质器官内的增殖与分布[J].中国兽医学报, 2008, 28(11): 1254-1258.
    [143]李丽芳,贾球锋,张映,等.禽胰多肽对肉鸡肝脏和小肠组织中APPR mRNA表达量影响的研究[J].动物营养学报, 2009, 21(1): 107-112.
    [144]张颖,刘长军,秦运安,等.应用双重实时荧光定量PCR方法检测鸡马立克氏病血清1型病毒[J].中国预防兽医学报, 2007, 29(1): 46-51.
    [145]李馨,肖翠红,杨隽,等.鹅生长激素受体基因克隆及其个体发育性表达研究[J].中国畜牧杂志, 2008, 44(23): 9-12.
    [146]吴桂琴,郑江霞,杨宁.伴性矮小型鸡GH、GHR和IGF-1基因的表达变化[J].遗传, 2007, 29(8): 989-994.
    [147]褚晓红,胡锦平,卢立志,等.浙东白鹅催乳素受体基因的克隆及其表达特点的研究[J].畜牧兽医学报, 2008, 39(6): 823-826.
    [148] Cameron N D, Enser M, Nute G R, et al. Genotype with nutrition interaction on fatty acid composition of intramuseular fat and relationship with flavour of pigmeat [J]. Meat science, 2000, 55(3): 187-195.
    [149]周长海,王淑杰,田中桂一,等.肉鸭和肉鸡脂肪酸及脂类合成能的对比研究[J].营养学报, 2006, 28(1): 87-88.
    [150]林树茂,李海华,钟赛意.不同禽类肌肉脂肪酸组成的比较研究[J].中国畜牧杂志, 2004, 40(12): 18-20.
    [151]江新业,宋焕禄.部分家禽肉肌内脂肪及脂肪酸含量的测定与分析[J].无锡轻工大学学报, 2004, 23(5): 26-28.
    [152]陈国宏,侯水生.中国部分地方鸡肌肉脂肪酸相对含量比较研究[J].中国畜牧杂志, 1999, 35(3): 27-28.
    [153]田颖刚,谢明勇,王维亚,等.泰和乌骨鸡鸡肉总磷脂含量及其侧链脂肪酸组成的特性[J].食品科学, 2007, 28(4): 48-51.
    [154]李慧芳,陈宽维.不同鸡种肌肉肌苷酸和脂肪酸含量的比较[J].扬州大学学报(农业与生命科学版), 2004, 25(3): 9-11.
    [155]周洪松,张立名.蛋鸡早期选种血液生化指标的研究[J].安徽农学院学报, 1990,17(3): 163-168.
    [156]周洪松,赵益贤,耿照玉,等.利用血液生化指标多辅助性状综合选择指数对蛋鸡进行早期选择的效果分析[J].安徽农业大学学报, 2002, 29(1): 38-40.
    [157]周洪松,陈玎玎.利用血液生化指标多辅助性状综合选择指数对蛋鸡进行早期选种的研究[J].畜牧兽医学报, 1998, 29(5): 479-480.
    [158]俞俊英,黄苇,冯忠华,等.不同配套系北京鸭的生产性能与血液生化指标特性研究[J].中国家禽, 2002, 24(21): 11-13.
    [159]陈玉琴,俞诗源.红腹锦鸡、石鸡和雉鸡的部分血液生理生化指标[J].动物学报, 2007, 53(4): 674-681.
    [160]李辉,龚道溃.肉鸡血浆极低密度脂蛋白浓度与屠体肥度性状的相关研究[J].黑龙江畜牧兽医, 1997, (8): 1-5.
    [161] Megan R W, MacDonalda, Jianguo Xia, et al. The duck toll like receptor 7: Genomic organization,expression and function [J]. Molecular Immunology, 2008, 45(7): 2055-2061.
    [162]孟和,李辉,王宇祥.鹅PPAR基因全长cDNA的克隆和序列分析[J].遗传, 2004, 26(4): 469-472.
    [163]包文斌,周群兰,吴信生,等.藏鸡和萧山鸡体尺及屠宰性能的比较分析[J].中国家禽, 2005, 27(7): 17-19.
    [164] J萨姆布鲁克, E F弗里奇, T曼尼阿蒂斯(金冬雁,黎孟枫译,侯云德校) [M].分子克隆实验指南,第二版.北京:科学出版社, 1992.
    [165]张海波.鸭早期生长发育规律及A-FABP基因多态性与脂肪性状关联分析[D].扬州:扬州大学, 2009.
    [166] Vaiman D, Mercier D, Moazami-Goudarzi K, et al. A set of 99 cattle microsatellites characterization synteny mapping and polymorphism [J]. Mammalian Genome, 1994, 5(5): 288-297.
    [167]龙入虹,韦秀英.脂联素相关研究进展[J].右江民族医学院学报, 2009, 31(1): 102-103.
    [168] Rodriguez-Pacheco F, Martinez-Fuentes A J, Tovar S, et al. Regulation of pituitary cell function by adiponectin [J]. Endocrinology, 2007, 148(1): 401-410.
    [169]凌飞,李加琪,王翀,等.猪脂联素基因启动子区甲基化与其mRNA表达分析[J].遗传, 2009, 31(10): 1013-1019.
    [170]张国栋.猪脂联素基因的染色体定位、克隆、原核表达、抗血清制备及体内表达调控研究[D].武汉:华中农业大学, 2004.
    [171] Chabrolle C, Tosca L, Crochet S, et al. Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis [J]. Domest Anim Endocrinol, 2007, 33(4): 480-487.
    [172] Ocón-Grove O M, Krzysik-Walker S M, Maddineni S R, et al. Adiponectin and its receptors are expressed in the chicken testis: influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance [J]. Reproduction, 2008, 136(5): 627-638.
    [173]董飚.鸭脂联素及其受体基因克隆、表达和功能研究[D].扬州:扬州大学, 2007.
    [174] Hotta K, Funahashi T, Bodkin N L, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduces insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys [J]. Diabetes, 2001, 50(5): 1126-1133.
    [175]杨书云,于兰,何松.乳腺癌组织中耐药和转移相关基因联合表达的临床病理分析[J].南通医学院学报, 2004, 24(4): 406-408.
    [176]谭俊杰,杨涛,徐敏,等.猪生长激素基因与白介素-6基因在小鼠体内的表达效应分析[J].四川大学学报(自然科学版), 2007, 44(2): 447-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700