SOFC固体氧化物燃料电池分布式发电系统仿真及其潮流计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球正面临着能源危机和环境污染、气候变化的压力。应用新能源发电随之成为电力工业发展的时代课题。本文选择燃料电池中最具有商业前景的固体氧化物燃料电池SOFC(Solid Oxide Fuel Cell)作为研究对象,对其发电系统建模、并网控制仿真以及微电网孤岛运行的潮流计算分析进行研究,旨在为SOFC等分布式发电在电力系统中广泛应用提供理论参考。
     根据SOFC发展趋势,选择平板式阳极支撑的中高温SOFC(以下简称电池)为研究对象。首先介绍其材料及结构,分析电池单体及堆栈的发电原理,用基于电极的微观动态电化学电势(Electrochemical Electric potential model,ECE)模型得到发电输出及控制特性。单体工作电压在06V-09V范围即稳态输出时,电池单体及其堆栈输出特性呈线性。基于线性化理论和电路等效原理,对输出外特性曲线进行简化,提出了对应操作条件下的电压源串联电阻(Voltage Source Series Resistance,VSSR)模型和基于实验响应时间常数的可调控多级电压源串联电阻(Multi-Voltage Sources Series Resistances - MVSSRs)模型。提出的等效模型简单有效、易于接口,为含电池发电的系统稳态运行分析提供电路理论基础。
     根据电池发电系统的特点,采用PI调节、电流滞环跟踪和PWM控制等手段,通过对并网接口——三相逆变器的控制,实现对电池发电系统接入大电网的并网控制。基于Matlab软件平台,以5kW的电池系统与大电网并网为例,进行动态控制仿真。结果表明,经电池系统的反馈调节及并网逆变器门极电路的控制,可实现该分布式电源逆变器输出侧的电压/电流/功率等调节,以平衡系统负荷波动的功率需求;尽管电池系统仅能发出有功,经逆变器控制还可实现其无功输出控制;从仿真结果并结合电池发电材料要求及控制响应时间等特性可知,电池并网发电时,适于为系统基础负荷供电,不适于系统频率或电压稳定调节。
     传统潮流计算需要设定系统平衡节点。然而目前分布式电源(以下简称电源)的输出功率极其有限,且微型电网中电源一般无独立二次调频设备,故在孤岛运行的微电网中无一电源能承担传统电力系统调频电厂的角色。基于上述控制仿真研究,提出一种新的改进潮流计算方法,去掉平衡节点的设定,将电源视为松弛PQ节点。以三相对称的孤岛系统为例,推导出改进潮流算法的功率平衡方程和牛顿-拉弗逊法求解过程中雅可比矩阵各元素的表达式。用环网结构的5节点系统和树形结构的配电网33节点系统验证算法的合理有效性及不同拓扑结构的适应性。
     线路不完全换位或者不平衡负荷等因素,往往造成实际潮流的三相不平衡。采用相分量法对孤岛运行的三相不平衡潮流算法进行研究,考虑了变压器移相角对潮流的影响以及线路参数的相间耦合,推导出三相不平衡潮流的功率平衡方程以及雅可比矩阵各元素的表达式,并用5节点系统进行验证。
     三相平衡/不平衡潮流计算分析采用多种方案,详细比较不同分布式电源及其有功/无功调节能力、电源不同出力及位置、不同负载条件,以及采用不同的负荷模型及其电压/频率静态调节特性等各种情况。与传统潮流算法的计算结果比较表明,改进潮流算法物理意义明确,计算简单,计算潮流的同时反映系统频率的变化,比传统的潮流算法更适于孤岛运行微电网的三相平衡/不平衡潮流计算。同时可知电池应用于孤岛运行的微电网发电时,特别是在三相不平衡系统中,需要与其他供电形式配合,更有利于系统的稳定运行。
Electrical power demanding is increasing with the development of the whole society. More and more energy consumption causes depletion of fossil fuels comparing with their growing speed. At the same time, the whole world is facing the pressure of circumstance pollution and global warming caused by industry. To solve these issues, new energy and electricity generation are taken out to be researched and applied. In this paper, solid oxide fuel cell (SOFC) is chose to be studied for it has the best future among all fuel cells. The research includes electrical modeling SOFC, control and simulation of connecting with the main grid, and the power flow calculation of islanding systems. It aims to give a reference for analysis and control of the system with SOFC and other distributed generation resources (DGRS) widely used.
     Planner anode-supported high/intermediate-temperature solid oxide fuel cell (P-A-H/M-T SOFC) is studied in this paper for it is mostly popular in the power system. Firstly, the material and structure of P-A-H/M-T SOFC and its stack are introduced. Based on the principle of its power generation, the output characteristics of the cell and it control is studied with electrochemical electric potential model (ECE). With the help of linearization and equivalence principle, voltage source series resistance (VSSR) model and multi-voltage sources series resistances (MVSSRs) model are proposed for the simplification of the model application in static analysis. The linear equivalent electric circuit models proposed are simply and effective for applications of P-A-H/M-T SOFC in system control and analysis.
     Based on the analysis of the power generation characteristics, PI control, Pulse Width Modulation (PWM) control with current relay track as a feeder back, and other control ways are used to control the three-phased inverter of the cell stack to the main grid. With an example of a 50kW SOFC power generation system link to a main grid, the dynamic power control of the fuel cell stack is simulated with Matlab software. The simulation shows that it is possible to control the power (includes both active power and reactive power) of the distributed generation (DG) system by controlling its inverter to the main grid. And it shows that P-A-H/M-T SOFC is suitable for power supplying to basic load.
     Current DGRs are so limited that in an independent micro-grid, known as‘islanding’system, no current DGR is big enough to balance the power demand and to stabilize the frequency of the micro-grid. It means that there is no swing bus of an islanding micro-grid can be managed as that set in the traditional calculation. Setting DGRs as slack PQ nodes, a new power flow calculation method based on the above research, is proposed to accommodate the lack of a swing bus in an islanding system. With this method, balanced power calculations are discussed with IEEE-5 bus system (ringing topological structure) and distributed 33-bus system (radial structure). It is solved with Newton-Raphson method). The method proposed is valid by comparing its results with those got with the traditional method. It shows that the new method is adapted to networks with different topological structures.
     Three-phase power flow of power system is normally unbalanced causing by the shifting of lines, single-phase loads and other factors. Using phase component analysis, a new power flow calculation method is proposed for unbalanced power calculation of islanding micro-grids. The phase shifting in power flow between primary and secondary windings of the transformer, caused by the transformer winding connection, and the coupling of the lines are also discussed in unbalanced three-phase power flow calculation. It is valid with IEEE-5 bus system by comparing he results with those of the traditional power flow calculation method.
     In the balanced/unbalanced three-phase power flow, different DG systems with various adjustment coefficients, different load demanding level, different load models with various adjustment coefficients are discussed in details. The improved method with good convergence addresses power flow results and the frequency of the whole system and is more appropriate for islanding systems with mesh topology and for micro-grid management with no swing bus. The power flow calculation shows that to improve the stability of the islanding micro-grids, especially that of an unbalanced system, P-A-H/M-T SOFC needs to work together with other DGRs which can change their power output quickly.
引文
[1]WADE.World survey of decentralized energy 2004.World Alliance ofDecentralized Energy,www.localpower.org,2004
    [2]世华财讯.中国电力主要存在煤电比例偏高等问题.http://futures.cnfol.com/080402/133,1528,3983769,00.shtml,2008-04-02
    [3]关于燃料电池发电技术调研报告(五).燃料电池网,http://www.cnfuelcell.com/tiring_room/new/hynews/2006317113526.htm,2006-3-17
    [4]周小谦.中国电力改革和推进热电联产及分布式能源的发展.第二届中国分布式能源国际研讨会,http://www.china5e.com/show.php?contentid=41988,2006-06-06.
    [5] Yanghua Liu, Xinran Li, Xiangyou Zhu, et al.Quantitatively Estimating &Evaluating Macroscopic Scale of Power Transmission & DistributionNetwork.International Conference on Power System Technology,Chongqing,China,October 2006:1-5
    [6]都志杰.可再生能源离网独立发电技术与应用.北京:化学工业出版社,2009:86-95,96-101
    [7]王敏,丁明.分布式发电及其效益.合肥工业大学学报(自然科学版),2004,27(4):355-358
    [8]胡学浩.分布式发电(电源)技术及其并网问题.电工技术杂志,2004(10):1-5
    [9]吴大为,王如竹.分布式能源定义及其与冷热电联产关系的探讨.制冷与空调,2005,5(5):1-6
    [10]薛峰,王海风,Raj AGGARWAL.英国国家基金电力能源领域重大研究计划.电力系统自动化,2007,31(4):1-6
    [11]Davis M W.Mini gas turbines and high speed generators a preferred choice forserving large commercial customers and microgrids I: Generating system.IEEEPower Engineering Society Summer Meeting 2002, Chicago, July, 2002:21-25
    [12]中国投资咨询网.2007-2008年中国风力发电行业分析及投资咨询报告.http://www.ocn.com.cn/reports/2006005fenglifadian.htm,2007-8
    [13]张星秀.中国工程院院士张耀明表示到2010年我国太阳能发电成本有望与常规发电相当.http://www.daynews.com.cn/sxjjrb/sanban/56129.html,2006-11-20
    [14]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术,2003,27(12):71-75,88
    [15]王燕,谢志远,聂恩旺.分布式发电及其并网逆变器拓扑结构的发展现状.中国电力教育(研究综述与技术论坛专刊),2006(S 1):205-207
    [16]吴春华,肖鹏,武慧,等.一种新型三相电流型逆变器的研究.电工技术学报,2007,22(7):78-82
    [17]刘波,王仕城.10kW无变压器型光伏并网发电逆变器的设计与实现.中国建设动态:阳光能源,2005,(4):42-45
    [18]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-66,70
    [19]姜桂宾,裴云庆,杨旭,等.SPWM逆变电源的无互联信号线并联控制技术.中国电机工程学报,2003,23(12):94-98
    [20]Li Jian, Kang Yong, Chen Jian.A hybrid fuzzy-repetitive control scheme for 400Hz CVCF inverters.Proceedings of the CSEE, 2005, 25(9):54-61
    [21]谢孟,蔡昆,胜晓松,等.400Hz中频单相电压源逆变器的输出控制及其并联运行控制.中国电机工程学报,2006,26(6):78-82
    [22]Hung Guokiang, Chang Chihchang, Chen Chernlin.Automatic phase shift method for islanding detection of grid-connected photovoltaic inverters.IEEE Transon Energy Conversion, 2003, 18(1):169- 173
    [23]禹华军,潘俊民.并网发电逆变系统孤岛检测新方法的研究.电力系统及其自动化学报,2005,17(5):55-59
    [24]魏晓光,汤广福,魏晓云,等.光伏并网发电系统孤岛检测技术.电工技术学报,2007,22(4):157-162
    [25]Ding Xu, Girgis A A.Optimal load shedding strategy in power systems with distributed generation . IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 28 Jan.-1 Feb, 2001. IEEE, 2:788-793
    [26] Ricardo V Fernandes, Susana A B de Almeida, Fernando P. Maciel Barbosa , et al.Load shedding—Coordination between the Portuguese transmission grid and the distribution grid with minimization of loss of distributed Generation.2009 IEEE Bucharest Power Tech Conference, June 28th-July 2nd, Bucharest, Romania. 2009:1-6
    [27]王守相,李晓静,肖朝霞,等.含分布式电源的配电网供电恢复的多代理方法.电力系统自动化,2007,31(10):61-65,81
    [28]卢志刚,董玉香.含分布式电源的配电网故障恢复策略.电力系统自动化,2007,31(1):89-92,99
    [29]胡成志,卢继平,胡利华,等.分布式电源对配电网继电保护影响的分析.重庆大学学报(自然科学版),2006,29(8)::36-39
    [30]Kumpulainen L. K., Kauhaniemi K. T..Analysis of the impact of distributed generation on automatic reclosing.2004 IEEE PES,Power Systems Conference and Exposition,New York, USA, 10-13 Oct. 2004, 1:603-608
    [31]周耀烈,李仁飞,苏永智.分布式发电机组并网10kV开关站的保护新逻辑.高电压技术,2006,32(6):105-107
    [32]王希舟,陈鑫,罗龙,等.分布式发电与配电网保护协调性研究.继电器,2006,34(3):15-19
    [33]Sadeghzadeh S M,Ansarian M.Distributed generation and renewable Planning with a linear programming model.First International Power and Energy Conference PECon 2006, November 28-29, 2006, Putrajaya, Malaysia:48-53
    [34]Carpinelli G,Celli G,Pilo F,et al.Distributed Generation Siting and Sizing under Uncertainty.Paper accepted for presentation at PPT 2001, 2001 IEEE Porto Power Tech Conference, 10th -13th September, Porto, Portugal. 2001, 4:1-7
    [35]章杜锡,徐祥海,杨莉,等.分布式电源对配电网过电压的影响.电力系统自动化,2007,31(12):50-54,85
    [36]Haig S J,Tumilty R M,Burt G M.,et al.Analyzing the technology needs of future distribution networks.Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK, 6-8 Sept. 2006, 1:217 - 22
    [37]胡骅,吴汕,夏翔,等.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报,2006,26(19):13-17
    [38]Silvestri A,Berizzi A,Buonanno S.Distributed generation Planning using genetic algorithms.International Conference on Electric Power Engineering,Budapest Hungary, 1999, 29 Aug.-2 Sept. 1999:257-257
    [39]Nara K,Hayashi Y,Ikeda K,et al.AppIication of tabu search to optimal Placement of distributed generators. IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 2001, 2:918-923
    [40]Hamedani Golshan M E, Arefifar S A.Distributed generation, reactive sources and network-configuration Planning for power and energy-loss reduction . IEE Proceedings of Generation, Transmission and Distribution, 2006, 153(2):127-136
    [41]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算.电力系统自动化,2007,31(3):19-23
    [42]陈海焱,陈金富,杨雄平,等.配电网中计及短路电流约束的分布式发电规划.电力系统自动化,2006,30(21):16-21
    [43]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容.电力系统自动化,2006,30(3):38-43
    [44]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用.中国电机工程学报,2000,20(3):26-29
    [45]刘正谊,谈顺涛,曾祥君.分布式发电及其对电力系统分析的影响.华北电力技术,2004,10:18-20,23
    [46]Lasseter R.Dynamic models for micro-turbines and fuel cells.IEEE Power Engineering Society Summer Meeting, 2001. Vancouver, Canada, 2001, 2:761-766
    [47]Naka S, Genji T, Fukuyama Y.Practical equipment models for fast distribution power flow considering interconnection of distributed generators.IEEE Power Engineering Society Summer Meeting, Vancouver, Canada, 2001, 2:1007-1012
    [48]Liu Zhengyi,Zeng Xiangjun,Tan Shuntao,et al.A novel scheme of stability control for distributed generation systems.2004 International Conference on Power System Technology-POWERCON 2004, Singapore, 21-24 November, 2004 :1528-1531
    [49]EI-Khattam W,Hegazy Y G,Salama M M A.Stochastic power flow analysis of electrical distributed generation systems.IEEE Power Engineering Society General Meeting 2003,Toronto, Canada,13-17 July 2003,2:1141-1144
    [50]张红光,张粒子,陈树勇,等.大容量风电场对电力系统小干扰稳定和阻尼特性的影响.电网技术,2007,31(13):75-80
    [51]关宏亮,赵海翔,迟永宁,等.电力系统对并网风电机组承受低电压能力的要求.电网技术,2007,31(7):78-82
    [52]Dai M,Marwali M N, Jung J W, et al.Power flow control of a single distributed generation unit with nonlinear local load.2004 Power Systems Conference & Exposition (PSCE), October 10-13, 2004, New York City, 1:398-403
    [53]Edward F V,Dudgeon G J W.Dynamics of distribution networks with distributed generation.IEEE Power Engineering Society Summer Meeting,Washington,USA,16-20 July 2000,2:1032 - 1037
    [54]魏晓光,汤广福.电压源换相高压直流输电对改善风电场电压稳定性的作用.电网技术,2007,31(8):27-31
    [55]Azmy A M,Erlich I.Impact of distributed generation on the stability of electrical power system.IEEE Power Engineering Society General Meeting, San Francisco, USA, 12-16 June, 2005, 2: 1056– 1063
    [56]Slootweg J G,Kling W L.Impacts of distributed generation on power system transient stability.IEEE Power Engineering Society Summer Meeting, Chicago, 25-25 July, 2002, 2:862 - 867
    [57]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81
    [58]Zhang Z R,Yin Z D,Hu F X.Research of Multi-Farms Transmission of Distributed Generation Based on HVDC Light.2006 International Conference on Power System Technology, Chongqing, China, 22-26 October, 2006:1-6
    [59]刘杨华,吴政球,涂有庆,等.分布式发电及并网技术研究综述,电网技术,2008,32(15):71-76
    [60]许广婷.分布式发电系统中计及负荷频率特性的孤岛划分算法的研究[东南大学硕士论文].2007:20-26
    [61]詹姆斯.拉米尼,安德鲁斯.迪克斯.燃料电系统——原理.设计.应用(原书第二版).北京:科学出版社, 2006:136-192
    [62]隋智通,隋升,罗冬梅.燃料电池及其应用.北京:冶金工业出版社,2004:91-130
    [63]Subhash C Singhal,Kevin Kendall.高温固体氧化物燃料电池——原理、设计和应用.北京:科学出版社,2007:20-37,198-279
    [64]孙奉仲,杨祥良,高明,等.热电联产技术与管理.中国电力出版社,2008: 1-32,63-69
    [65]整体煤气化固体氧化物燃料电池(IG-SOFC)发电系统.中国电力.2009,42(4):88
    [66]固体氧化物燃料电池(SOFC)发电系统示范工程(1):Sulzer Hexis公司的SOFC系统.中国电力.2009,42(4):88
    [67]黄端平.固体氧化物燃料电池(SOFC)及其发展.http://ic.newmaker.com/art_6424.html. 2005-3-16
    [68]吴宇平,张汉平,吴锋,等.绿色电源材料.北京:化学工业出版社,2008:1-22,240-253,346-373
    [69]SUDDHASATWA BASU . Recent Trends in Fuel Cell Science and Technology.Anamaya Publishers, New Delhi, India, 2007
    [70]毛宗强.燃料电池.北京:化学工业出版社,2005:1-425
    [71]韩敏芳,彭苏萍著.固体氧化物燃料电池材料及制备.北京:科学出版社,2004:9-23,92-234
    [72]Jeffery W Fergus, Rob Hui, Xianguo LI, David P Wilkinson,et al.Solid Oxide Fuel Cells Materials Properties and Performance (Green Chemistry and Chemical engineering and performance).CRC Press Taylor & Francis Group, 2009 Boca Raton, London, New York
    [73]黄镇江.燃料电池及其应用.北京:电子工业出版社,2005,8:173-202
    [74]Akkinapragada N, Chowdhury B H.SOFC-based fuel cells for load following stationary applications.Proceedings of the 38th North American Power Symposium, Sept. 2006:1-8
    [75]Colleen S Spiegel. Designing & Building Fuel Cells.北京:电子工业出版社, 2008:64-78,80-89,144,152
    [76]日本电气学会燃料电池发电21世纪系统技术调查专门委员会.燃料电池技术.北京:化学工业出版社, 2004.:2-12,172-215,22 9-267
    [77]Ryan. O'Hayre,车硕源,Whitney. Colella,等.Fuel Cell Fundamentals.北京:电子工业出版社,2007:19-77,159
    [78]汤根土,骆仲泱,倪明江,等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析.中国电机工程学报,2005,25(10):116-121
    [79]Achenbach E.Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack.Journal of Power Sources,1994,49:333-348
    [80] Ferguson J R,Fiard J M,Herbin R.Three-dimensional numerical simulation for various geometries of solid oxide fuel cells.Journal of Power Sources,1996,58:109-122
    [81]Yakabe H,Ogiwarw T,Hishinuma M,et al.3-D model calculation for Planar SOFC.Journal of Power Sources, 2001, 102:144-154
    [82]Caisheng Wang, Hashem Nehrir M.A Physically Based Dynamic Model for Solid Oxide Fuel Cells.IEEE Transactions on Energy Conversion, 2007, 22(4):887-897
    [83]Aguiar P , Adjiman C S , Brandon N P , et al . Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell I: Model-based steady-state performance.Journal of Power Sources,2004,138:120-136
    [84]Yingru Zhao, Congjie Qu, J. Chen.A new analytical approach to model and evaluate the performance of a class od irreversible fuel cells.International Journal of Hydrogen Energy, 2008, 33:1-10
    [85] Chan S H,Khor K A,Xia Z T.A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness.Journal of Power Sources, 2001, 93:1-11
    [86]Sedghisigarchi K,Feliachi A.Dynamic and transient analysis of power distribution systems with fuel Cells-part I: fuel-cell dynamic model.IEEE Transactions on Energy Conversion, 2004, 19(2):423-428
    [87]Miao Z,Choudhry M A,Klein R L,et al.Study of a fuel cell power Plant in power distribution system. Part I: Dynamic model.Power Engineering Society GeneralMeeting 2004 of IEEE, 2004, 2:2220-2225
    [88]Hatziadoniu C J,Lobo A A,Pourboghrat F.A simplified dynamic model of grid-connected fuel cell generators.IEEE Transactions on Power Deliveray,2002, 17(2):467-473
    [89]衣宝廉.燃料电池——原理.技术.应用.北京:化学工业出版社,2003,8:428-508
    [90]Christoph Stiller, Bj?rn Thorud, Olav Bolland, et al.Control strategy for a solid oxide fuel cell and gas turbine hybrid system.Journal of Power Sources,2006, 158(1):303-315
    [91]Zhu Y, Tomsovic K.Development of models for analyzing the load-following performance of microturbines and fuel cells.Electric Power Systems Research 2002(62):1-11
    [92]丁明,严流进,茆美琴,等.分布式发电中燃料电池的建模与控制.电网技术,2009,33:1-6
    [93]施涛.燃料电池发电系统的建模与仿真[东南大学硕士论文].2007,6:34-35
    [94]Akkinapragada N, Chowdhury B H.A New Inverter for Improved Fuel Cell Performance in Grid-tied Application.IEEE Power Engineering Society General Meeting,24-28 June,2007:1-8
    [95]Padulles J, Ault G W, McDonald J R.An integrated SOFC plant dynamic model for power systems simulation.Journal of Power Sources,2000,86:495-500
    [96]洪乃刚.电力电子技术基础.北京:清华大学出版社,2008:280-310
    [97]曲学基,曲敬铠,于明扬.逆变技术基础与应用.北京:电子工业出版社,2007:199-223,289-304
    [98]金海明,郑安平,汪晋宽,等.电力电子技术.北京:北京邮电大学出版社,2006:167-186
    [99]黄俊,王兆安.电力电子变流技术.北京:机械工业出版社,2002:207-232
    [100]刘凤君.多电平逆变技术及其应用.北京:机械工业出版社,2007:300-380
    [101]刘大年,鲁玲.隔离式双闭环开关电源的系统分析与实验.吉林大学学报(信息科学版) ,2004,22(3):189-194
    [102]李旭,谢运祥.PWM技术实现方法综述.电源技术应用,2005,8(2):51-55
    [103]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2005:62-225
    [104]杨旭,王兆安.准固定频率滞环PWM电流模式控制方法的研究.电源世界,2001(1):5-8
    [105]堀孝正.电力电子学.北京:科学出版社,2001:104-118
    [106]Eric M Fleming,Ian A Hiskens.Dynamics of a Microgrid Supplied by Solid Oxide Fuel Cells.2007 iREP Symposium-Bulk Power System Dynamics andControl-VII, Revitalizing Operational Reliability, August 19-24, 2007, Charleston, South Carolina, USA:1-5
    [107] Li Y H, Choi S S, Rajakaruna S.An Analysis of the Control and Operation of a Solid Oxide Fuel-Cell Power Plant in an Isolated System.IEEE Transactions on Energy Conversion, 2005, 20(2):381-387
    [108]Bower W,Ropp M.Evaluation of Islanding Detection Methods for Photovoltaic Utility.International Energy Agency, Report IEA PVPS, 2002:T5-09
    [109]Fan Zhenyu.Voltage and frequency control of distribution system in the presence of distributed generation[dissertation].Clemson University, 2004:1-130
    [110]Dai M,Marwali M N,Jung J W,et al.Power flow control of a single distributed generation unit with nonlinear local load.2004 IEEE PES,Power Systems Conference and Exposition,2004,1:398 - 403
    [111]Piagi Paolo.Microgrid control [dissertation].The University of Wisconsin– Madison, 2005:45-87
    [112] Iyer S,Ghosh A,Joshi A.Power flow control in a distribution system through an inverter interfaced distributed generator.IEEE Power Engineering Society General Meeting, 2006:1-7
    [113]Pe?as Lopes J A,Moreira C L,Madureira A G.Defining Control Strategies for Micro Grids Islanded Operation.IEEE Transactions on power systems, 2006, 21(2):916-924
    [114] De Brabandere K,Bolsens B,Van den Keybus J, et al.A Voltage and Frequency Droop Control Method for Parallel Inverters.2004 351h Annual IEEE Power Elec~ronicsS pecialisls Conference Aachen Germany, 2004:2501-2507
    [115] Baker P P,R W De Mello.Determining the impact of Distributed Generation on Power systelns: Part I--Radial Distribution Systems.Proceedings of IEEE PES Summer MeetingS, Seattle, 2000, 3:1645-1656
    [116]Zhu Y,Tomsovic K.Adaptive power flow method for distribution systems with dispersed Generation.IEEE Transactions on Power delivery, 2002, 17(3):822 - 827
    [117]Rade M Ciric,Antonio Padilha,Iara Fernanda Ehrenberg Dossi Denis.Discussion of Adaptive Power Flow Method for Distribution Systems with Dispersed Generation.IEEE Transaction on Power delivery, 2003, 18(2):647-648.
    [118]刘洋,康凯,王邦惠,等.含风电系统的潮流计算分析.山东电力技术,2009,4:21-24
    [119]徐娇,李兴源.异步风力发电机组的简RX模型及潮流计算.电力系统自动化,2008,32(4):22-25
    [120]Naka S,Genji T,Fukuyama Y.Practical equipment models for fast distribution power flow considering interconnection of distributed generators.IEEE Power Engineering Sociely Summer Meting, 2001, 2:1007-1012
    [121]Feijoo A E,Cidras J.Modeling of wind farms in the load flow analysis.IEEE Transactions on Power Systems, 2000, 15(1):110-115
    [122]EI-Khattam W,Hegazy Y G,Salama M M A.Stochastic power flow analysis of electrical distributed generation systems . IEEE Power Engineering Society General Meeting, July 2003, 2:1141-1144
    [123]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算.电力系统自动化,2005,29(24):39-44
    [124]西安交通大学,清华大学,浙江大学,等.电力系统计算.北京:水利电力出版社,1978:10,23-54,185
    [125]Lin C E,Huang Y W,Huang C L.Distribution system load flow calculation with microcomputer implementation. Electrical power system reseach, 1987, 13:139-145
    [126]Lo K L, Zhang C.Decomposed three phase power flow solution using the sequence component frame.Proc IEE, 1993, 140(3):181-187
    [127]Ghosh S , Das D . Method for load flow solution of radial distribution networks.IEE Proceeding G. T. D. 1999, 146 (6):641-648
    [128]赵冬梅,卓峻峰.电力系统最优潮流算法综述.现代电力, 2002,19(43):28-34
    [129]丘文千.具有变量范围约束的电力系统潮流计算方法.电力系统自动化,2006,30(17):36-40
    [130]Abdel-Akher M, Nor K M,Rashid A H A..Improved Three-Phase Power-Flow Methods Using Sequence Components.IEEE Transactions onPower Systems, 2005, 20(3):1389-1397
    [131]Bree D W Jr,Hajdu L P,Peschon J.Optimal power-flow solutions for power system planning.Proceedings of the IEEE, 1972, 60(1):64-70
    [132]朱凌志,周双喜.电压稳定分析的潮流算法研究.电力系统自动化, 2000,(5):1-4,58
    [133]Grijalva S,Sauer P W,Weber J D.Enhancement of linear ATC calculations by the incorporation of reactive power flows. IEEE Trans on Power Systems,2003,18(2):619-623
    [134]成山,孙玮,王兴刚.含大型风电场的电力系统最大输电能力计算.电力系统自动化,2007,31(2):17-21,3
    [135]盛鹍,孔力,齐智平,等.新型电网-微电网(Microgrid)研究综述.继电器,2007,35(12):75-81
    [136]石景海,贺仁睦.动态负荷建模中的负荷时变性研究.中国电机工程学报, 2004,24(4):85-90
    [137]Mekhamer S F,Solinman S A, Moustafa M A,et al.Applicaiotn of fuzzy logic for reactive-power compensation of radial distribution feeders.IEEE transactions on power system, 2003, 18(1):206-213
    [138]石嘉川,刘玉田.计及分布式发电的配电网多目标电压优化控制.电力系统自动化,2007,31(13):47-51
    [139]Wei Li,Hai Bao,Bo Li.Tracing the Flow for Transmission System Based on Components.International Conference on Power System Technology, PowerCon 2006, Chongqing, China, 22-26 Oct., 2006:1-4
    [140]吴政球,荆勇.考虑负序零序非线性求解的三相潮流计算方法.中国电机工程学报,2002,22(4):77-81
    [141]王守相,李继平,王成山,等.配电网三相潮流算法比较研究.电力系统及其自动化学报,2000,12(2):26-31
    [142]Penido D R R,de Araujo L R,Carneiro S,et al.Three-Phase Power Flow Based on Four-Conductor Current Injection Method for Unbalanced Distribution Networks.IEEE Transactions on Power Systems, 2008, 23, (2):494-503
    [143]Fan Zhang,Cheng C S.A modified Newton method for radial distribution system power flow analysis.IEEE Transactions on Power Systems, 12(1):389- 397
    [144]WANG Chengshan, MA Liki.Three-phase Unbalanced Radial Distribution Power Flow Analysis with Wind Farms Considered.Automation of Electric Power Systems, 2006, 30(16):21-26
    [145]王守相,黄丽娟,王成山,等.分布式发电系统的不平衡三相潮流计算.电力自动化设备,2007,27(8):11-15
    [146]Shigenori Naka,Takamu Genji,Yoshikazu Fukuyama.Practical equipment models for fast distribution power flow considering interconnection of distributed generators. IEEE Power Engineering Society Summer Meeting, Panel on Challenges on Distribution System Analysis, Vancouver, Canada. 2001, 2:1007-1012
    [147]王守相,江兴月,王成山.含风场发电机组的配电网潮流计算.电网技术,2006,30(21):42-45,61
    [148]曾玲,吴亮.一种独立电力系统三相潮流计算新方法.电力科学与技术学报,2009,24(2):53-58
    [149]Tsai-Hsiang Chen, Mo-Shing Chen, Toshio Inoue, et al.Three-phase cogenerator and transformer models for distribution system analysis.IEEE Transaction on Power Delivery,1991,6(4):1671-1681
    [150] Abur A,Singh H,Liu H, et al.Three phase power flow for distribution systems with dispersed generation. 14th PSCC, Sevilla. 2002, 11:1-7
    [151]Carol S.Cheng,Dariush Shirmohammadi.A three-phase power flow method for real-time distribution system analysis.IEEE Transactions on Power Systems, 1 995, 10(2):671-679
    [152]Andres E feijoo, Jose Cidras. Modeling of wind farms in the load flow analysis.IEEE Transactions on Power Systems,2000,15(1):110-115
    [153]黄丽娟.分布式发电系统的三相潮流计算方法[天津大学硕士论文].2007:26-40
    [154]吴文传,张伯明.变压器详细模型推导与三相配电网潮流计算.电力系统自动化,2003,27(4):24-27
    [155]颜伟,刘方,王官洁.三相辐射型配电网络的相分量潮流计算.电力系统自动化,2002,5:24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700