饲粮添加L-精氨酸或N-氨甲酰谷氨酸对感染PRRSV妊娠母猪繁殖性能及免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究饲粮添加L-精氨酸或N-氨甲酰谷氨酸(N-carbamylglutamate,NCG)对感染猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)妊娠母猪繁殖性能及免疫功能的影响。选用3-5胎感染PRRSV的母猪(长白×大约克)100头,妊娠第1-29天饲喂相同的对照组饲粮,妊娠第30天,按体况将母猪随机分为5个处理组,每组20头,单栏饲养。其中3个处理组从妊娠第30-90天分别饲喂对照组饲粮,添加1%L-精氨酸和0.1%NCG饲粮,妊娠第91天-分娩饲喂对照组饲粮,另外两个组从妊娠30天-分娩分别饲喂添加1%L-精氨酸和0.1%NCG的饲粮,所有饲粮等氮平衡。分娩时记录窝产仔数、死胎数、木乃伊数、初生个体重,并计算窝重、死亡率和弱仔率。妊娠第30、90和110天早上采食后2h收集母猪血样。采用氨基酸全自动分析仪测定血浆游离氨基酸,全自动生化分析仪测定血浆尿素和总蛋白,硝酸还原酶法测定血清一氧化氮(NO),比色法测定血清一氧化氮合酶活性(TNOS),猪酶联免疫吸附测定法(enzyme-linked immuneosorbent assay, ELISA)测定血清PRRSV-Ab、IL-10、IFN-γ水平,免疫透射比浊法测定血清免疫球蛋白(IgG和IgM)。
     试验结果表明:
     1、母猪妊娠第30-90天阶段饲粮添加L-精氨酸或NCG,与对照组相比:
     1.1、1%L-精氨酸添加组窝产活仔数提高0.89头(P=0.061),窝活仔重提高1.02 kg(P=0.071),0.1%NCG添加组窝产活仔数提高0.33头(P>0.05);1%L-精氨酸添加组与0.1%NCG添加组之间均无显著差异(P>0.05)。
     1.2、1%L-精氨酸添加组妊娠第90天母猪血浆游离精氨酸、鸟氨酸、脯氨酸浓度显著升高(P<0.05),血清IFN-γ水平显著降低(P<0.05),妊娠第110天母猪血清IgG水平显著增加(P<0.05);1%L-精氨酸添加组和0.1%NCG添加组妊娠第90天母猪血清NO和TNOS含量显著升高(P<0.05),血清PRRSV抗体、IgG和IgM水平显著增加(P<0.05),但血浆尿素浓度显著降低(P<0.05);1%L-精氨酸添加组较0.1%NCG添加组妊娠第90天母猪血浆游离精氨酸、鸟氨酸浓度及血清IgG水平显著升高(P<0.05)。
     2、母猪妊娠第30天-分娩阶段饲粮添加L-精氨酸或NCG,与对照组相比:
     2.1、1%L-精氨酸添加组和0.1%NCG添加组分别提高窝产活仔数1.33头(P<0.05)和0.5头(P>0.05),窝活仔重2.70 kg和1.21 kg(P<0.05);1%L-精氨酸添加组初生个体活仔重提高4.86%(P<0.05),死胎率降低75.88%(P<0.05);与0.1%NCG添加组相比,1%L-精氨酸添加组窝产活仔数提高0.83头(P=0.075),窝活仔重提高1.49 kg(P<0.05),死胎率降低67.15%(P<0.05)。
     2.2、妊娠第90和110天,1%L-精氨酸添加组的母猪血浆游离精氨酸、鸟氨酸和脯氨酸浓度显著升高(P<0.05),血清IgG、IgM及PRRSV抗体水平显著增加(P<0.05),但IFN-γ,水平显著降低(P<0.05);1%L-精氨酸添加组和0.1%NCG添加组的母猪血清NO和TNOS含量显著升高,但血浆尿素浓度显著降低(P<0.05);1%L-精氨酸添加组妊娠第110天母猪血清IL-10水平显著增加(P<0.05);0.1%NCG添加组妊娠第90天母猪血清IgG、IgM及PRRSV抗体水平显著增加(P<0.05),妊娠第110天母猪血清IgG、IgM和IL-10水平显著增加(P<0.05);1%L-精氨酸添加组较0.1%NCG添加组妊娠第90天母猪血浆游离精氨酸和鸟氨酸浓度及血清IgG水平显著升高(P<0.05)。
     3、母猪妊娠第30天-分娩阶段与妊娠第30-90天阶段饲粮添加L-精氨酸或NCG相比:
     3.1、1%L-精氨酸添加组窝活仔重提高1.68kg(P<0.05),初生个体活仔重提高7.09%(P<0.05),死胎率降低67.05(P<0.05);0.1%NCG添加组初生个体活仔重提高4.23%(P=0.096)。
     3.2、1%L-精氨酸添加组妊娠第110天母猪血浆游离鸟氨酸、精氨酸和脯氨酸浓度显著升高(P<0.05),血清NO和TNOS含量均显著增加(P<0.05),血清IgM和IL-10水平显著增加(P<0.05),但IFN-y水平显著降低(P<0.05);0.1%NCG添加组妊娠第11 0天血清IgM和IgG水平显著增加(P<0.05);1%L-精氨酸添加组和0.1%NCG添加组妊娠第110天母猪血浆尿素浓度均有所降低,但差异不显著(P>0.05)。
     结论:
     1、饲粮中添加精氨酸或NCG通过提高母猪机体氨基酸利用率和增强母猪免疫功能,降低母猪死胎率和弱仔率,进而提高窝产活仔数和窝活仔重。
     2、与妊娠中期相比,妊娠中后期饲粮中添加精氨酸或NCG提高母猪繁殖性能的效果最佳,且精氨酸较NCG的效果好。
The study was conducted to investigate effects of dietary supplementation with L-arginine (Arg) or N-carbamylglutamate (NCG) on reproductive performance and immune function of pregnant sows infected with porcine productive and respiratory syndrome virus (PRRSV). At d 30 of gestation, One hundred Yorkshire x Landrace multiparous sows infected with PRRSV were selected and randomly assigned to five treatment groups, three treatment groups were fed diet supplemented with 1.7% alanine (control diet, n=20),1% L-Arg (n=20) and 0.1% NCG (n=20) from d 30 to 90 of gestation, and all sows fed the control diet from d 91 of gestation to parturition, sows in other two treatment groups were fed diet supplemented with 1% L-Arg (n=20) and 0.1% NCG (n=20) until parturition. We recorded the number of stillbirths and their BW less than 900 g and their BW at birth, counted the total number of piglets and litter BW. Blood samples were collected at 2 h after feeding at d 30,90 and 110 of gestation. Plasma concentrations of amino acids were analyzed by automatic amino acid analyzer, plasma samples were assayed for urea and total protein concentrations by automatic biochemical analyzer, serum concentrations of NO were assayed using nitric acid reductase method, serum concentrations of TOS and immunoglobulin(IgG, IgM) concentration were assayed using a colorimetric method, serum levels of PRRSV-Ab, IL-10 and IFN-y were assayed using enzyme-linked immuneosorbent assay.
     The results were as follows:
     1. Dietary supplementation with L-arginine or N-carbamylglutamate from d 30 to 90 of gestation, compared with the control group:
     1.11% L-Arg supplementation increased the number of piglets born alive by 0.89 (P=0.061), and litter birth weight of piglets born alive by 1.02 kg (P=0.071); 0.1% NCG supplementation increased the number of pigs born alive by 0.33 (P>0.05); however, all of the measured indices did not differ between the 1% L-Arg and 0.1% NCG supplementation (P>0.05).
     1.21% L-Arg supplementation increased plasma concentrations of arginine, ornithine and proline (P<0.05), but serum levels of IFN-y at d 90 of gestation (P<0.05), serum levels of IgG increased at d 110 of gestation (P<0.05); 1% L-Arg and 0.1% NCG supplementation increased serum concentrations of NO and TOS(P<0.05), and serum levels of IgM, IgG and PRRSV-Ab(P<0.05), but reduced plasma concentrations of urea at d 90 of gestation (P<0.05); Plasma concentrations of arginine and ornithine(P<0.05), and serum levels of IgG were higher in the 1% L-Arg supplementation than in the 0.1% NCG supplementation (P<0.05).
     2. Dietary supplementation with L-arginine or N-carbamylglutamate from d 30 of gestation to parturition, compared with the control group:
     2.11% L-Arg and 0.1% NCG supplementation increased the number of piglets born alive by 1.33 (P<0.05) and 0.5 (P>0.05), and litter birth weight of piglets born alive by 2.70 and 1.21 kg (P<0.05), respectively,1% L-Arg supplementation increased BW of piglets born alive by 4.86%(P<0.05) and reduced the rate of stillbirths by 75.88%; compared with 0.1% NCG supplementation,1% L-Arg supplementation increased the number of piglets born alive by 0.83 (P=0.075), and litter birth weight of piglets born alive by 1.49 kg (P<0.05), but reduced the rate of stillbirths by 67.15%(P<0.05).
     2.21% L-Arg supplementation increased plasma concentrations of arginine, ornithine, proline (P<0.05), and serum levels of IgM, IgG and PRRSV-Ab(P<0.05), but reduced levels of IFN-γ(P<0.05),1% L-Arg and 0.1% NCG supplementation increased serum concentrations of NO and TOS (P<0.05), but reduced plasma concentrations of urea at d 90 and 110 of gestation (P<0.05); 1% L-Arg supplementation increase levels of IL-10 at d 110 of gestation (P<0.05),0.1% NCG supplementation increased serum levels of IgM, IgG and PRRSV-Ab at d 90 of gestation (P<0.05), levels of IgM, IgG and IL-10 increased significantly at d 110 of gestation (P<0.05); plasma concentration of arginine and ornithine (P<0.05), and serum levels of IgG were significantly higher in 1% L-Arg supplementation compared with 0.1% NCG supplementation at d 90 of gestation (P<0.05).
     3. Dietary supplementation with L-arginine or N-carbamylglutamate from d 30 of gestation to parturition compared with from d 30 to 90 of gestation:
     3.11% L-Arg supplementation increased litter birth weight of piglets born alive by 1.68 kg (P<0.05), and BW of piglets born alive by 7.09% (P<0.05), but reduced the rate of stillbirths by 67.05%(P<0.05); 0.1% NCG supplementation increased BW of piglets born alive by 4.23%(P=0.096).
     3.2 At d 110 of gestation,1% L-Arg supplementation increased plasma concentrations of arginine, ornithine and proline (P<0.05), and serum concentrations of NO and TOS, and serum levels of IgG and IL-10(P<0.05), but reduced serum levels of IFN-y (P<0.05); 0.1% NCG supplementation increased serum levels of IgM and IgG (P<0.05); 1% L-Arg and 0.1% NCG supplementation reduced plasma concentrations of urea (P>0.05).
     Conclusion:
     1. Dietary supplementation with L-Arg or NCG improved the reproductive performance of pregnant sows by improving the utilization of amino acids and immune function, and reducing the rate of piglets body weight less than 900 g and stillbirths.
     2. Effects of dietary supplementation with L-arginine or N-carbamylglutamate on reproductive performance were better during middle and late gestation than during middle gestation, and L-Arg were better than NCG supplementation.
引文
[1]Town S C, Patterson J L, Pereira, C Z, et al. Embryonic and fetal development in a commercial dam-line genotype [J]. Animal Reproduction Science,2005,85(3-4): 301-316.
    [2]Wu G, Bazer F W, Wallace J M, et al. Intrauterine growth retardation:implications for the animal sciences [J]. Journal of Animal Science,2006,84(9):2316-2337.
    [3]Wilson M E. Role of placental function in mediating conceptus growth and survival [J]. Journal of Animal Science,2002,80 (Suppl 2):E195-E201.
    [4]Ryan-Harshman M, Aldoori W. The relevance of selenium to immunity, cancer, and infectious/inflammatory diseases [J]. Canadian Journal of Dietetic Practice and Research,2005,66(2):98-102.
    [5]Wu G, Bazer F W, Cudd T A, et al. Maternal nutrition and fetal development [J]. The Journal of Nutrition,2004; 134(9):2169-2172.
    [6]Mateo R D, Wu G, Bazer F W, et al. Dietary L-arginine supplementation enhances the reproductive performance of gilts [J]. The Journal of Nutrition,2007,137(3): 652-656.
    [7]Ramaekers P, Kemp B, van der Lende T. Progenos in sows increases number of piglets born [J]. Journal of Animal Science,2006,84(1):394(Abstract).
    [8]Li X, Bazer F W, Gregory A J, et al. Dietary Supplementation with 0.8% L-Arginine between Days 0 and 25 of Gestation Reduces Litter Size in Gilts [J]. The Journal of Nutrition,2010,140(6):1111-1116.
    [9]Vallet J L, Leymaster K.A, Christenson R K. The influence of uterine function on embryonic and fetal survival [J]. Journal of Animal Science,2002,80(2): E115-E125.
    [10]van der Lende T, Rens, B.T.T.M. Critical periods for fetal mortality in gilts identified by analysing the length distribution of mummified fetuses and frequency of non-fresh stillborn piglets [J]. Animal Reproduction Science,2003,75(1-2): 141-150.
    [11]Mengeling W L, Lager K M, Vorwald A C. Temporal characterization of transplacental infection of porcine fetuses with porcine reproductive and respiratory syndrome virus [J]. American Journal of Veterinary Research,1994,55(10):1391-1 398.
    [12]Qiao S F, Lu T J, Sun J B, et al. Alterations of intestinal immune function and regulatory effects of L-arginine in experimental severe acute pancreatitis rats [J]. World Journal of Gastroenterology,2005,11(39):6216-6218.
    [13]Lewis B, Langkamp-Henken B. Arginine enhances in vivo immune responses in young, adult and aged mice [J]. Nutrition,2000,130(7):1827-1830.
    [14]Wu G, Knabe D A, Kim S W. Arginine nutrition in neonatal pigs [J]. The Journal of Nutrition,2004,134(10):2783S-2790S.
    [15]Wu G, Morris S M. Arginine metabolism:nitric oxide and beyond [J]. Biochemical Journal,1998,336(1):1-17.
    [16]Morris S M, J r. Regulation of enzymes of urea and arginine synthesis [J]. Annual Review of Nutrition,1992,12:81-101.
    [17]Morris S M, J r. Regulation of enzymes of urea cycle and arginine metabolism[J]. Annual Review of Nutrition,2002,22:87-105.
    [18]Wu G, Bazer F W and Tuo W. Developmental changes of free amino acid concentrations in fetal fluids of pigs [J]. The Journal of Nutrition,1995,125(11):2 859-2868.
    [19]Wu G, Bazer F W, Tuo W, et al. Unusual abundance of arginine and ornithine in porcine allantoic fluid [J]. Biology of Reproduction,1996,54(6):1261-1265.
    [20]Wu G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs [J]. American Journal of Physiology-Gastrointestinal Liver and Physiology, 1997,272(6):G1382-G1390.
    [21]Wilkinson D L, Bertolo R F P, Brunton J A, et al. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet [J]. American Journal of Physiology-Endocrinology and Metabolism,2004,287(3):E454-E462.
    [22]MacMicking J, Xie Q W, Nathan C. Nitric oxide and macrophage function [J]. Annual Review of Immunology,1997,15:323-350.
    [23]O'Quinn P R, Knabe D A, Wu G. Arginine catabolism in lactating porcine mammary tissue[J]. Journal of Animal Science,2002,80(2):467-474.
    [24]Brooks A A, Johnson M R, Steer P J, et al. Birth weight:nature or nurture?[J]. Early Human Development,1995,42:29-35.
    [25]Barker D.J, Clark P M. Fetal undernutrition and disease in later life [J]. Reviews of Reproduction,1997,2(2):105-112.
    [26]Bell A W, Ehrhardt R. A. Regulation of placental nutrient transport and implications for fetal growth [J]. Nutrition Research Reviews,2002,15(2):211-230.
    [27]Waterland R A, Jirtle R L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases [J]. Nutrition, 2004,20(1):63-68.
    [28]Wallace J M, Bourke D A, Aitken R P, et al. Placental glucose transport in growth-restricted pregnancies induced by overnourished adolescent sheep [J]. The Journal of Physiology,2003,547(1):85-94.
    [29]Castro L C, Avina R L. Maternal obesity and pregnancy outcomes [J]. Current Opinion in Obstetrics and Gynecology,2002,14(6):601-606.
    [30]Wu Q Meininger C J. Arginine nutrition and cardiovascular function [J]. The Journal of Nutrition,2000,130(11):2626-2629.
    [31]Bird I M, Zhang L.B, Magness R R. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function [J]. American Journal of Physiology,2003,284(2):R245-R258.
    [32]Igarashi K, Kashiwagi K. Polyamines:mysterious modulators of cellular functions [J]. Biochemical and Biophysical Research Communications,2000,271(3): 559-564.
    [33]Hefler L A, Reyes C A, O'Brien W. E, et al. Perinatal development of endothelial nitric oxide synthase-deficient mice [J]. Biology of Reproduction,2001,64(2): 666-673.
    [34]Ishida M, Hiramatsu Y, Masuyama H, et al. Inhibition of placental ornithine decarboxylase by DL-alpha-difluoro-methyl ornithine causes fetal growth restriction in rat [J]. Life Sciences,2002,70:1395-1405.
    [35]Casanello P, Sobrevia L. Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport system y(+)hCAT-1 and Y(+)/hCAT-2B and lower activity of nitric oxide synthase in human umbilical vein endothelial cells [J]. Circulation Research,2002,91(2):127-134.
    [36]Vosatka R J, Hassoun P M, Harvey-Wilkes K B. Dietary L-arginine prevents fetal growth restriction in rats [J]. American Journal Obstetrics and Gynecology,1998, 178(2):242-246.
    [37]Kwon H, Wu G, Meininger C J, et al. Developmental changes in nitric oxide synthesis in the ovine placenta [J]. Biology of Reproduction.2004,70(3):679-686.
    [38]Wu G, Pond W G, Ott T L, et al. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs [J]. The Journal of Nutriton,1998128(5):894-902.
    [39]Wu G, Pond W G, Flynn S P, et al. Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation [J]. The Journal of Nutrition,1998, 128(12):2395-2402.
    [40]Kwon H, Ford S P, Bazer F W, et al. Maternal undernutrition reduces concentrations of amino acids and polyamines in ovine fetal plasma and fluids [J]. Biology of Reproduction,2004,71(3):901-908.
    [41]Kim S W, Hurley W L, Wu G, et al. Ideal amino acid balance for sows during gestation and lactation [J]. Journal of. Animal. Science,2009,87(14):E123-E132.
    [42]van der Lende T. http://www.parentmonkey.com/pm/pattentid/20040175457.apx, 2004.
    [43]Zeng X, Wang F, Fan X, et al. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats [J]. The Journal of Nutrition,2008, 138(8):1421-1425.
    [44]Berard J, Kreuzer M, Bee G. Effect of dietary arginine supplementation to sows on litter size, fetal weight and myogenesis at d 75 of gestation [J]. Journal of Animal Science,2009,87:30-31
    [45]Hazeleger W, Ramaekers P, Smits C, et al. Effect of Progenos on placenta and fetal development in pigs [J]. Journal of Animal Science,2007,85(Supp 12):98.
    [46]Bruins M J, Soeters P B, Lamers W H, et al. L-Arginine supplementation in pigs decreases liver protein turnover and increases hindquarter protein turnover both during and after endotoxemia [J]. American Journal of Clinical Nutrition,2002,75 (6):1031-1044.
    [47]Blasio D M, Roberts C, Owens J, et al. Effect of dietary arginine supplementation during gestationon litter size of gilts and sows [J]. http://www.australianpork.com.au. Accessed July 28,2009.
    [48]Closs E I, Simon A, Ve'kony N, et al. Plasma membrane transporters for arginine [J]. The Journal of Nutrition,2004,134(10):2752S-2759S.
    [49]Wu G, Bazer F W, Cudd T A, et al. Pharmacokinetics and safety of arginine supplementation in animals [J]. The Journal of Nutrition,2007,137(6):1673S-1 680S.
    [50]Daly J M., Reynolds J, Thom A, et al. Immune and metabolic effects of arginine in the surgical patient [J]. Annals of Surgery,1988,208(4):512-523
    [51]Kone B C, Kuncewicz T, Zhang W, et al. Protein interactions with nitric oxide synthases:controlling the right time, the right place, and the right amount of nitric oxide [J]. American Journal of Physiology-Renal Physiology,2003,285(2): F178-F190.
    [52]Grisham M B, Granger D N, Lefer D J. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen:relevance to ischemic heart disease [J]. Free Radical of Biology and Medicine,1998,25(4-5):404-433.
    [53]Kennedy J A, Kirk S J, McCrory D C, et al. Modulation of immune function and weight loss by L-arginine in obstructive jaundice in the rat [J]. British Journal of Surgery,1994,81(8):1199-1201.
    [54]Seifter E, Rettura G, Barbul A, et al. Arginine:an essential amino acid for injured rats [J]. Surgery,1978,84(2):224-230.
    [55]Meazza C, Pagani S, Travaglino P, et al. Effect of growth hormone(GH) on the immune system [J]. Pediatric Endocrinology Reviews,2004,3:490-495.
    [56]Elsasser T H, Kahl S, Rumsey T S, et al. Modulation of growth performance in disease:Reactive nitrogen compounds and their impact on cell proteins [J]. Domestic Animal Endocrinology,2000,19(2):75-84.
    [57]雷晓青,吴伟宗,方洛云,等.精氨酸营养生理功能研究新进展[J].2009,45(3):46-49
    [58]Popovic P J, Zeh III H J and Ochoa J B. Arginine and immunity [J]. The Journal of Nutrition,2007,137(6):1681S-1686S.
    [59]Sur J H, Doster A R, Christian J S, et al. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis [J]. The Journal Virology,1997,71(12):9 170-9179.
    [60]Van Alistine W G, Stevenson G, Kanitz C L. Porcine reproductive and respiratory syndrome virus dose not exacerbate hyopneumoniae infection in young pigs [J] Veterinary Microbiology,1996,49(3-4):297-303.
    [61]Wills R W, Doster A R, Galeota J A, et al. Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus [J]. Journal of Clinical Microbiology,2003,41(1):58-62.
    [62]Charerntantanakul W, Platt R, JohnsonW, et al. Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus [J]. Veterinary Immunology and Immunopathology,2006, 109(1-2):99-115.
    [63]Yoon K J,Wu L L,Zimmerman J J,et al. Field isolate of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to the humoral immune response to porcine reproductive and respiratory syndrome virus parental and attenuated strains [J]. Virus Research,2001,79:189-200.
    [64]Lopez F L, Domenech N, Alvarez B, et al. Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection [J]. Virus Research,1999,64(1):33-42.
    [65]Bautista E M, Molitor T W. IFN inhibits porcine reproductive and respiratory syndrome virus replication in macrophages [J]. Archives of Virology,1999,144(6): 1191-1200.
    [66]Diaz I, Darwich L, Pappaterra G, et al. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs [J]. Virology,2006,351(2): 249-259.
    [67]陈晓,邓昌辉Th1、Th2型细胞因子对妊娠免疫调节的研究[J].医学综述,2002,8(9):540-541.
    [68]刘喆,杨颖,陈云等.人重组-γ干扰素对兔妊娠的影响[J].动物学报,2002,48(2):277-280
    [69]Yoon K J, Wu L L, Zimmerman J J, et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs [J]. Viral Immunology,1996,9(1):51-63.
    [70]Meijer A J, Lof C, Ramos I C, et al. Control of ureogenesis [J]. European Journal of Biochemistry,148(1):189-196.
    [71]印遇龙,吴信,唐志如,等.不同水平精氨酸衍生物对断奶仔猪生长性能及腹泻的影响[J].农业现代化研究,2008,29(6):723-725.
    [72]王琤,瞿明仁,游金明,等.N-氨甲酰谷氨酸对断奶仔猪生长性能、养分消化率及血清游离氨基酸含量的影响[J].动物营养学报,2010,22(4):1012-1018.
    [73]岳隆耀,王春平,谯仕彦.日粮中添加N-氨甲酰谷氨酸(NCG)对断奶仔猪生长的影响[J].氨基酸新营养研究,2010,1:15-17.
    [74]Zhan Z F, Ou D Y, Piao X S, et al. Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs [J]. The Journal of Nutrition,2008,138(7):1304-1309.
    [75]Dourmad J Y, Etienne M, Valancogne A, et al. InraPorc:A model and decision support tool for the nutrition of sows [J]. Animal Feed Science and Technology, 2008,143:372-386.
    [76]Mateo R D, Wu G, Moon H K, et al. Effects of dietary arginine supplementation during gestat ion and lactation on the performance of lactating primiparous sows and nursing piglets [J]. Journal of Animal Science,2008,86(4):827-835.
    [77]Frank J W, Escobar J, Nguyen H V, et al. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets [J]. The Journal of Nutrition,2007,137(2):315-319.
    [78]Tuchman M, Caldovic L, Daikhin Y, et al. N-carbamylglutamate markedly enhances urea genesis in N-acetylglutamate deficiency and propionic acidemia as measured by isotopic incorporation and blood biomarkers [J]. Pediatric Research,2008,64(2): 213-217.
    [79]曹洪志,颜其贵,李成贤.三联PCR诊断猪3种繁殖障碍疾病的方法研究[J].四川畜牧兽医,2010,7:20-22.
    [80]董岚.重庆市及其周边地区猪繁殖与呼吸综合征分子流行病学调查[D].杨陵,西北农林科技大学,2008.
    [81]Reynolds L P, Redmer D A. Angiogenesis in the placenta [J]. Biology of Reproduction,2001,64(4):1033-1040.
    [82]郑爱荣.营养水平对初产母猪妊娠早期胚胎存活和Leptin分泌及基因表达的影响[D].雅安,四川农业大学,2007.
    [83]Pharazyn A. Nutritional effects on embryo survival in the gilt [D]. Edmonton (Canada), University of Alberta,1992.
    [84]Bazer F W, Wu G, Spencer T E, et al. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals [J]. Molecular Human Reproduction,2010,16(3):135-52.
    [85]Wu G, Ott T L, Knabe D A, et al. Amino acid composition of the fetal pig [J]. The Journal of Nutrition,1999,129(5):1031-1038.
    [86]Knight J W, Bazer F W, Thatcher W W, et al. Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts:interrelationships among hormonal status, placental development, fetal fluids and fetal growth [J]. Journal of Animal Science,1977,44:620-637.
    [87]Shi W J, Fried S K, Fu W J, et al. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates [J]. Journal of Nutritional Biochemistry, 2006,17(9):571-588.
    [88]Reynolds L P, Redmer D A. Uteroplacental vascular development and placental function [J]. Journal of Animal Science,1995,73(6):1839-1851.
    [89]De Boo H A, Van Zijl P J, Smith D E, et al. Arginine and mixed amino acids increase protein accretion in growth restricted and normal ovine fetus by different mechanisms [J]. Pediatric Research,2005,58(2):270-277.
    [90]Wu G, Bazer F W, Hu J, et al. Polyamine synthesis from proline in the developing porcine placenta [J]. Biology of Reproduction,2005,72(4):842-50.
    [91]Wu G, Jaeger L A, Bazer F W, et al. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications [J]. The Journal of Nutritional Biochemistry,2004,15(8):442-451.
    [92]Kohli R, Meininger C J, Haynes T E, et al. Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats [J]. The Journal of Nutrition,2004,134(3):600-608.
    [93]Kwon H, Wu G, Meininger C J, et al. Developmental changes in nitric oxide synthesis in the ovine placenta [J]. Biology of Reproduction,2004,70(3):679-686.
    [94]Kim S W, Wu G, Baker D H. Amino acid nutrition of breeding sows during gestation and lactation [M]. Pigs News Inform,2005,26:N89-N99.
    [95]Meijer A J, Lamers W H, Chamuleau R A. Nitrogen metabolism and ornithine cycle function [J]. Physiological Reviews,1990,70(3):701-748.
    [96]Kim S W, McPherson R L, Wu G. Dietary arginine supplementation enhances the growth of milk-fed young pigs [J]. The Journal of Nutrition,2004,134(3):625-630.
    [97]Laspiur J P, Farmer C, Kerr B J, et al. Hormonal response to dietary L-arginine supplementation in heat stressed sows [J]. Canadian Journal of Animal Science, 2006,86:373-377.
    [98]刘玉兰,黄晶晶,范伟.L-精氨酸对脂多糖刺激断奶仔猪生产性能、血液生化指标和内脏器官重量的影响[J].动物营养学报,2008,20(2):140-145.
    [99]Davis T A, Burrin D G, Fiorotto M L, et al. Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7-than in 26-day-old pigs [J]. American Journal of Physiology,1996,270(5):E802-E809.
    [100]周锡红,吴信,唐香山.不同水平精氨酸生素对断奶仔猪生长性能和血液指标的影响[J].农业现代化研究,2010,31(2):238-240.
    [101]Douillard J Y, Bennouna J, Vavasseur F, et al. Phase I trial of interleukin-2 and high-dose arginine butyrate in metastatic colorectal cancer [J]. Cancer Immunol Immunother,2000,49(1):56-61.
    [102]麻名文,李福昌.日粮精氨酸水平对断奶-2月龄肉兔生长性能、免疫器官指数及血清指标的影响[J].动物营养学报,2009,21(3):405-410.
    [103]Loemba H.D, Mounir S, Mardassi H, et al. Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus [J]. Archives of Virology 1996,141(3-4):751-761.
    [104]李华,杨汉春,郭玉璞.猪繁殖与呼吸综合征感染的免疫学研究进展[J].中国兽医杂志,1999,25(9):40-42.
    [105]Chaouat G, Voisin G. A, Escalier D, et al. Facilitation reaction (enhancing antibodies and suppressor cells) and rejection reaction(sensitized cells) from the mother to the paternalantigens of the conceptus [J].Clinical and Experimental Immunology,1979, 35(1):13-24.
    [106]Miyajima T, Hirata A A, Terasaki P I. Escape from sensitization to HL-A antibodies [J]. Tissue Antigens,1972,2(1):64-73
    [107]Yoon K J, Zimmerman J J, Swenson SL, et al. Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection [J] Journal of Veterinary Diagnostic Investigation 1995,7(3):305-312.
    [108]Albina E, Piriou L, Hutet E, et al. Immune responses in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) [J]. Veterinary Immunology and Immunopathology,1998,61:49-66.
    [109]柏美娟,孙祥峰,印遇龙.日粮添加精氨酸对肥育猪免疫功能的调节作用[J].扬州大学学报,2009,30(3):46-49.
    [110]刘新纯,张磊.胃肠外营养添加精氨酸对结直肠癌术后患者细胞免疫功能的影响[J].结直肠肛门外科,2007,13(4):216-220.
    [111]Parlesak A, Negrier I, Neveux N, et al. Arginine Does Not Exacerbate Markers of Inflammation in Cocultures of Human Enterocytes and Leukocytes [J]. The Journal of Nutrition,2007,137(1):106-111.
    [112]Zhang J H, Croy B A, Tian Z G. Uterine natural killer cells:their choices, their missions [J]. Cellular and Molecular Immunology,2005,2(2):124-129
    [113]Haddad E K, Duclos A J, Antecka E, et al. Role of interferon-gamma in the priming of decidual macrophages for nitric oxide production and early pregnancy loss [J]. Cellular Immunology,1997,181(1):68-75.
    [114]Chaouat G, Menu E, Clark M D, et al. Control of fetal survival in CBAxDBA/2mice by lymphokine therapy [J]. Journal of Reproduction and fertile,1990,89(2): 447-458
    [115]Athanassakis L, Aifantis L, Ranella A, et al. Inhibition of Nitric Oxide Production Rescues LPS-Induced Fetal Abortion in Mice [J]. Biology and Chemistry,1999, 3(3):216-224
    [116]Robertson S A, Care A S, Skinner R J. Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice [J]. Biology of Reproduction,2007,76(5):738-748.
    [117]Haimovici F, Hill J A, Anderson D J. The effects of soluble products of activated lymphocytes and macrophages on blastocyst implantation events in vitro [J]. Biology of Reproduction,1991,44(1):69-75.
    [118]Laird S M, Tuckerman E M, Cork B A. A review of immune cells and molecules in women with recurrent miscarriage outline [J]. Human Reproduction Update,2003, 9(2):163-174.
    [119]Powrie F, Menon S, Coffman R L. Interleukin-4 and Interleukin-10 synergize to inhibit cell-mediated immunity in vivo [J]. European Journal of Immunology,1993, 23(11):3043-3049.
    [120]居中亮,范丽安,陆丽华,等.T辅助细胞1、2细胞因子平衡与正常妊娠及习惯性流产关系的初步探讨[J].中华妇产科杂志,2000,35(8):473-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700