果梅ISSR标记与遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果梅(Prunus mume Sieb.et Zucc.)隶属蔷薇科(Rosaceae)李亚科(Prunoideae)李属(Prunus L),原产于中国。果梅是我国南方重要外销型创汇果树,外销出口的比例很大,广东主产区近年来产量的一半以上销往境外。我国果梅栽培历史悠久,种质资源丰富,长期天然杂交和传统生产上的实生繁殖,使现存种质资源和人工栽培品种的遗传背景十分复杂,同物异名、同名异物现象严重。为了更好地保存和利用这些种质资源,我们利用简单重复序列间区(ISSR)分子标记技术对果梅遗传多样性进行分析,研究结果如下:
     1果梅基因组DNA提取的探讨
     为从顽拗植物果梅叶片中获得可供后续分子生物学操作的基因组DNA,针对其组织细胞中富含多糖、多酚、有机酸等物质的特点,采用改良CTAB法提取果梅基因组DNA。在研磨前加入适量PVP和2%β-巯基乙醇,以防止酚氧化成醌,避免褐变;在核裂解之前先破碎细胞,将细胞质中的次生物质去除后再裂解细胞核;用高浓度的CTAB/NaCl溶液与氯仿/异戊醇共沉淀有效去除多糖等措施,经A_(260)和A_(280)值的测定,以及电泳检测和PCR扩增,结果表明改良CTAB法所提取的DNA无论在纯度上、完整性上都比改良的SDS法和传统的CTAB法好。
     2果梅ISSR反应体系的建立
     对影响ISSR扩增反应的主要因子采用两种方法进行优化:一为正交设计法;二为单因素逐项优化方法。建立了果梅最佳ISSR反应体系,即在20μL反应体系中含2μL 10×buffer、2.5 mmol/L MgCl_2、0.2 mmol/L dNTPs、0.32μmol/L引物、20-80 ng模板DNA、1U Taq DNA聚合酶。最佳反应程序:94℃预变性5 min;94℃变性45 s,47.1℃-54.3℃(退火温度随引物不同而定)45 s,72℃延伸2min,循环35次;72℃最后延伸7min,4℃保存。
     3果梅遗传多样性分析
     (1)多态性分析从51条ISSR引物中筛选出扩增条带清晰,稳定性好的10条引物共扩增出120个位点,平均每个引物扩增出12个位点,DNA片段大小分布在0.2-3.0kb之间。不同引物扩增的多态性也存在较大的差异,扩增的多态性条带数的范围为8-12条,每个引物检测到的多态位点平均为9.8个。
     (2)聚类分析39个果梅品种的遗传相似性分析(Jaccard系数)表明,各基因型间的Jaccard相似系数在0.5263-0.9910之间。通过非加权算术平均数聚类(UPGMA)法,绘制了39个果梅品种遗传关系树状图。以0.65为阈值将39份材料分为3类,第3类(Ⅲ)的34个品种又分成5个亚类,这与传统分类学上按照成熟果皮颜色的划分结果基本一致,聚类结果与地域无明显相关。ISSR分析结果显示,果梅遗传多样性丰富,可以利用ISSR分子标记对果梅进行分子水平的鉴定和遗传多样性的分析。
Japanese apricot (Prunus mume Sieb. et Zucc.) which belongs to the genus of Prunus L. in Rosaceae was originated in southern China and has high economic value. Japanese apricots was an important fruit tree which have been exported abroad over half the total output the main producing areas in Guangdong in recent years. Japanese apricots are rich in genetic resources and cultivated with a long history, but their morphological characters are very similar. It is a very serious phenomenon that different cultivars have the same name in production. There is much confusion and difficulty in identifying the cultivars. In order to preserve and utilize the germplasm better, it is necessary to study their genetic diversity by ISSR molecular markers.
     1 Study on genomic DNA extraction from recalcitrant Prunus mume Sieb. et Zucc.
     The modified CTAB method has been developed to extract the high quality genomic DNA from the recalcitrant fruit tree Japanese apricot (Prunus mume Sieb. et Zucc.) which contains abundant polysaccharide, polyphenol, organic acid and some other secondary metabolites. Some measures were taken to eliminate them including a proper amount of PVP and 2 %β-mercaptoethanol were added during grinding to prevent oxidation of phenolic compounds; using high concentrate of CTAB/ NaCl solution to separate polysaccharides. The results of ratio of A_(260) and A_(280) , electrophoresis and amplification suggested that the modified CTAB method could obtain higher quality genomic DNA with better purity and integrity compared with modified SDS while the conventional CTAB method is not suitable for the DNA extraction from Japanese apricot.
     2 Establishment of an ISSR reaction system in Japanese apricot (Prunus mume Sieb. et Zucc.)
     Based on the high quality genomic DNA extracted by the modified CTAB method, five essential factors that might affect the results of ISSR were compared by orthogonal design and single factor test. Comprehensive results of the two methods, a suitable ISSR-PCR reaction system (20 uL) was established, i. e. 2 uL 10×buffer, 2.5 mmol/L Mg~(2+), 0.2 mmol/L dNTPs, 0.32μmol/L primer, 20-80 ng template DNA and 1 unit of DNA polymerase. The parameters were: 5 min at 94℃for initial activation step, followed by 35 cycles of 45 s at 94℃, 45s at annealing temperature 47.1℃-54.3℃and a 2 min extension at 72℃. At the end, amplified products were elongated for 7 min at 72℃and preserved at 4℃.
     3 The analysis of genetic diversity of Japanese apricot
     (1) The polymorphism analysis of accessions The genetic diversity of Japanese apricot were studied by ISSR. 10 primers were screened from 51 arbitrary ISSR primers. A total of 120 DNA fragments ranging from 0.2-3.0kb were amplified, among which 98 (81.67 %) were polymorphic, using these 10 primers. The average number of DNA band produced by each prime was 12. The polymorphic band difference was very significant among different primers. The average number of DNA polymorphic band produced by each prime was 9.8.
     (2) The cluster analysis of accessions According to the result of PCR, the genetic similarity analysis for 39 cultivars was calculated by the software of NTSYS pc - 2.1e. The result of genetic similarity analysis showed that the Jaccard coefficient ranged from 0.5263-0.9910. A DNA molecular dendrogram was established for 39 cultivars based on UPGMA cluster analysis. When the similarity coefficient value was 0.65, the 39 Japanese apricot cultivars were divided into 3 groups, and 34 cultivars of the third group (III) were further divided into 5 subgroups, as was fundamentally accorded with the traditional classification base on fruit-ripening color. There was no obvious difference in geographic relationship among the clustering results. The study indicated that ISSR produced high polymorphism on Japanese apricot. ISSR analysis can be used for the molecular evaluation and studies of genetic diversity of Japanese apricot germplasm.
引文
[1]堀内昭作.日本の梅·世界の梅.日本:株式会社 养贤堂,1996,3-6.
    [2]褚孟嫄.中国果树志梅卷.北京:中国林业出版社,1999,绪言,4,8-10,20.
    [3]包满珠,陈俊愉.中国梅的变异与分布研究.园艺学报,1994,21(1):81-86.
    [4]汪长进,王越.大理果梅种质资源调查初报.大理科技,1992,(2),39-41.
    [5]汪长进,王越.大理州果梅种质资源调查及分类研究.云南林业科技,1993,(3),43-46.
    [6]向显衡.贵州省梅种质资源及开发利用现况.1995(未刊本)
    [7]陈俊愉,吕英民.从梅品种国际登录谈中华花卉品种国际登录的意义.北京林业大学学报,2001,23(特刊):30-34.
    [8]褚孟嫄,章镇,房经贵.果梅在我国的栽培与研究概况.福建果树,1994,25(1):26-29.
    [9]Masao Y,Nobuaki F,Masami Y C.Fruit mume breeding in Japan.Journal of Beijing University,1999,21(2):37-42.
    [10]褚孟嫄,陆爱华.梅树花粉数量与育性的研究.落叶果树,1992,24(1):27-28.
    [11]黄建昌,徐乃端,曾启文等.几个青梅品种的授粉组合试验.中国果树,1992,15(4):24-25.
    [12]张启翔.GA及胚培养对提高梅花远缘杂交结实率和成苗率的研究.北京林业大学学报,1992,14(增刊4):87-94.
    [13]包满珠,张永春,黄燕文等.梅花品种花粉可育性及其与育种的关系探讨.北京林业大学学报,1995,17(增刊1):146-148.
    [14]张永春,包满珠.梅树品种分类研究进展.北京林业大学学报,1998,20(2):90-94.
    [15]曾勉.杭州塘栖之梅.园艺,1936,(11):909-918.
    [16]吉田雅夫(日).梅杏栽培品种的分类.果树部会,1972,137.
    [17]方从兵,盛炳成,章镇.梅品种花粉壁超微结构比较研究.南京农业大学学报,2002,25(1):114-116.
    [18]方从兵,盛炳成,章镇.花粉形态特征与梅品种分类研究.安徽农业大学学报,2002,29(2):137-142.
    [19]康素红,包满珠,陈龙清,黄燕文,刘晓祥.梅花品种分类的花粉形态学研究.园艺学报,1997,24(2):170-174.
    [20]Yorhihiko T S,Kihachiro U,Michio L.A classification technique for cultivars of Prunus mume Sieb.et Zucc.by isozymes.Japan Hor Soc,1987,69:105-108.
    [21]张永春,包满珠,陈龙清等,梅花品种资源同工酶多态性分析.北京林业大学学报,1999,25(4):56-60.
    [22]林盛华,褚孟嫄.梅染色体研究.北京林业大学学报,1999,21(2):91-93.
    [23]黄燕文等.野梅和栽培梅染色体数目及形态的研究.北京林业大学学报,1995,15(1):7.
    [24]黄哲.梅花品种染色体初探:[硕士学位论文].北京:北京林业大学,1989.13-14.
    [25]曲泽洲,孙云蔚.果树种类论.北京:农业出版社,1990.
    [26]Frankel O H.Micropropagation of Prunus mume.Plant Cell Tissuer Organ Culture,1996,46(3):265-26.
    [27]章镇,高志红,蔡斌等.果梅茎尖培养研究.见:张加延,编.干果研究进展,2000.
    [28]张秦英.抗寒梅花品种区域试验及离体培养:[博士学位论文].北京:北京林业大学,2004,56-62.
    [29]曹亮,吕英民,魏凤然等.梅花等李属植物组织培养研究现状及展望.见:张启翔编.中国观赏园艺研究进展.北京:中国林业出版社,2004,163-171.
    [30]金勇丰,朱立成,张耀洲等.桃ACC合酶基因的分离及其表达(英文).植物学报,2002,44(10):1182-1187.
    [31]齐洁,顾曼如,束怀瑞.杏自交不亲和相关基因S-RNase基因的克隆及表达.农业生物技术学报,2003,11(2):148-153.
    [32]Entani T,Iwano M,Shiba H,Che F C,Isogai A,Takayama S.Comparative analysis of the self-incompatibility(S-)locus region of Prunus mume:identification of a pollen-expressed F-box gene with allelic diversity.Genes to cells,2003,8:203-213.
    [33]McClure B.S-RNase and SLF Determine S-Haplotype-Specific Pollen Recognition and Rejection.The Plant Cell,2004,16:2840-2847.
    [34]Sijacic P,Wang X,Skirpan A L,Wang Y,Dowd P R,Mccubbin A G,Huang S,Huikao T.Identification of the pollen determinant of S-RNase-mediated self-incompatibility.Nature,2004,42(9):302-305.
    [35]Nsch A W,Hormaza J I.Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry(Prunus avium L.).Theor Appl Genet,2004,108:299-305.
    [36]Certal A C,Almeida R,Boskovic R B,Oliveira J M,Feijo A.Structural and molecular analysis of self-incompatibility in almond(Prunus dulcis).Sex Plant Reprod,2002,15:13-20.
    [37]Lopez M,Mnejja M,Rovira M,Collins G,Vargas F J,Anis P,Battle I.Self-incompatibility genotypes in almond re-evaluated by PCR,stylar ribonucleases,sequencing analysis and controlled pollinations.Theor Appl Genet,2004,109:954-964.
    [38]Van Nerum I,Certal A C,Oliveira M M,Keulemans J,Broothaerts W.PD1,an S-like RNase gene from a self-incompatible cultivar of almond.Plant Cell Reports,2000,19:1108-1114.
    [39]Sapir G,Stern R A,Eisikowitch D E,Goldway M.Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis.The Journal of Horticultural Science and Biotechnology,2004,79(2):223-227.
    [40]Yaegaki H,Shimada T,Moriguchi T,Hayama H,Haji T,Yamagnchi M.Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot(Prunus mume Sieb. et Zucc.).Sex Plant Reprod,2001,13:251-257.
    [41]Wiersma P A,Wu Z,Zhou L,Hampson C,Kappel F.Idemification of new self-incompatibility alleles in sweet cherry(Prunus avium L)and clarification of incompatibility groups by PCR and sequencing analysis.Theor Appl Genet,2001,102:700-708 E.
    [42]Ma R C,Oliveira M M.Evolutionary analysis of S-RNase genes from Rosaceae species.Genet Genomics,2002,267:71-78.
    [43]Ikeda K,Igic B,Ushijima K,Yamane H,Hauck N R,Nakano R,Sassa H,lezzoni A F,Kapteyn J,Goldsbrough P B,Simon J E.Genetic relationships and diversity of commercially relevant Echinacea species.Theor Appl Genet,2002,105:369-376.
    [44]Yamane H,Tao R,Mori H,Sugiura A.Identification of a non-S RNase,a possible ancestral form of S-RNases,in Prunus.Mol Gen Genomics,2003a,269:90-100.
    [45]Ushijima K,Yamane H,Watari A,Kakehi E,Ikeda K,Hauck N R,Iezzoni A F,Tao R.The S haplotype-specifie F-box protein gene,SFB,is defective in self-compatible haplotypes of Prunus avium and P.mume.The Plant Journal,2004,39(4):573-586.
    [46]Yamane H,Ushijima K,Sassa H,Tao R.The use of the S-haplotype-specific F-box protein gene,SFB,as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot(Prunus mume).Theor Appl Genet,2003b,107:1357-1361.
    [47]李耀东,魏玉凝.肥城桃组培苗诱导、基因转化及其增殖.果树学报,2003,20(4):70-72.
    [48]吴延军,徐昌杰,张上隆.桃组织培养和遗传转化研究现状及展望.果树学报,2002,19(2):123-127.
    [49]张新时.对生物多样性的几点认识.生物多样性研究进展-首届全国生物多样性保护与持续利用研讨会论文集,中国科学技术出版社.1995.
    [50]马克平,钱迎倩.生物多样性保护及其研究进展.应用与环境生物学报,1998,4(1):95-99.
    [51]钱迎倩,马克平.生物技术与生物安全.自然资源学报,1995,10(4):322-331.
    [52]Soltis P S,Soltis D E.Genetic variation in endemic and widespread plant species:example from Saxifragaceae and Polyslichum.Alisa,1991,13:215-223.
    [53]张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展.生物多样性,1997,7(1):31-37.
    [54]Schaal B A,Leverich W J,Bendich A J.Comparision of methods for assessing genetic variation in plant conservation biology.In Falk,DA and holsinger KE(eds).Genetics and conservation of rare plants.New York:Oxford University Press.1991,123-134.
    [55]章镇,蔡斌华,张聪.果梅品种形态学分类.落叶果树,1996,21(3):13-14.
    [56]沈德绪,王元裕,陈力耕.柑橘遗传育种学.北京:科学出版社,1998,166-168.
    [57]方德秋,章文才,肖顺元.应用同工酶进行柑橘分类和进化研究.植物分类学报,1993,31(4):329-352.
    [58]郑成木.植物分子标记原理与方法.长沙:湖南科技技术出版社,2002,25-26.
    [59]Williams J G,Kubelik A R.DNA polmorphisms amplified by arbitrary primers are useful as genetic marker.Nucleic Acids Res.1990,18:6531-6535.
    [60]Welsh J,McClell M.Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Res.1990,18:7213-7218.
    [61]Zabeau M and Vos P.Selective restriction fragment amplification:a general method for DNA fingerprints.European Patent,1993,EP0534858,03-31.
    [62]Vos P,Hogers R,Bleeker M,et al.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res,1995,23(21):4407-4414.
    [63]Zietkiewicz E,Rafalski A,Lubuda D.Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplified.Genome,1994,20:176-183.
    [64]Lee S,Wen J.A phylogenetic analysis of Prunus and the Amygdalus(Rosaceae)using ITS sequence of nuclear.American Journal of Botany,2001,88(1):150-160.
    [65]Cheng H Y,Yang W C,Hsiao J Y.Genetic diversity and relationship among peach cultivars based on Random Amplified Microsatellite Polymorphism(RAMP).Bot Bull Acad.Sin.2001,42:201-206.
    [66]Abbortt A S,Rajapakse et al.Chromosome mapping in peach plant Genome Ⅲ,the International conference on the status of plant Genome Research,San Diego,California,1995,23:136-14.
    [67]Arus P R,Messeguer et al.The European Prunus mapping project.Euphytica,1993,77:97-100.
    [68]Zezzoni A D,wang et al.Strateqies for mapping sour cherry(prunes cerasus)a segmental allotetraphoid.Plant GenomellI,The International conference on the status of plant Genome Research,San Diego,California,1995,47.
    [69]Chaparro J X et al.Targeted mapping and linkage analysis of morphological isozyme,and RAPD markers in peach.Theor.Appl Genet,1994,87:805-815.
    [70]Cipriani G,et al.AG/GT and AG/CT microsatellite repeats in peach:isolation,characterization and cross-species amplification in Prunus.Theor Appl Genet,1999,99:65-72.
    [71]Dirlewanger E,Cosson P,Tavaud M,Aranzana M J,Poizat C,Zanetto A,Arus P,Laigret F.Development of microsatellite markers in peach[Prunes persica(L.)Batsch]and their use in genetic diversity analysis in peach and sweet cherry(Prunes avium L.).Theor Appl Genet,2002,105:127-138.
    [72]Hormaza J I.Molecular characterization and similarity relationships among apricot(Prunus armeniaca L)genotypes using simple sequence repeats.Theor Appl Genet,2002,104:321-328.
    [73]沈向,郭卫东等.杏43个品种资源的RAPD分类.园艺学报,2000,27(1):55-56.
    [74]Ricciardi L,Giorgio V,Giovanni C,Lotti C,Gallotta A and Fanizza G.The Genetic Diversity of Apulian Apricot Genotypes(Prunus armeniaca L.)assessed Using AFLP Markers.Cellular & Molecular Biology Letters,2002,7:431-436.
    [75]Rohrer J R,Ahmad R,Southwick S M,Potter D.Microsatcllite analysis of relationships among North American plums(Prunus sect.Prunocerasus,Rosaceae).Plant Syst.Evol,2004,244:69-75.
    [76]Mohanty A,Martian J P,Le M G,Aguinagalde I.Association Between Chloroplast DNA and Mitochondria)DNA Haplotypes in Prunus spinosa L.(Rosaceae)Populations across Europe.Annals of Botany,2003,92:749-755.
    [77]Mariette S,Lefranc M,Legrand P,Taneyhill D,Frascaria-Lacoste N,Machon N.Genetic variability in wild cherry populations in France.Effects of colonizing processes.Thcor Appl Genet,1997,94:904-908.
    [78]Mohanty A,Martin J P,Aguinagalde I.A population genetic analysis of chloroplast DNA in wild populations of Prunes avium L,In Europe.Heredity,2001,87(4):421.
    [79]Stress D,Ahmad R,Southwick S M,Boritzki M.Analysis of Sweet Cherry(Prunus avium L.)Cultivars Using SSR and AFLP Markers.Journal of the American Society for Horticultural Science,2003,128(6):356-366.
    [80]Panda S,Martin J P,Aguinagaldc I,Mohanty A.Chloroplast DNA variation in cultivated and wild Prunus avium L:a comparative study.Plant Breeding,2003,122(1):92.
    [81]Brettin T S,Karle R,Crowe E L,lezzoni A F.Chloroplast inheritance and DNA variation in sweet,sour,and ground cherry.Heredity,2000,91(1):74-79.
    [82]褚孟嫄,班俊.梅、杏、李同工酶比较研究.果树科学,1988,5(4):155-157.
    [83]汪祖华等.李、杏、梅亲缘关系及分类地位的同共酶研究.园艺学报,1991,18(2):97-101.
    [84]张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱的RAPD分析.北京林业大学学报,1998,20(2):12-15.
    [85]包满珠,陈俊愉.梅及其近缘种数量分类初探.园艺学报,1995,22(1):67-72.
    [86]刘青林,陈俊愉.梅花亲缘关系RAPD研究初报.北京林业大学学报,1999,21:(2)81-85.
    [87]高志红,章镇,盛炳成,姚泉洪.桃梅李杏四种主要核果类果树RAPD指纹图谱初探.果树学报,2001,18(2):120-121.
    [88]Hagen L S,Lambert P,Audergon J M,et al.Genetic relationships between apricot(Prunes armeniaca L)and related species using AFLP markers.Acta Horticulture,2001,546:205-208.
    [89]明军,张启翔,毛庆山等.‘美人'梅与其近缘种亲缘关系的AFLP研究.园艺学报,2002,29(6):588-589.
    [90]程中平.利用分子标记对桃、李、杏、梅、樱类植物系统发育的分析.中国南方果树,2003,32(3):45-50.
    [91]Shimada T,Haji T,Yamaguchi M,et al.Classification ofMume(Prunus mume Sieb.et Zucc.)by RAPD assay.J Japan Soc Hort Sci,1994,63(3):543-551.
    [92]吉田雅夫.“梅”核の形状とDNA-.-による分类.梅,1996,4-9.
    [93]Ozaki T,Shimada T,Nakanishi T.RAPD analysis for parentage determination in Prunus mume Sieb.et Zucc..J Japan Soc Hort Sci,1995,64(2):235-242.
    [94]Tao R,Habu T,Yamane H,Sugiura A.Molecular Markers for self-compatibility in Japanese apricot(Prunus mume).Hort Science,2000,35(6):1121-1123.
    [95]高志红.果梅核心种质的构建与分子标记的研究:[博士学位论文].北京:中国农业大学,2003,24-27.
    [96]明军.梅花DNA指纹图谱的建立与研究:[博士学位论文].北京:北京林业大学,2002,78-105.
    [97]明军,张启翔,晏晓兰等.应用AFLP-DNA指纹技术鉴定梅花品种的研究.北京林业大学学报,2003,25(特刊):17-22.
    [98]Clark M S,顾红雅,瞿礼嘉.植物分子生物学-手册实验.北京:高等教育出版社,1998,5-6.
    [99]李宗菊,熊丽,桂敏等.非洲菊基因组DNA提取及ISSR-PCR扩增模板浓度优化.云南植物研究,2004,26(4):439-444.
    [100]赵昶灵,郭维明,陈俊愉.梅花基因组DNA提取的方法学研究.北京林业大学学报,2004,26(增刊)31-36.
    [101]徐德昌,赵亚华,杜人奎.植物总DNA和核DNA提取及其纯度的研究.宁夏农学院学报,1997,18(3):57.
    [102]周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,2005,251-252.
    [103]何正文,刘运生,陈立华等。正交设计直观分析法优化PCR条件.湖南医科大学学报,1998.23(4):403-404.
    [104]石磊,王学仁,孙文爽编著.试验设计基础.重庆:重庆大学出版社,1997,189-195.
    [105]周延清,景建洲,李振勇,浩健等.怀地黄ISSR扩增条件优化的研究.西北植物学报,2004,24(1):6-11.
    [106]谢运海,夏得安,姜静,林萍.利用正交设计优化水曲柳ISSR-PCR反应体系.分子植物育种,2005,3(3):445-450.
    [107]王彦华,候喜林,徐明宇.正交设计优化不结球白菜ISSR反应体系研究.西北植物学报,2004.24(5):899-902.
    [108]Dieffenbach C W,Dveksler G S,Huang P T,Yu W Y and Chen T M trans.PCR Primer:A Laboratory Manual,Science Press,Bejing,China,2002,140-141.
    [109]李文表,周先叶,李勇等.棕榈ISSR反应条件的筛选与优化.广西植物,2006,26(2):204-208.
    [110]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.
    [111]卢盛栋.现代分子生物学实验技术.第二版.北京:中国协和医科大学出版社,1999.
    [112]冯富娟,王凤友,刘彤.红松ISSR-PCR实验系统影响因素.植物学通报,2004, 21(3):326-331.
    [113]程晓建.梅植物基因组分子生物学鉴定及分类研究:[硕士学位论文].杭州:浙江大学,2002,21-23.
    [114]王关林,方宏筠.植物基因工程.北京:科学出版社,2002,742-744.
    [115]顾红雅,瞿礼嘉.植物基因与分子操作.北京:北京大学出版社,1995,21-23.
    [116]颜子颖.精编分子生物学实验指南.北京:科学出版社,1998,36-37.
    [117]侯思名,段继强,梁雪妮,丁小维等.苎麻总DNA提取的CTAB法优化方案.西北植物学报,2005,25(11):2193-2197.
    [118]李明芳,郑学勤.荔枝基因组DNA的提取.生物技术通讯,2004,15(6):591-592.
    [119]王军,贺普超.山葡萄基因组DNA提取及RAPD鉴定.果树科学,2000,17(2):79-82.
    [120]Sueporebski,Bailey L G,Bernard R.Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components.Plant Molecular Biology reporter,1997,15(1):8-15.
    [121]赵昶灵,郭维明,陈俊愉.梅花花色色素种类和含量的初步研究.北京林业大学学报,2004,26(2):68-73.
    [122]李丹,凌定厚.五种马尾松基因组DNA方法的比较.植物学通报,2000,17(2):168-173.
    [123]杨传平,潘华,魏志刚等.白桦ISSR-PCR反应体系的优化.东北林业大学学报,2005,33(6):1-3.
    [124]克拉尔克(顾红雅译).植物分子生物学实验手册.北京:高等教育出版社,1997,66-70.
    [125]Ellsworth D L,Rittenhause K D,Hloneyutt R L.Artifactual variation in randomly amplified polymorphic DNA banding patterns.Bio Feed Back,1993,14:214-216.
    [126]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42(7):741-750.
    [127]Joshi S P,Gupta V S,Aggarwal R K,et al.Genetic diversity and phylogenetic relatiomhip as relationship as revealed by inter simple sequence repeat(ISSR)polymorphism in the genus Oryza.Theoretical and Applied Genetics,2000,100:1311-1320.
    [128]哀建国,邱英雄,余久化等.百山祖冷杉的ISSR分析优化和遗传多样性初步研究.浙江大学学报(农业与生命科学版),2005,31(3):277-282.
    [129]冯夏连,何承忠,张志毅等.毛白杨ISSR反应体系的建立及优化.北京林业大学学报,2006,28(3):61-65.
    [130]Lu S D.Current Protocols for Molecular Biology.Second edition.Beijing:Peking Union Medical College Press,1999,458-463.
    [131]高丽,杨波.春兰ISSR-PCR反应体系的优化.华中农业大学学报,2006,25(3):305-309.
    [132]席嘉宾,郑玉忠,杨中艺.地毯草ISSR反应体系的建立与优化.中山大学学报(自然科学版),2004,43(3):80-84.
    [133]张志红,谈月笑,何航航等.红树植物海漆ISSR条件的优化.中山大学学报(自然科学版),2004,43(2):63-66.
    [134]穆立蔷,刘赢男,冯富娟,杨国亭.紫椴ISSR-PCR反应体系的建立与优化.林业科学,2006,42(6):26-31.
    [135]褚孟嫄.梅.中国农业百科全书(果树卷).北京:农业出版社,1993,96-97.
    [136]王家保,姜成东,李金成.11份莲雾资源的同工酶评价.热带作物学报,2004,25(2):15-19.
    [137]李锡香,朱德蔚,杜永臣等.黄瓜种质资源遗传多样性及其亲缘关系的AFLP分析.园艺学报,2004,31(4):309-314.
    [138]刘万勃,宋明,刘富中,王怀松.RAPD和ISSR标记对甜瓜种质遗传多样性研究.农业生物技术学报,2002,10(3):231-236.
    [139]祁建民,王涛,陈顺辉,周东新等.部分烟草种质遗传多样性与亲缘关系的ISSR标记分析.作物学报,2006,32(2):373-378.
    [140]Goulao L,Oliveira C M.Molecular characterization of cultivars of apple(Malus □domestica Borkh.)using microsatellite(SSR and ISSR)markers.Euphytica,2001,122:81-89.
    [141]Monte C L,Goulao L,Oliveira C.ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination.Amer.Soc.Hort Sci.,2001,126:517-522.
    [142]Huang J C,Sum M.Genetic diversity and relationship of sweetpotato and its wild relatives in Ipomoea series Batatas(Convolvulaceae)as revealed by inter-simple sequence repeat(ISSR)and restriction analysis of chloroplast DNA.Theor Appl Genet,2000,100:1050-1060.
    [143]陶爱芬,祁建民,李爱青等.红麻优异种质资源遗传多样性与亲缘关系的ISSR分析.作物学报,2005,31(12):1668-1671.
    [144]Bao J S,Harold C & Sun M.Analysis of genetic diversity and relationships in waxy rice (Oryza sativa L.)using AFLP and ISSR markers.Genetic Resources and Crop Evolution.2006,53:323-330.
    [145]Gemas V J V,Almadanim M C,Tenreiro R,et al.Genetic diversity in the Olive tree(Olea europaea L.subsp,europaea)cultivated in Portugal revealed by RAPD and ISSR markers.Genetic Resources and Crop Evolution,2004,51:501-511.
    [146]Shimada T,Yamamoto T,Hayama H,et al.A genetic linkage map constructed by using an intraspecific cross between peach cultivars grown in Japan.J Japan Soc Hort Sci,2000,69:536-542.
    [147]易克,徐向利,卢向阳等.利用SSR和ISSR标记技术构建西瓜分子遗传连锁图谱.湖南农业大学学报(自然科学版),2003,29(4):333-337.
    [148]宣继萍,章镇等.苹果品种ISSR指纹图谱构建.果树学报,2002,19(6):421-423.
    [149]Jonsson B O,Jonsdottir I S,Cronberg N.Clonal diversity and allozyme variation in population of the arctic Carex bigelowii(Cyperaceae).J Ecol,1996,84:449-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700