高良姜(Alpinia officinarum Hance)的挥发油成分和遗传差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高良姜(Alpinia officinarum Hance)是著名的十大南药之一,在医药、食品和化妆品加工以及蔬果保鲜上有广泛的应用。在高良姜药材长期的使用过程中,出现了替代品和混淆品,造成用药混乱,影响治疗效果。高良姜野生资源日益枯竭,种质资源丢失严重,栽培类型众多,但遗传多样性家底不清,药材的鉴定技术滞后,尤其是分子水平遗传多样性以及分子鉴定的研究仍为空白。本文以高良姜为研究对象,首次从形态表型、挥发油成分和DNA分子三个不同层面较系统地研究了高良姜的理化特性及遗传多样性,探讨它们与地理分布之间的相关性以及和混淆品的亲缘关系,并建立有效的分子鉴定体系,为澄清其遗传背景和亲缘关系,进一步为种质资源保护、优良品种的选育和规范化种植提供参考,且为在优良种质筛选的基础上进行高良姜的细胞培养和借助发酵工程手段进一步开拓高良姜的应用前景打下基础,丰富高良姜的真伪鉴定和质量控制理论数据,研究结果具有较重要的理论与现实意义。主要的研究结果如下:
     1.采用水蒸气蒸馏法和经优化的超声波辅助石油醚提取法提取不同产地的高良姜及其混淆品大高良姜的挥发油,通过GC-MS检测其挥发油的化学成分,比较挥发油成分的差异,并根据欧几里得距离进行聚类分析。结果显示,不同产地高良姜的挥发油成分有差异,高良姜与大高良姜的挥发油成分差异更显著。广东产的高良姜样品先聚类,然后与海南的样品聚类,最后才与大高良姜聚类,表明高良姜挥发油成分与地理分布有相关性,而且从挥发油成分的差异可以鉴别高良姜的真伪。
     2.通过株高、每枝叶片数、叶长、叶宽、叶舌长、叶片质量、花序长、花冠裂片长和唇瓣长等形态表型数据分析各地不同群体高良姜的遗传变异,结果发现,高良姜群内和群间都存在差异,高良姜野生种类的叶片性状多样性程度大于栽培种类,高良姜的表型变异主要来源于群内的差异。聚类分析结果表明,高良姜的形态表型与地理分布没有明显的相关性。
     3.用改良的CTAB法提取各地高良姜不同群体及其混淆品山姜、华山姜、大高良姜等181个个体样品的基因组DNA,用优化的AFLP技术体系分析它们的遗传差异和亲缘关系。利用筛选出来的4对引物对各地不同群体的高良姜的个体样品进行选择性扩增,分析群内的多样性。结果表明,不同群体高良姜的群内多样性的程度有较大的差别,道地产地的高良姜群体的群内多样性程度均较小。用6对引物对各群体的个体混合模板DNA进行扩增,分析群体间的多样性,结果共检测出462个位点,其中418个是多态性位点,多态性百分率达90.5%,群体间呈现了很高的多样性。聚类分析结果显示道地药材产地龙塘镇的3个栽培群体Xj、Xn和XHn的遗传距离非常近,首先聚一起,体现了高良姜道地性的遗传本质,然后与其他产地的群体聚成一类,混淆品华山姜和山姜聚为一类,大高良姜为一类。在AFLP变性聚丙烯酰胺凝胶电泳指纹图谱和毛细管电泳指纹图谱上都能分辨出高良姜与混淆品大高良姜的特征性条带或特征峰组合,对鉴别高良姜的真伪有明显的鉴别效果。
     4.运用PCR直接测序法测定了不同产地高良姜及山姜、华山姜、大高良姜等混淆品的rDNA ITS序列,获得高良姜rDNA ITS序列802bp,山姜和华山姜的序列皆为800bp,大高良的序列为810bp,其中包括18S和26S的部分序列,以及ITS1、5.8S和ITS2全部序列。除了杂合位点之外,各地高良姜样品的序列完全一致。高良姜与混淆品的rDNA ITS序列中有61个变异位点,其中60个是信息位点,同源性为96.32%。在这些r DNA ITS序列中有11个位点是高良姜和混淆品的鉴别位点。
     5.用PCR直接测序法测得的高良姜和混淆品的matK基因的部分序列皆为1212bp。不同产地的高良姜除广西的样品有两个变异位点外,其余的高良姜样品的序列完全相同,所有高良姜样品的同源性达99.97%。高良姜与山姜、华山姜、大高良姜等三种混淆品的matK基因的部分序列的比对结果显示有24个变异位点,其中22个是信息位点,同源性为99%。高良姜与三个混淆品之间有一个鉴别位点。
     6.基于AFLP、rDNA ITS序列和matK基因序列等三种分子标记的系统树基本一致,反映出各地高良姜有很近的亲缘关系,高良姜与山姜和华山姜的亲缘关系比较近,与大高良姜的亲缘关系比较远。
     从研究结果可以得出以下结论:高良姜遗传背景复杂,存在复杂的引种迁移种植现象;高良姜的挥发油成分受地理分布的影响较大,形态表型次之,基因组DNA相对稳定;高良姜与其混淆品之间存在明显的差别,可以通过理化特性和DNA分子特征加以鉴别。
Alpinia officinarum Hance is one of the ten famous medical materials in south China, which is extensively utilized in medicine, food and cosmetics industry. The succedaneums and adulterants appear in the long history of application of A. officinarum, so result in drug confusion and therapeutic dfficacy loss. The wild resource of A. officinarum is increasingly exhausted and the germplasm resource lost severely. On the other hand, the cultivated form of A. officinarum is multitude but the genetic diversity is not known clearly, and the identification techniques are hysteresis, especially, the study on genetic diversity and identification on molecular levels are blank. In this paper, we use the medical plant A. officinarum as research object, for the first time, to study the physico-chemical property and genetic diversity of A. officinarum on three levels such as morphological phaenotype, volatil oil components and DNA with a set material, investigate their correlation with geographical distribution and genetic relationship with adulterants, reveal the genetic essence of geoherbalism of A. officinarum, and establish efficient identification system, so as to clarify the genetic background and genetic relationship and to move forward a single step to provid information for germplasm resource conservation, breed selection and standardized growth offer theory data for true-and-false authentication and quality control of A. officinarum. This work has theoretical and practical importance.The main results are as follow:
     (1)The wet distillation and ultrasonic-petroleun ether extraction were used to extract the volatile oils from A. officinarum and its adulterant A. galangal (L.) Willd from different places, and the volatile oils component were detected by GC-MS. The differences of volatile oils components were compared among A. officinarum and its adulterant A. galangal (L.) Willd from various places, and their volatile oil componets were made clustering analysis according to euclidian distance. The resuts indicate that A. officinarum volatil oils components from various places are diverse. The volatile oil components are extremely obvious defferent betwin A. officinarum and A. galangal (L.) Willd. The samples form Guangdong firstly cluster and subsequently cluster with the sample from Hainan and definitively cluster with A. galangal (L.) Willd. The volatile oil component is relative to geographic distribution, and by analyzing volatile oil component, we could authenticate A. officinarum and A. galangal (L.) Willd.
     (2)We analyzied the the genetic diversity of A. officinarum of different population from defferent habitat by statisticsing morphological phaenotype data such as trunk height, branches number, leaf length, leaf width, leaf ligula length, leaf mass, inflorescence length, corollalobe length and flabs length, etc..The results discover that there are distinctions in intra-group and inter-group, and the diversity degree of leaf blade characters in A. officinarum wild specides is larger than cultivated species, moreover, the origin of phenotype variation mainly exsits in intro-group. Cluster analysis result indicates that morphous phenotype of A. officinarum has no obvious correlation with geographic distribution.
     (3)181 genome DNA samples were extracted by modified CTAB method, and these DNA samples were of differet populations of A. officinarum and its adulterant as follow: A. japonica (Thunb.) Miq.)、A. chinensis (Retz.) Rosc.and A. galanga (L.) Willd, and optimized AFLP technique was applied to analyze their genetic diversity and genetic relationship. 4 pairs of primers were used to amplificate DNA samples of A. officinarum from differet populations. The result told us that the intro-group diversity was of large dissimilar among different populations, and the populations from famous region had less diversity. Using 6 pairs of primers to amplificate the mixed DNA template of each population individual and detected out 462 sites in all, 418 sites were polymorphic site of the total, and the polymorphic percent was 90.5%, which showed high degree inter-group diversity. The clustering analysis result discovered that the 3 cultural populations from famous region Longtang such as population Xj, Xn and XHn had closer genetic distance, and firstly cluster together, which suggested the genetic essence of genuine A. officinarum, subsequently they cluster with the other A. officinarum populations, simultaneously adulterant A. japonica (Thunb.) Miq. and A. chinensis (Retz.) Rosc. clustered together and two A. galanga (L.) Willd samples clustered for a group. Both the AFLP denaturing polyacrylamide gel electrophoretic fingerprint and capillary electrophoresis fingerprint present mark bands or mark peak group for A. officinarum and A. galanga (L.) Willd, so provides significant.marker for authentication of A. officinarum .
     (4)By applying PCR direct sequencing to detect rDNA ITS sequences for A. officinarum , A. japonica (Thunb.) Miq.)、A. chinensis (Retz.) Rosc.and A. galanga (L.) Willd from different habitats, we obtained 802bp sequences of A. officinarum, 800bp sequences of A. japonica (Thunb.) Miq. and A. chinensis (Retz.) Rosc. and 810bp sequences of A. galanga (L.) Willd., which include partial sequences of 18S and 26S and total sequences of ITS1, 5.8S, and ITS2. Except heterotic sites, the other rDNA ITS sequences of all A. officinarum samples are the same. There are 61 mutation sites in rDNA ITS sequences among A. officinarum and its adulterants, and 60 sites of them are information sites, with a homology of 96.32%. 11 sites in the rDNA ITS sequences are the marker sites for authentication of A. officinarum and its three adulterants.
     (5)Partial matK gene sequences are detected by PCR direct sequencing, and these sequences are the same to be 1212bp for all samples of A. officinarum and its three adulterants. 2 mutation sites are found in the sampl of Guangxi and the other samples of A. officinarum from different habitats have the same sequences. The homology of all A. officinarum samples is 99.7%. There are 24 mutation sites among A. officinarum and its three adulterants, 22 sites of them are information sites, with a homology of 99%. 1 site in the partial matK gene sequences are the marker sites for authentication of A. officinarum and its three adulterants.
     (6)The phylogenetic trees based on AFLP, rDNA ITS and matK gene sequences are similar, which indicates that A. officinarum from differet habitats have very close genetic relationship and A. officinarum has closer genetic relationship with A. japonica (Thunb.) Miq. and A. chinensis (Retz.) Rosc. and has far genetic relationship with A. galanga (L.) Willd..
     According to the results we can make a conclusion: A.officinarum has complex genetic backgrounds, and there is complex immigration growth phenomenon. The valotil oil component of A.officinarum is influenced comparatively large by geographic distribution, the morphous phaenotype is influenced smaller and the genome is relatively stably. The geoherbalism of A.officinarum principally display in germplasm DNA that was formed under the special environ for a long time. A.officinarum distinguishes to its adulterants, and they can be authenticated by physico-chemical property and DNA molecular character.
引文
[1]刘念.中国姜科植物的多样性和保育[J].仲恺农业技术学院学报,2003,16(4):7-11
    [2]吴德邻,等.中国植物志(16卷2分册)[M].北京:科学出版社,1981:101-102
    [3]陈忠毅,陈升振,黄少甫.国产姜科植物的染色体计数(2)[M].广西植物,1984,4(1):13-18
    [4]谢建光,方坚平,刘念.姜科植物的引种[J].热带亚热带植物学报,2000,8(4):282-290
    [5]吴德邻.姜科植物地理[J].热带亚热带植物学报,1994,2(2):1-14
    [6]徐鸿华,詹若挺.高良姜、益智规范化栽培技术[M].广州:广东科技出版社,2003:8
    [7] Kress WJ. , Liu A. Z., Newman M, et al. The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers [J]. American Journal of Botany,2005,92(1):167–178
    [8]李彩君.高良姜质量标准研究[D].广州中医药大学硕士学位论文,2000:6-7
    [9]中国人民共和国药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社.2005:202
    [10]詹若挺,徐鸿华.高良姜益智规范化栽培技术[M].广东:广东科技出版社.2003:2-3
    [11]玛奕玺.徐闻高良姜的特征、栽培及加工利用[J].广东农业科学,1996,4:22-23
    [12]高海生,李春华,蔡金星,等.天然果蔬保鲜剂研究进展[J].中国食品学报,2003,3(l):86-91
    [13]杨福顺,赵胜德,陆善旦.高良姜野生变家种栽培技术[J].中国林副特产,1991,18(3):24-25
    [14]杨福顺,赵胜德,黄陪彪,等.高良姜种子繁殖方法[J].中药材,1990,13(2):10
    [15]詹若挺,黄海波,潘超美,等.高良姜规范化生产标准操作规程(SOP)(试行)[J].现代中药研究与实践,2008,22(6):3-5
    [16]吴开芬,陈河清.南药高良姜的驯化栽培[J].中国热带农业,2005,(4):29-30
    [17]赵志礼,李斌,董辉,等.国产山姜属药用植物资源[J].中草药,1998,29(9):621~625
    [18]高明乾,李景原,刘萍.姜科植物古汉名考证[J].河南师范大学学报(自然科学版),1998,26(3):62-65
    [19]秦民坚,徐路珊,董辉.高良姜与红豆益的本草考证[J].基层中药杂志,1998,12(4):7-8
    [20]周子静,周晓东,廖月葵,等.高良姜及其三种混淆品的生药鉴定[J].中药材,1990,13(7):20-23
    [21]宋玲.高良姜与大高良姜的紫外光谱鉴别[J].中药材,1993,16(1):20-21
    [22]白权,孙琪华.高良姜与其混伪品的鉴别[J].川北医学院学报,1994,9(4):7-19
    [23]周汝昌,孙仁,刘鹰.高良姜与易混品大良姜的鉴别[J].时珍国药研究,1997,8(1):38
    [24]刘惠君,白娟.高良姜与大良姜的鉴别[J].河南科学,1999,17:199-200
    [25]刘心纯,符红,黄海波,等.高良姜与混淆品的鉴别研究[J].广州中医药大学学报,1999,16(3):232-234
    [26]尹形东.高良姜伪品——山姜的生药学研究[J].中草药,1999,25(2):109
    [27]王荔青,土鼎峰.高良姜与混淆品大高良姜的鉴别[J].海峡药学,2004,16(4):96-97
    [28] Pang Q. H, Yan P, Zhao X, et al. Identification of Alpinia officinarum Hance and its adulterants based on matK gene sequences.[J]. Journal of Shanxi University of Science&Technology.2008,26(8):11-15
    [29] Tram N. L., Ryo Yl, Makoto S., et al. Isolation and Structural Elucidation of Some Glycosides from Rhizomes of Smaller Galanga (Alpinia officinarum Hance).Journal of Agricultural and Food Chemistry,2002,50:4919-4924
    [30]卜宪章,肖桂武,古练权,等.高良姜化学成分研究[J].中药材,2000,23(2):84-86
    [31] Anne J., Alain V., Nucleophilic addition of 2-(trimethylsilyloxy) furan to a D-glucopyranose oxocarbenium ion[J].Tetrahedron:Asymmetry,1998,9(17):3129-3134
    [32]罗辉,蔡春,张建和,等.高良姜化学成分研究[J].中药材,1998,21(7):349-351
    [33]安宁,林佳,杨世林,等.高良姜根茎中的一个新糖苷[J].药学学报,2006,41(3):233-235
    [34]土秀芹,王佩贤.山姜属植物的化学成分研究进展[J].西北药学杂志,2008,2:129-130
    [35]罗辉,蔡春,张建和,等,高良姜根茎叶挥发油化学成分比较[J].时珍国医国药,1997,8(4):319-320
    [36]罗辉,蔡春,张建和,等.不同产地高良姜挥发油化学成分比较[J].时珍国医国药,1998,9(1):29-30
    [37]罗辉,蔡春,刘江琴,等.高良姜鲜品和干品挥发油化学成分比较[J].中国现代应用药学,1998,15(1):16-17
    [38]周漩,郭晓玲,玛毅凡.不同产地高良姜挥发油化学成分的研究[J].中草药,200637(1):33-34
    [39]林敬明,刘双秀,贺巍,等.高良姜超临界CO2萃取物CC-MS分析[J].中药材,2000,23(10):613-616
    [40]黄初升,白素平,李瀛.天然线性二芳基庚烷类化合物[J].天然产物研究与开发,1997,9(2):98-105
    [41]李彩君,陈佃,何瑞.高良姜中二苯基庚烷类化合物研究进展[J].时珍国医国药,2000,11(4):367-368
    [42] Kiuchi F., Shibuva M. Sankawa U. Inhibitors of prostaglandin biosynthesis from Alpinia officinarum[J].Chem Pharm Bull,1982,30(6):2279-2282
    [43] Itokawa H., Morita H., Midorikawa L., et al. Diarvlheptanoids from the rhizomes of Alpinia officiuarum Hance[J].Chem Pharm Bull,1985,33(11):4889-4893
    [44] Itokawa H. Two new diarvlheptanoids from Alpinia officinarum Hance[J].Chem Pharm Bull,1981,29(8):2383-2385
    [45] Shin D., Kinoshita K., Koyama K., et al. Antiemetic principles of Alpinia officinarum[J]. J Nat Prod,2002,65(9):1315-1318
    [46] Shinichi U., Yasuda I., Akiyama K., et al. Diarylheptanoids from the rhizomes of Curcuma xanthorrhiza and Alpinia officinarum[J]. Chem Pharm Bull,1987,35(5):3298-3304
    [47] Athamaprasangsa S. A 1 , 7-diarylheptanoid from Alpinia conchigera [J]. Phytochemistry,1994,37(3):871-873
    [48]安宁,杨世林,徐丽珍,等.山姜属植物中双苯庚烷类化合物研究概况[J].国外医药.植物药分册,2006,21(5):185-189
    [49] Leopold J., Cerhard B., Mohamed P. S., et a. Analysis of the essential oils o ftheleaves, Stems, rhizomes and roots or themedicina lplants Alpinia galangal lfrom southern India [J].2003,53:73-81.
    [50]安宁.1常用中药高良姜化学成分研究;2准噶尔大戟脂溶性化学成分研究.中国协和医科大学,中国医学科学院[D].2006:20-22
    [51] Ly T. N., Yamauchi R., Shimoyamada M., et al. Isolation and structure elucidation of some glycosides from the rhizomes of smaller galangal (AlpiniaofficinarumHance) [J].JAgricFoodChem,2002,50(17):4919.
    [52]安宁,林佳,杨世林,等.高良姜根茎中的一个新糖苷[J].药学学报,2000,41(3):233-235
    [53] Ly T. N., Shimoyamada M., Kato K., et al. Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galangal (AlpiniaofficinarumHance) [J].J Agric Food Chem,2003,51(17):4924
    [54]罗辉,张建和,揭新明,等.不同产地高良姜无机元素含量的比较[J].广东微量元素科学,1997,4(2):69-71
    [55]罗辉,张建和,揭新明,等.高良姜根茎叶及其种植土壤中无机元素含量的研究[J].广东微量元素科学,1997,4(4):67-69
    [56]王平,陈锡林,李丽,等.川穹、高良姜等挥发油的水蒸汽蒸馏法和超临界流体萃取法比较研究[J].中成药,2004,26(6):440-443
    [57]杨晓红,龙承友.高良姜挥发油的提取工艺研究[J].湖南农业科学,2008,(6):90-93
    [58]庞启华,何建华,曾润娟,等.不同方法提取高良姜挥发油的比较研究[J].药物生物技术,2008,15(1):54-58
    [59]申楼,余楚钦,吕竹芬,等.β-环糊精包合高良姜油的工艺研究[J].国际医药卫生导报2006,12(5):71-73
    [60]全其根,郭爱贤,等高良姜油树脂的提取与稳定性研究,中国食品添加剂,2008,3:73-76
    [61]董乃维,刘凤芝,甘春丽,等.高良姜素提取工艺改进研究[J].哈尔滨医科大学学报,2006,40(2):168-169
    [62]邓赟,陈谨,唐灿,等.从高良姜中制备高良姜素对照品的研究[J].中药材,2005,28(10):948-949
    [63]黄云,陈玲,候红瑞,等.大孔吸附树脂对高良姜素吸附纯化特性的研究[J].现代食品科技,2007,23(l):1-4
    [64]符伟玉,张建和,罗辉,等.水溶性高良姜素精氨酸酷的制备研究[J].时珍国医国药,2006,17(6):921-922
    [65]周新,丁兰,汪子明等.高良姜中棚皮素的超声雾化萃取[J].吉林大学学报(理学版),2005,43(2):228-231
    [66]陈湖海,王鹏.高良姜的化学成分及药理活性研究进展[J].药学实践杂志,2004,22(6):327-330
    [67]吕玮,蒋伶活.高良姜的化学成分及药理作用[J].2006,15(3):19-21
    [68]刘小红,张尊听,段玉峰,等.市售大然植物香料的抗氧化作用研究[J].食品科学,2002,23(1):143-145.
    [69] Lee Si Eun, Hwang Hyun Jin, HaJung Sun, et al. Screening of medicinal plant extracts for antioxidant activity[J].Life Science,2003,167-179
    [70]彭伟文,洪晖普.几味姜科和豆科类中药抗氧化性能的研究[J].时珍国药研究,1998,9(2):146
    [71]刘应柯,黄国峰.高良姜抗凝实验及对心肌脂质过氧化的影响[J].中国中医科技,1997,4(1):47
    [72]陈南岳,赵明伦.PKG抑制剂与六种海洋生物和中草药对鼻咽癌细胞生长的影响[J].中国病理生理杂志,1996,12(6):596.
    [73] Moon Y. H., Su J. S., William W. A.. Antli-genoloxicily of galangin as a cancer chemoprevenlive agent candidale[J].MutationRes,2001,488:135-150.
    [74]安川宪.高良姜的抗促癌作用[J].国外医学·中医中药分册,2003,25(1):53.
    [75] Yutaka Konishi. Modulations off ood-derived substances on intestinal permeahilily in Caeo-2cell monolayers [J]. Biosci Biotechnol Biochem,2003,67(10):2297-2299
    [76]沈琦,李文姬,徐莲英.高良姜等中药对5-氟脲嘧啶的促渗作用[J].中药材,2000,23(11):697–699
    [77]沈琦,胡晋红,徐莲英.不同来源丁香油、高良姜油对氟脲嘧啶透皮吸收的影响[J].药学服务与研究,2001,1(1):13-15
    [78]吴清和,荣向路,黄萍,等.高良姜有效部位的筛选研究[J].新中医,2000,32(6):31-32
    [79]吴清和,荣向路,黄萍,等.高良姜素的药效学研究[J].中药材,2000,23(11):699-701
    [80] Dailelsu S., Kaoru K., Kiyolaka K., et al. Anliemelic principles of Alpinia afficinarum.Kunio T [J]. J Nal Prod,2002.65:1315-1318
    [81] Min Z., Katherine T L., Polau L. Pretective effect of a plant fomula on ethanol induce d gastric lesions in rates [J].Phylolher Res,2002.16:276-280
    [82]朱自平,陈光娟,张明发,等.高良姜的温中止痛药理研究[J],中药材,1991,14(10):37-41
    [83]张明发,沈雅琴.温里药“温中散寒”药理研究[J].中国中医药信息杂志,2000,7(2):30-32
    [84]吴清和,操电群,黄萍,等.高良姜超临界萃取物对应激性溃疡大鼠溃疡形成及表皮生长因子和白介素-2水平的影响[J].中药药理与临床,2004,20(6):17-18
    [85]吴清和,林蕊,曾晓会.高良姜超临界萃取物肠管解痉作用胆碱能机制的研究[J].中药材,2004,27(10):739-741
    [86]吴清和,林蕊,曾晓会.高良姜超临界萃取物对兔离体肠管解痉作用机机的研究[J].中药药理与临床,2004,20(4):22-23
    [87]操电群.胃肠运动神经调节与高良姜胃肠解痉的可能途径[J].甘肃中医,2004,17(4):7-9
    [88]唐春萍,江涛,陈少仪,等.高良姜总黄酮对兔离体回肠运动的影响[J].中药药理与临床,2006,22(5):23-25
    [89] Bendjeddou D., Lalaoui K., Sall aD. Immuno stimulaling actlivity of the hotwater-soluble polysaccharide extracts of Anacyclus pyrethrum,Alpinia galanga l and Citrullus coloynthis [J].J Ethnopharmacology,2003,88:155-160
    [90]宫毓静,安汝国,虞慧,等.164种中药乙醇提取物抗真菌作用研究[J].中草药,2002,33(1):42-47
    [91]桂蜀华,蒋东旭,衰捷.花椒、高良姜挥发油体外抗真菌活性研究[J].中国中医药信息杂志,2005,12(8):21-22
    [92]骆众平,郑服丛,杨叶.128种南药植物提取物对6种病原菌的生长抑制作用[J].热带作物学报,2004,25(4):106-111
    [93]赵炯,吕玮,段宏泉,等.高良姜中的抗白念珠菌化学成分[J].山西医科大学学报,2007,38(7):604-607
    [94]董玉琛.生物多样性及作物遗传多样性检测[J].作物品种资源,1995(3):1-5
    [95]邢俊波,李萍.生物多样性与中药材质量关系的研究[J].中医药学刊,2003,21(1):46-48
    [96]葛淑俊,孟义江,李广敏,等.我国药用植物遗传多样性研究进展[J].中草药,2006,37(10):1584-1589
    [97] Tong G., K., Si J. P., Liu R. Study on variation and inheritance of phenolic compound concentrations in Magnolia offioinalis of different seed sources [J].ForestRes,2000,13(3):257-261.
    [98] Si J. P., Liu R., Cai Y. A., et al. Preliminary studies on heteromorphyosis of Magnolia offioinalis from different provenances [J].J Zhejiang forest Sci Technol,1998,18(3):13-17.
    [99]葛颂洪德元.泡沙参复合体(桔梗科)的物种生物学研究: I.表型的可塑性[J].植物分类学报, 1994,32(4):489-503.
    [100]葛颂洪德元泡沙参复合体(桔梗科)的物种生物学研究III.性状的遗传变异及其分类价值[J].植物分类学报,1995, 33(5):433-443.
    [101]葛颂,洪德元,濒危植物裂叶沙参及其广布种泡沙参遗传多样性的对比研究。遗传学报1999,26(4):410-417.
    [102]曹瑞,马.虹,王迎春.名贵药材肉苁蓉原植物形态的多样性研究[J].中国中药杂志,2004,29(1):35-37
    [103]王文奎,周春玲,戴思兰.毛华菊花朵形态变异[J].北京林业大学学报,1999,21(3):92-95
    [104]贾琳陆巧玲虞,泓泸.淀百合遵义居群与牟定居群的遗传多样性研究[J].云南大学学报(自然科学版),2003,25(增刊):84-90
    [105]郑玉忠,席嘉宾,杨中艺.中国竹节草野生种植资源调查及生物学特征研究[J].草业学报,2005,14(3):117-122
    [106]李瑞奇,马峙英,王省芬,等.转基因抗虫棉农艺性状和纤维品质的遗传研究[J].植物遗传资源学报,2005,6(2):210-215
    [107] Barbujani G., Pigliucei M. Geographical patterns of karyotype polymorphism in Italian populations of Ornithogalum montanum (Liliaceae) [J]. Heredity,1989,62:67-75
    [108]龚沟,肖调江,顾志建,等.黄牡丹8个居群的GiemsaC带比较研究[J].云南植物研究,1999,21(4):477-482
    [109]邱英雄,黄爱军,傅承新.明党参的遗传多样性研究[J].植物分类学报.2000,38(2):111-120
    [110]吴丽圆,陈少瑜.云南红豆杉天然群体的遗传多样性和群体分化[J].中南林学院学报,2001,21(3):37-40
    [111]林长松,何平,邓洪平.缙云山特有植物缙云黄芩的等位酶变异研究[J].西南师范大学学报(自然科学版),2002,27(2):219-225
    [112]何敬胜,李作洲,黄宏文.濒危物种——巴东木莲等位酶遗传变异的空间自相关分析[J].云南植物研究,2005,27(2):171-180
    [113]康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究[J].生物多样性2002,10(4):376-385
    [114]曾杰,王中仁,周世良,等.广西区西南桦天然居群遗传多样性的研究[J].植物生态学,2003,27(1):66-72
    [115]陈国庆,黄宏文,葛学军,等.濒危植物矮沙冬青的等位酶多样性及居群分化[J].武汉植物学研究,2005,23(2):131-137
    [116]王志林,赵树进,吴新荣.分子标记技术及其发展[J].生命的化学,2001,21(4):39-42
    [117]陈永久,王文,杨跃雄,等.冬虫夏草(Cordycepssinensis)的随机扩增多态DNA及其遗传分化[J].遗传学报,1997,24(5):410-416
    [118]吴卫,郑有良,陈黎,等.鱼腥草种质资源的RAPD分析[J]药学学报,2002,37(12):986-992
    [119]魏玉清,许兴,王璞.不同地区主要栽培宁夏构祀品种的RAPD分析[J].西北农林科技大学学报(自然科学版),2007,35(1):91-95
    [120]马小军,汪小全,肖培根,等.人参农家类型的AFLP指纹研究[J].中国中药杂志,2000,25(12):707-710
    [121]伍莲,邓洪平,徐洁,等.金毛狗居群遗传多样性的AFLP分析[J].中国中药杂志,2007,32(14):1468-1469
    [122]沈永宝,施季森,赵洪壳.利用ISSRDNA分子标记鉴定主要品种[J].林业科学,2005,41(1):203-204
    [123]周延清,景建洲,李振勇,等.利用RAPD和ISSR分子标记分析地黄种质资源遗传多样性遗传[[J].遗传,2004,26(6):922-928
    [124]杨九艳,杨韵,杨明博,等.鄂尔多斯高原锦鸡儿属药用植物的ISSR分析[J].中草药,2006,37(10):1563-1566
    [125]孙群,咚汉文,吴波,等.Genetic diversity of Glycyrrhiza uralensis Fisch.Detected by morphological and ISSR molecular markers [J].植物遗传资源学报,2007,8(1):56-63
    [126]闰志峰,张本刚,张昭,等.珍稀濒危药用植物黄栗野生种群遗传多样的AFLP分析J].生物多样性,2006,14(6):488-497
    [127]张建清,苏雪,吴琼,等.药用植物党参的RAPD分析[J].中药材,2006,29(5):417-420
    [128]杨新全,冯锦东,魏建和,等.我国特有濒危药用植物降香黄檀遗传多样性研究J].世界科学技术——中医药现代化,2007,9(2):73-76
    [129]普春霞,杨竹雅,刘小莉.云南铁线莲属12种药用植物的RAPD分析[J].第2008,31(5):37-41
    [130]刘逸慧,陈斌龙,周晓龙.药用植物白术栽培群体的遗传多样性研究[J].中国中药杂志,2008,33(23):2756-2760
    [131]胡世林.中国道地药材[M].哈尔滨:黑龙江科学技术出版社,1989:3
    [132]张琳道.道地药材浅析[J].陕西中医学院学报,2004,27(6):70-71
    [133]黄璐琦,张瑞贤.“道地药材”的生物学探讨[J].中国药学杂志,1997,32(9):563-566
    [134]陈家宽,杨继主.植物进化生物学[M].武汉:武汉大学出版社,1994:1
    [135]郑金生.“道地药材”的形成与发展(Ⅰ) [J].中药材,1990,13(6):39
    [136]郑金生.“道地药材”的形成与发展(Ⅱ) [J].中药材,1990,13(7):43
    [137]周荣汉,周新.道地药材与化学分类学[J].中国医药学报,1990,5(4):78
    [138]魏全嘉.论道地药材的形成及演化[J].中国中药杂志,1997,22(8):460-462
    [139]安华.生态的变化对药材道地的影响[J].中医研究,2004,(4):
    [140]邓继福,王振中,张友梅,等重金属污染对土壤动物群落生态影响的研究[J].环境科学,1996,17(2):1
    [141]王四齐.中子活化分析法测定牛黄中的微量元素[J].中草药,1985,16(8):13
    [142]胡妮娜,田淑琴,于景伟等传统中药鉴定方法的研究发展概况[J].中医药信息,2008,25(3):15-18
    [143]张贵君,肖培根.中药鉴定学[M].北京:科学出版社,2002:41-53
    [144]张贵君,李晓波,李仁伟,等.常用中药生物鉴定[M].北京:化学工业出版社,2006:7-13
    [145]俞瑜,吴谦,杨燕军.免疫印迹技术在参属药材鉴别中的应用[J].中药新药与临床药理,2000,11(3):164-166
    [146]白钢,曹学琳,杨文博等.甘草的免疫学鉴定方法研究[J].中草药,2004,5(1):83-86
    [147]冯成强,黄璐琦j,柳川等,蛋白免疫检测技术在天花粉真伪鉴别中的初步研究[J].中国药学杂志,2005,40(8):574-577
    [148] John Hon-Kei Lum, Ka-Lee Fung, Pik-Yuen Cheung, et al. Proteome of Oriental ginseng Panax ginseng C. A. Meyer and the potential to use it as an identification tool [J]. Proteomics,2002,2(9):1123-1130.
    [149]孙艳,唐灿.运用凝胶电泳法鉴别莱蓝子[J].生命科学仪器,2008,6(8):46-48
    [150]冯成强,张义玲,张文生等.半夏及其混淆品掌叶丰夏的蛋有高效毛细管电泳法鉴别[J].世界科学技术一中医药现代化,2005,7(增刊):42-44
    [151]冯成强,张文生,张以玲等.高效毛细管电泳法鉴别半夏及水半夏[J].中国中药杂志,2007,32(11):1089-1090
    [152]冯成强,张义玲,张文生等.桅子及其混淆品水桅子的蛋白高效毛细管电泳法鉴别[J].北京中医药大学学报,2006,(29):347-349
    [153]张贵君,李晓波,李仁伟等.常用中药生物鉴定[M].
    [154]尹秀莉.黄金菊制剂质量评价及生物效应鉴定方法探讨[D].北京:北京中医药大学,2006
    [155]王盛民,张瑛,赵子剑等.清热解毒类中药的生物鉴定法III——穿心莲的生物鉴定[J].实用临床医药杂志,2006,10(3):27-37
    [156]张虹,罗鹏.四川几种常见五味子的核型研究[J].西南农业大学学报,2000,22(2):177-190
    [157] Ibrahim S. F., vanden Engh G.. High-speed chromosome sorting [J]. Chromosome Research,2004,12:5-14
    [158]黄璐琦.分子生药学(第二版)[M].北京:北京大学医学出版社,2006:345-346
    [159] Williams JGK, Kubelik AR, Livak KJ. Et al. DNA polymorphisms amplified byarbitrary primersare usefulas genetic markers[J]. Nucleic Acids Research,1990,18:6531-6535
    [160] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research,1990,18:7213-7218
    [161] Cheung KS, Kwan HS, But PPH, et al. Pharmacognostical identification of Americanand Orienta lginseng roots by genomic fingerprinting using arbitrarily-primer polymerase chain reaction[J]. Journal of Ethnopharmacology,1994,42:67-69
    [162] Shaw P C, But PPH. Authentication of Panax species and their adulterants by random-primer polymerase chain reaction [J]. Planta Medica,1995,61:466-469
    [163]张铭,黄华荣,廖苏梅等.石解属RAPD分析及鉴定铁皮石解的特异性引物设[J].中国中药杂志,2001,26(7):442-447
    [164]丁鸽,丁小余,沈洁等.铁皮石解野生居群遗传多样性的RAPD分析与鉴别[J].药学学报,2005,40(11):1028-1032
    [165]杨美华,张大明,刘健全等.正品和伪品大黄的RAPD指纹图谱鉴定研究[J].中草药,2003,34(6):557-560
    [166]蒋军富,李雄英,吴耀生等.绞股蓝的RAPD指纹图谱鉴定及其特异DNA片段克隆、序列分析[J].中药材,32(2):190-193
    [167]王志林,赵树进,吴新荣.分子标记技术及其发展[J],生命的化学, 2001, 21(4):39-42
    [168] Paran I., Michelrnore R.W. Development of reliable PCR-based linked to downy mildew resistance genes in lettuce [J]. Theoretical and Applied Genetics, 1993, 85:985-993
    [169] Ohmori T., Murata M., Motoyoshi F. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato[J]. Theoretical and Applied Genetics, 1996, 92:151-156
    [170] Wang J., Ha W.Y., Ngan F.N., et al. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants [J]. Planta Med, 2001, 67 (8):781-783
    [171] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting〔P〕. European patent office publication,1993, 0535 858A1.
    [172] Vos P, Hogers R, Bleeker M, et al. AFLP : A new technique for DNA fingerprinting. Nucleic Acids Rearch, 1995, 23: 4407-4414
    [173]缪颖.AFLP分子标记及其应用[J].亚热带植物通讯,1999,28(2):55-60
    [174]罗志勇,周钢,周肆清等.AFLP法构建人参、西洋参基因组DNA指纹图谱[J].药学学报,2000,35( 8) : 626- 629
    [175]杜娟,马小军,李学东.半夏不同种质资源A FLP指纹系谱分析及其应用[J].中国中药杂志,2006,31(1): 30-33
    [176] Zhang L., uang B.B., Kai G. Y., et al. Analysis of intraspecific variation of Chinese Carthemus tinctorius L. using AFLP markers [J]. Acta Pharmaceutica Sinica 2006, 41(1): 91-96
    [177]赵永亮,傅体华,范巧佳等.川牛膝(Cyathula officinalis Kuan.) RAPD和AFLP标记的多态性聚类分析[J].安徽农业科学,2008,36(16):6682- 6686
    [178]土志安,徐行,沈晓霞等.白术种质AFLP指纹图谱分析体系的建立和应用[J] .中药材,2008,31(4):483-487
    [179]曹晖,刘玉萍,邵鹏柱等.DNA分子指纹图谱与测序技术在中药品质研究中的现状及展望[J].中国中药杂志,1998,23(11):643-645
    [180]郑玉红,夏冰,杭悦宇等.山药原植物薯祯及其近缘种的分子鉴别和亲缘关系研究[J].南京农业人学学报,2007,30 (2):55-59
    [181]邹小兴,黄璐琦,崔光红等.苍术属植物的遗传关系研究[J].药学学报, 2009,44 (6):680-686
    [182] Zhang Y. B., Jiang'R. W., Li S. L., et al. Chemical and molecular characterization of Hong Dangshen, a unique medicinal material for diarrhea in Hong KongJournal of Chinese[J]. Pharmaceutical Sciences, 2007, (16): 202-207
    [183] Soltis D. E., Kuzoff R. K., Conti E., et al. matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic [J]. Am J Bot, 1996, 83: 371
    [184]罗集鹏,曹晖,刘玉萍.广蕾香与土蕾香的DNA序列分析及其分子鉴别[J].药学学报,2002,37( 9):739-742
    [185]刘玉萍,曹晖,韩桂茹等.中日产川芎的matK、ITS基因序列及其物种间的亲缘关系[J].药学学报,2002,37(1):63-68
    [186]沈洁,丁小余,张卫明等.花椒及其混淆品的rDNA ITS区序列分析与鉴别[J] .药学学报,2005,40(1):80- 86
    [187]车建,唐琳,刘彦君等.ITS序列鉴定西红花与其易混中药材[J].中国中药杂志,2007,32(8):668-671
    [188]罗艳,杨亲.川乌与草乌的1TS序列分析[J] .中国药学杂志,2008,43(1):820-823
    [189]张英,陈瑶,张金超等.广蕾香ITS基因型与地理分布的相关性分析[J].药学学报,2007,42(1):93-97
    [190]张宏意,石祥刚.不同产地何首乌的ITS序列研究[J] .中草药,2007,38(6): 911-914
    [191]王东,白雁,陈志全.不同产地山药rRNAITS区序列的比较[J].时珍国医国药,2007,18(1):54-55
    [192]何惠芳,赵庆国,郑绯.中药质量控制因索分析[J].中国煤炭工业医学杂志,2009,12 (5):805-807。
    [1]谢培山,中药指纹图谱的概念——属性——技术——应用[J].中国中药杂志, 2001. 26(10):653-655
    [2]谢培山,中药质量控制的发展趋势[J].世界科学技术——中医药现代化, 2003. 5(3): 56-59.
    [3]黄慧珍,杨.,高良姜的化学成分及其药理活性研究进展[J].广东化工, 2009. 36(1): 77-80.
    [4]黄天来,赵萍,冯美蓉等,白豆蔻、草豆蔻,高莨姜挥发油成份研究[J].广州中医学院学报, 1990. 7(2): 95-95.
    [5]戴云华,马云淑,赵春景等,中药温里药的挥发油化学成分研究[J].云南中医学院学报[J], 1991. 14(3): 27-35.
    [6]赵胜德,杨.,陆善旦等,野生和栽培高良姜挥发油化学成份的比较研究[J].中国林副特产, 1992. 20(1): 12-14.
    [7]蔡春,张建和等,罗.,高良姜根茎叶挥发油化学成分的比较[J].时珍国药研究, 1997. 8(4): p. 319-320.
    [8]罗辉,蔡春,张建和,等,不同产地高良姜挥发油化学成分的比较[J].时珍国药研究, 1998. 9(1): 29-30.
    [9]钱浩泉,李彩君,谢培山,高良姜及其近缘植物挥发油成分的气相色谱指纹图谱研究[J].中药新药与临床药理, 2001. 12(3): 179-179.
    [10]王俊华,林.陈.,不同地区高良姜挥发油和1,8一桉油素含量测定比较[J].时珍国医国药, 1999. 10(7): 481-482.
    [11]高春华,郭.,张亚秋等,丁香油和高良姜油对阿魏酸透皮吸收的促进作用[J].中国新药杂志, 2009. 18(9): 844-846.
    [12]赵晓頔,陈.,谭晓婧,等, GC同时测定高良姜挥发油中α-蒎烯、β-蒎烯、桉油精和α-松油醇的含量[J].中国中药杂志, 2009. 34(21): 2751-2753.
    [13]罗辉,蔡春,刘江琴等,高良姜鲜品和干品挥发油化学成分的比较[J].中国现代应用药学, 1998. 15(1): 16-17.
    [14]陈佃,何瑞,李彩君.高良姜镇痛止呕有效成分的研究[J].广州中医药大学学报,2001,18(3):240-242.
    [15]周漩,郭晓玲,冯毅凡.不同产地高良姜挥发油化学成分的研究[J].中草药,2006,37(1):33-34.
    [16]王文元,顾丽莉,吴志民.1, 8-按叶油素的研究进展.食品与药品.2007,9(2A):56-59.
    [17]中国人民共和国药典委员会.中华人民共和国药典(2005年版),一部[S].北京:化学工业出版社. 2005:202.
    [18]林敬明,刘双秀,贺巍等.高良姜超临界CO2萃取物GC-MS分析[J].中药材,2000,23(10):613-616.
    [19]钱浩泉,李彩君,谢培山.高良姜及其近缘植物挥发油成分的气相色谱指纹图谱研究[J].中药新药与临床药理.2001, 12(3):79-182.
    [20]王平,陈锡林,李丽,柳能军.川芎、高良姜等挥发油的水蒸汽蒸馏法和超临界流体萃取法比较研究[J].中成药,2004,26(6):440-443.
    [21]周长新,藁本内酯的稳定性与溶剂化效应的关系[J].药学学报, 2001. 36(10): 793.
    [22]陈晓颖.用GC/MS法比较姜黄挥发油的两种提取方法[J].广东药学院学报.2001,17(4):293-296
    [23]王成东.超声波应用与重要提取生产的体会及前景分析[J].机电信息.2004,78(12).30-32
    [24]李华,沈洁.超声波法从葡萄籽中提取多酚的研究[J].酿酒科技.2005(5、131).89-91
    [25]韩丽,中药指纹图谱研究技术[M].北京:化学工业出版社, 2002.
    [26]周玉新,中药指纹图谱研究技术[M].北京:化学工业出版社, 2002.
    [1]顾万春,王棋,游应天等.森林遗传资源学概论.北京:中国科学技术出版社,1996
    [2]葛颂,干海群,张灿明等.八面山银杉林的遗传多样性与群体分化.植物学报, 1997,39 (3): 266-271
    [3]邹喻苹,葛颂,王小东.系统与进化植物学中的分子标记.北京:科学出版社. 2001
    [4]姜建国,严媛,宋冬林.盐藻Psy基因保守序列的克隆及同源性分析[J].华南理工大学学报(自然科学版),2004,32(10):76-79
    [5]沈程文,宁正祥,黄建安等.基于表型参数及SRAP标记的广东茶树种质遗传多样[J].应用生态学报,2009,20(7):1551-1558
    [6] King JN, Yeh FC, Heaman JC. Selection ofgrowth and yield triats in controlled crosses of coastal douglas-fir. Silvae Gentica, 1998,37: 158-164
    [7]李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究生物多样性研究[J].生物多样性,2002,10(2):181-188
    [8]刘振虎.中国苜蓿品种资源遗传多样性研究[D].北京林业大学,2004
    [9] Dunn C P.Keeping taxonomy based inmorphology [J]. Trends in Ecology and Evolution, 2003, 18 (6): 270 2
    [10] Mergel K.. Principled plant nutrition[M]. Beijing: Beijing Agricultural University: 1982: 262-264.
    [1]许铁峰,张汉明,张磊,等.生物技术在中药材品质改良、保护和鉴定等方面的应用[J].中国药学杂志,2003,38 (3):166-170.
    [2]邵鹏柱,曹晖,王骏,等.中药分子鉴定[M].上海:复旦大学出版社.2004.
    [3]邱芳,伏健民,金德敏,等.遗传多样性的分子检测[J].生物多样性,1998,6 (2): 143-150.
    [4] Vos P, Hogers R, Bleeker M, et al. AFLP: A new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23: 4407-4414.
    [5]庞启华,严萍,赵翾等.南药高良姜基因组DNA提取方法的研究[J].时珍国医国药,2008,19(5): 1187-1189
    [6]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,28
    [7] Porebski S, Bailey LG, and Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 1997,15: 8-15.
    [8]朱旗,任春梅,洪亚辉,罗军武.茶树叶片DNA提取、纯化和检测.湖南农学院学报,1994,20(2):114-117
    [9]李登科,黄丛林,田建保,王永康,王永勤.高质量枣树基因组DNA提取方法的研究,分子植物育种,2005,3(4):579-583
    [10]安泽伟,黄华孙.一种提取橡胶树叶中总DNA的方法,植物生理学通讯,2005 41(4):515-513
    [11]曹琳,刘忠权,郝明干,等.不同种类中药材的DNA提取方法[J].中国现代应用药学杂志,2004,21(6):465-468
    [12]郭宝林,林生.丹参干叶片的DNA提取[J].中草药, 2002, 33( 5): 418-420
    [13]李晓波,冯波,张朝晖,等.植物药材总DNA提取[J].中草药, 2002, 33(7): 652-654
    [14]乌云塔娜,张党权,谭晓风.梨不同DNA提取方法的效果研究[J].中国生物工程杂志, 2003, 23(7): 98-101
    [15]孙晓东,李军,施京红.枸杞基因组DNA的提取与分析[J].陕西中医, 2003, 24 (12): 1129-1130
    [16] Steven H R., Brlan K., Carolyn H K., et al. DNA Extraction From Plants: The Use of Pectinase [J]. Plant Molecular Biology Reporter 2001,19: 353–359
    [17]郑成木.植物分子标记原理与方法[M].湖南科学技术出版社,长沙,2003:129-131
    [1]杨洪鸣,李真玉,唐金宝.现代生物技术在中药鉴定中的应用[J].中国药师,2004, 7(10):811-812.
    [2] Nilgün G?ktürk Baydar, Hasan Baydar, Thomas Debener. Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers [J]. Journal of Biotechnology 2004; 111: 263–267
    [3] Flemming Lund, Anni Bech Nielsen, Pernille Skouboe. Distribution of Penicillium commune isolates in cheese dairies mapped using secondary metabolite profiles, morphotypes, RAPD and AFLP fingerprinting. Food Microbiology 2003; 20: 725-734
    [4] M. Labra, T. Di Fabio, et al. AFLP analysis as biomarker of exposure to organic and inorganic genotoxic substances in plants [J]. Chemosphere 2003; 52: 1183-1188
    [5] Laurence Despres, Ludovic Gielly, et al. Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability [J]. Molecular Phylogenetics and Evolution 2003; 27:185-196
    [6] Jeppe R. Andersen and Thomas Lu¨bberstedt. Functional markers in plants [J]. TRENDS in Plant Science 2003; 8(11): 554-560
    [7] Claudio De Giovanni, Pasqua Dell’Orco, et al. Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato [J]. Plant Science 2004; 166: 41-48
    [8] Chih-Cheng T. Chao, Pachanoor S. Devanand, Jianjun Chen. AFLP analysis of genetic relationships among Calathea species and cultivars [J]. Plant Science 2005; 168: 1459-1469
    [9] T. Balasaravanan, P.K. Pius, et al. Genetic diversity among south Indian tea germplasm (Camelliasinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers [J]. Plant Science 2003; 165: 365-372
    [10] L.F. Yourman and D.G. Luster. Generation of molecular markers for the identification of isolates of Puccinia jaceae, a potential biological control agent of yellow starthistle [J]. Biological Control 2004; 29: 73-80
    [11] J.D. Chung, T.P. Lin, et al. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamialanceolata, a mainland species in China [J]. Molecular Phylogenetics and Evolution 2004; 33:791-801
    [12] Nei M., Li W.H. Mathematical modal for studying genetic variation in terms of restriction endonnuleasea [J]. Proc Natl Acad Sci USA, 1979, 76(10):5269-5273
    [13]黄璐琦,张瑞贤.“道地药材”的生物学探讨[J].中国药学杂志,1997,32(9):563-566
    [14]李萍,蔡朝晖,邢俊波. 5S-rRNA基因间区序列变异用于金银花药材道地性研究初探[J].中草药,2001,2(9):834-837
    [15]罗志勇,周钢,周肆清等.AFLP法构建人参、西洋参基因组DNA指纹图谱[J].药学学报,2000,35( 8) :626- 629
    [16]杜娟,马小军,李学东.半夏不同种质资源A FLP指纹系谱分析及其应用[J].中国中药杂志,2006,31(1):30-33
    [17]赵翾.白木香(Aquilaria sinensis (Lour.) Spreng.)的遗传多样性研究[D].华南理工大学博士学位论文,2006:126-137
    [18]季颖,王清清,宋海峰.毛细管电泳技术在核酸分析中的应用[J].国际药学研究杂志, 2009, 36(2): 127-130
    [1]赵志礼,李斌,董辉,等.国产山姜属药用植物资源[J].中草药,1998,29(9):621-625.
    [2]尹彤东.高良姜伪品——山姜的生药学研究[J].中草药,1994, 25(2):109.
    [3]高明乾,李景原,刘萍.姜科植物古汉名考证[J].河南师范大学学报(自然科学版) ,1998,26(3):62-65.
    [4]王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用[J].植物分类学报,1999,37 (4):407-416.
    [5]徐红,李晓波,丁小余等.中药黄草石斛rDNA ITS序列分析[J].药学学报,2001,36(10): 777-783
    [6]沈洁,丁小余,张卫明等.花椒及其混淆品的rDNA ITS区序列分析与鉴别[J].药学学报, 2005, 40(1): 80-86
    [7]刘玉萍,曹晖,韩桂茹等.中日产川芎的matK、ITS基因序列及其物种间的亲缘关系[J].药学学报,2002,37(1): 63-6
    [8]罗艳,杨亲二.川乌与草乌的ITS序列分析.中国药学杂志,2008,43(11):820-823
    [9] NeuhausH, Link G. The chloroplast tRNALys (UUU) gene from mustard (Sinapsisalba) contains a class II intron potentially coding for a maturase-related polypeptide[ J]. Curr Genet, 1987, 11: 251.
    [10] Wolfe K H. Protein-coding genes in chloroplastDNA: compilation ofnucleotide sequences, data base entries and rates of molecular evolution, in Vasil IK [eds. ], Cell culture and somatic Cell Genetics of Plants [M], Academic Press, San Diego, Vol 7B, 1991: 467.
    [11] Johnson L A, SoltisD E.MatKDNA sequences and phylogenetic reconstruction inSaxifragaceae s. s [ J]. Syst Bot, 1994, 19:143.
    [12] Johnson L A, SoltisD E. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) usingmatK sequences [J]. Ann Missouri Bot Gard, 1995, 82: 149.
    [13] Plunkett G M, Soltis D E, Soltis P S. Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data [J]. Amer J Bot, 1997, 84: 565.
    [14] Kron K A. Phylogenetic relationships ofRhododendroideae (Ericaceae) [J]. Amer J Bot, 1997, 84: 973.
    [15] Xiang Q Y, SoltisD E, Morgan D R, et a.l Phylogenetic relationships of L. sensu lato and putative relatives inferred from rbcL sequence data[J]. AnnMissouriBotGard, 1993, 80: 723.
    [16] Stanford A M, Harden R, ParksC R. Phylogeny and biogeography of Jugland (Juglandaceae) based onmatKand ITS sequence data [J]. Amer J Bot, 2000, 87: 872.
    [17] Ohsako T, Ohnishi O. Intra and interspecific phylogeny of wild Fagopyrum ( Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA[ J]. Amer J Bot, 2000, 87: 573.
    [18] Yang Dong-Ye, Hirotoshi Fushimi, Cai Shao-Qing. Molecular analysis of Rheum species used as Rhei Rhizoma based on the chloroplast matK gene sequence and its application for identification [J]. Biol. Pharm. Bull, 2004, 27(3): 375-383.
    [19]罗集鹏,曹晖,刘玉萍,等.广藿香与土藿香的DNA序列分析及其分子鉴别[J].药学学报, 2002, 37(9): 739-742.
    [20] Cao Hui, Komatsu Katsuko. Molecular identification of six medicinal Curcuma plants produced in Sichuan: Evidence from plastid trnK gene sequences [J]. Acta Pharmaceutica Sinica , 2003,38(11):871-875
    [21] Kress W J, Prince L M, Williams K J, et al. The phylogeny and a new classify -cation of the gingers (Zingiberaceae): evidence from molecular data[J]. American Journal of Botany, 2002, 89(11): 1682–1696.
    [22] Kress W J, Liu Ai-Zhong, Newman M et al. The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers[J]. American Journal of Botany, 2005, 92(1): 167–178.
    [23]詹若挺,黄海波,潘超美,等.高良姜种植基地不同栽培类型的品种调查和形态比较研究[J].现代中药研究与实践,2007, 22(2):3-6.
    [24]刘心纯,符红,黄海波,等.高良姜与混淆品的鉴别研究[J].广州中医药大学学报. 1999, 16 (3): 232-234.
    [25] Pedersen L B. Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae),particularly Etlingera Giseke, based on nuclear and plastid DNA Plant [J]. Syst Evol, 2004, 245: 239–258.
    [26] Ooi K, Endo Y, Yokoyama J,et al. Useful primer designs to amplify DNA fragments of the plastid genematK from angiosperm plants [J].JJpn Bot, 1995, 70 (3): 328-331.
    [27] Elder J R, Turner B J. Concerted evolution of repetitive DNA sequences in eukaryotes [J]. Quart Rev Biol, 1995, 70: 297-319.
    [28] Ainouche M L, Bayer R. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome, 1997: 730~743
    [29] Hsiao C, Chatterton N J, Asay K H. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots.Genome, 1994, 37:112~120
    [30]张文驹.应用rDNA的ITS区探讨多倍体小麦的基因组起源[D].武汉大学博士学位论文, 1998
    [31] Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA, 1995, 92:6813-6817
    [32] Yuan Y M, Kupfer P, Doyle J J. Infrageneric phylogeny of the genus Centiana inferred from nucleotide seqences of the internal transcribed spacers of the nucler ribosomal DNA [J]. Amer J Bot, 1996, 83: 641-652
    [33]钱锦,孙毅,段永红.普通小麦rDNA的ITS区及其基因组起源[J].作物学报,2009,35(6):1021-1029
    [34]王建波,张文驹.异源多倍体植物核rDNA序列的同步进化[J].遗传,2000, 22(1): 54-56.
    [35]吴德邻,等.中国植物志[M]. (16卷2分册).北京:科学出版社, 1981: 68.
    [36]曹晖,蔡金娜,刘玉萍等.蛇床子地理分布与叶绿体matK基因序列的相关性分析[J].中国药学杂志, 2001, 36(6): 373-376
    [37]王亚玲就,李勇,张寿洲等.用matK序列分析探讨木兰属植物的系统发育关系[J].植物分类学报, 2006: 44(2):135–147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700