外部扰动条件下高温超导YBCO块材在永磁轨道上的磁悬浮性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2000年12月31日,我国西南交通大学超导技术研究所研制成功世界首辆载人高温超导磁悬浮实验车。2004年,德国、俄罗斯也相继研制出了载人高温超导磁悬浮实验车。高温超导磁悬浮车技术以其独特的优势在交通运输领域显示出良好的应用前景和巨大的经济开发潜力。随着对高温超导磁悬浮性能研究的深入,高温超导磁悬浮车技术离实际应用越来越近。因此,很有必要对其进行实用化研究。本论文采用实验和计算相结合的方法,主要研究了实际运行过程中的三种外部扰动条件下高温超导块材在永磁轨道上的磁悬浮性能。实验研究方面,利用国家“863”项目研制的高温超导磁悬浮发射样机系统和高温超导磁悬浮测试装置SCML-2搭建论文所需的实验平台,对轨道坡度、载重、振动条件下的磁悬浮性能进行了相关实验研究。计算方面,论文根据磁通流动和蠕动模型,采用数值计算方法对悬浮于永磁轨道上方的高温超导块材的悬浮力进行计算,并对计算结果的正确性进行了深入细致的实验验证,证明了这种计算方法具有较高的可靠度,同时利用该算法分析了块材在永磁轨道上方运动过程中电流密度分布的变化情况。在此基础上,利用该算法进行相关的计算研究。
     本论文首先对轨道坡度情况下的高温超导磁悬浮性能进行了实验研究。作者通过对高温超导磁悬浮车爬坡过程的简化分析,得出研究方案,之后进行了相关的爬坡实验研究;然后首次进行了爬坡过程的模拟实验,主要针对坡度情况下高温超导磁悬浮性能参数(悬浮力、导向力、悬浮力刚度及悬浮高度等)的变化情况进行研究。这一部分内容的研究,国内外尚属首次。
     其次,作者对载荷变化条件下的高温超导磁悬浮性能(主要包括车体悬浮高度漂移、悬浮力弛豫)进行了研究。主要针对高温超导磁悬浮实验车在加载和减载条件以及重复加减载条件下的悬浮漂移情况进行了实验研究;然后,作者利用高温超导磁悬浮测试装置对加载条件下悬浮力的弛豫情况进行了实验研究,用以检验计算结果的正确性,实验结果和计算结果显示出较好的一致性;在此基础上,对加载和减载过程中的悬浮力弛豫情况进行了数值仿真计算,并从定量上提出了抑制悬浮力弛豫的方法。国内外暂未发现载荷变化条件下的高温超导磁悬浮车性能研究的相关报道。
     再次,实验研究了高温超导磁悬浮实验车在由永磁轨道外场的不均匀性引起振动的情况下低速运行过程中车体的悬浮漂移情况,国内外暂无相关报道。为了探寻振动对磁悬浮性能的影响规律,利用数值计算方法对垂直和水平方向振动条件下块材的悬浮力及电流分布变化规律进行了研究。水平方向振动对磁悬浮性能影响的研究,国内外尚未发现相关报道。
     最后,讨论了外部扰动条件下高温超导磁悬浮性能优化方法。主要内容包括悬浮力密度的提高方法、悬浮力磁滞的调节方法和悬浮力弛豫的减小方法。
     本论文的研究工作为高温超导磁悬浮车爬坡能力和载重能力的研究奠定了一定的研究基础;同时该研究工作可为高温超导磁悬浮车运行的稳定性和可靠性研究奠定一定的研究基础,并为高温超导磁悬浮车的优化设计提供一定的理论依据。
The first man-loading high temperature superconducting (HTS) maglev test vehicle in the world was tested successfully on Dec. 31, 2000 in Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Consequently, in 2004, Germany and Russia developed HTS maglev test vehicles. The HTS maglev vehicle, along with its distinctive and advantageous characteristics, shows a good prospect and has great potential economically in the transportation field. With further research on the characteristics of the HTS maglev vehicle, this technology is coming closer and closer to be a reality. Therefore, practical research on the HTS maglev vehicle technology is necessary. This dissertation mainly studied the maglev characteristics of HTS bulk samples above a permanent magnet guideway (PMG) under three external disturbances both experimentally and computationally. The experimental data were obtained from the platforms that were constructed with the HTS maglev launch prototype system and the HTS maglev measurement system SCML-2 developed by the National High Technology Research and Development Program ("863" Program) of China. The maglev characteristics of the YBCO bulk were studied above the PMG with different ramp angles, under loads, and under the presence of vibrations. Computationally, according to the flux flow and creep model, the author adopted numerical method to calculate the levitation force of the HTS bulk above PMG, and concurrently verified experimentally to confirm the validity of the numerical method. Results showed that this method was reliable. In addition, the variation of the current density distribution was analyzed when the bulk traveled above the PMG. Based on the results, relevant calculations were carried out with the same numerical method.
     Firstly, the work in this dissertation experimentally investigated the characteristics of the HTS maglev on the PMG with ramp angles. The research scheme was obtained through simplified analysis for the ramp climbing process of the HTS maglev vehicle, and then carried out during the ramp climbing experiment. The simulation experiment was also carried out aiming at the variation of HTS maglev characteristic parameters (levitation force, guidance force, stiffness of levitation force, levitation gap, etc). No such research has been reported until now.
     Secondly, the maglev characteristics of the HTS maglev vehicle under loads (drift of the levitation gap, relaxation of the levitation force) were studied. Studies on the drifts of the levitation gap under load, unloaded, and loaded again were carried out. To test the validity of the numerical calculation, the study on the levitation force relaxation of the HTS maglev system under load was carried out experimentally with the HTS maglev measurement system. The results of the experiment showed consistency with the calculation. Based on this, the levitation force relaxation under load and unload process was calculated by this numerical method, and a method which can be employed to decrease the levitation force relaxation was presented. The reports about the research on the characteristics of HTS maglev vehicle under load have not been found.
     Thirdly, the research on the drift of the levitation gap of the vehicle body, which was under the vibration caused by the inhomogeneity of the applied magnetic field, was carried out when the vehicle was in the low-speed running process. No such research has been reported until now. In order to study the influence on the maglev characteristics caused by vibrations, investigations on the variation of the levitation force and current density distribution under vertical and horizontal vibrations were carried out. Reports about the study on the effects of horizontal vibration on maglev vehicles have not been found.
     Lastly, optimization methods of the HTS maglev performance under external disturbances were discussed, including improving the levitation force density, adjusting levitation force hysteretic behavior and reducing levitation force relaxation.
     The work in this dissertation establishes the foundations for the gradeability and loading capacity of the HTS maglev vehicle; at the same time, it help the study of stability and reliability of the HTS maglev vehicle as well as provide a theoretical basis for the optimization design of the HTS maglev vehicle system.
引文
[1]E.H.Brandt.Levitation in physics.Science.1989,243(4889):349
    [2]钟俊坚,吴晓,黄新民等.磁悬浮高速列车的主导技术比较与发展.轨道交通,2007,4:61-65
    [3]林国斌,连级三.日本磁悬浮高速铁路发展情况及山梨试验线的技术与系统特点.机车电传动.1998,4:5-8
    [4]Jiasu Wang,Suyu Wang,Youwen Zeng et al.The first man-loading high temperature superconducting maglev test vehicle in the world.Physica C.2002,378-381:809-814
    [5]佟力华,马沂文,胥刃佳等.适用于城市交通的中低速磁悬浮技术.电力机车与城轨车辆.2003,26(5):3-6
    [6]F.Hellman,E.M.G,D.W.Johnson,et al.Levitation of a magnet over a flat type Ⅱ superconductors.Journal of Applied Physics.1987,63(2):447.
    [7]E.H Brandt.Friction in levitated superonductors.Applied Physics Letters.1988,53(16):1554.
    [8]F.C.Moon,M.M.Y.,and R.Ware.Hysteretic levitation forces in superconducting ceramics.Applied Physics Letters.1988,52(18):1534.
    [9]John R.Hull.Applications of Bulk High-Temperature Superconductors.Proceedings of the IEEE.2004,92(10):1705-1718
    [10]V.Matveev,N.Nizhelskiy,O.Plouschenko.Force and stiffness characteristics of superconducting bearing prototype.Physica C.2004,416:17-24
    [11]Je-Hwan You,Yoon-chul Rhim,et al.Study on the characteristics of superconducting bearing.IEEE Transactions on Magnetics.1999,35(5):4028-4030
    [12]Werfel F N,et al.Encapsulated HTS bearings:technical and cost considerations,IEEE Transactions on Applied Superconductivity,2005,15(2):2306-2311
    [13]Mochimitsu Komori and Taku Hamasaki.Improvement of dynamics for a superconducting magnetic bearing(SMB) system.IEEE Transactions on Applied Superconductivity.1998,8(4):158-163
    [14]P.Kummeth,et al.Development of superconducting magnetic bearings.Physica C.2002:372-376:1470-1473
    [15]Ryosuke Shiraishi,Kazuyuki Demachi,Mitsuru Uesaka.Numerical simulation of coupled problem of electromagnetic field and heat condition in superconducting magnetic bearing. Physica C. 2003, 392-396: 734-738
    [16] Arthur C.Day, John R.Hull, et al. Temperature and frequency effects in a high-performance superconducting bearing. IEEE Transactions on Applied Superconductivity. 2003, 13(2): 2179-2184
    [17] Amit Rastogi, T.A.Coombs, A.M.Campbell, and R.Hull. Axial stiffness of journal bearings in zero-field and field-cooled modes. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2242-2244
    [18] R.de Andrade Jr. et al. Stiffness and damping of an axial superconducting magnetic bearing. Physica C. 2000, 341-348: 2607-2608
    [19] Mochimitsu Komori, Masahiro Kumamoto, Hirotsugu Kobayashi. A hybrid-type superconducting magnetic bearing system with nonlinear control. IEEE Transactions on Applied Superconductivity. 1998, 8(2): 79-83
    [20] Y.H.Han, J.R.Hull, et al. Design and characteristics of a superconductor bearing. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2249-2252
    [21] Mochimitsu Komori, Mokoto Murakami. A new method for improving the dynamics of superconducting magnetic bearing, IEEE Transactions on Applied Superconductivity. 2001, 11(3): 4065-4070
    [22] John R Hull, Shaul Hanany, Tomotake Matsumura, Bradley Johnson, Terry Jones. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter. Superconductor Science and Technology. 2005, 18(2): S1-S5
    [23] F N Werfel, U Floegel-Delor, T Riedel, R Rothfeld, D Wippich, B Goebel. Operation, and design selection of high temperature superconducting magnetic bearing. Superconductor Science and Technology. 2004, 17(10): 1192-1195
    [24] P Kummeth, G Ries, W Nick and H-W Neumüller. Development and characterization of magnetic HTS bearing for a 400 kW synchronous HTS motor. Superconductor Science and Technology. 2004, 17(5): S259-S263
    [25] S O Siems, W-R Canders, H Walter, J Bock. Superconducting magnetic bearing for a 2 MW/10kWh class energy storage flywheel system. Superconductor Science and Technology. 2004, 17(5): S229-S233
    [26] J-S Kim, S-H Lee. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings. Superconductor Science and Technology. 2003,16(4): 473-478
    [27] R Nicolsky, R de Andrade Jr, et al. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation. Superconductor Science and Technology. 2000, 13(6): 870-874
    [28] T Otani, M Murakami. Performance of Sm-Ba-Cu-0 bulk superconductors for a magnetic bearing. Superconductor Science and Technology. 2000, 13(6):866-869
    [29] John R Hull. Superconducting bearing Superconductor Science and Technology. 2000, 13(2): R1-R15
    
    [30] John R.Hull. Flywheels on a roll. IEEE Spectrum. 1997, 20-25
    [31] Rastogi Amit, et al. Axial and journal bearings for superconducting flywheel systems, IEEE Transactions on Applied Superconductivity. 2003, 13(2):2267-2270
    [32] Takumi Ichihara, et al. Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2245-2248
    [33] Mochimitsu Komori, Yokiya Uchimura. Improving the dynamics of two types of flywheel energy storage systems with SMBs. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2261-2264
    [34] Istvan Vajda, Zalan Kohari, et al. Operational characteristics of energy storage high temperature superconducting flywheels considering time dependent processes. Physics C. 2002, 372-376: 1500-1505
    [35] Shigeo Nagaya, et al. Study on high temperature superconducting magnetic bearing for 10 kWh flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2000, 11(1): 1649-1652
    [36] J.R. Fang, et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings. IEEE Transactions on Applied Superconductivity. 2001, 11(1): 1657-1660
    [37] R.de Andrade Jr., et al. A superconducting high-speed flywheel energy storage system. Physica C. 2004,408-410: 930-931
    [38] Masaie I, et al. Numerical evaluation of rotation speed degradation of SMB in the 100 kWh superconducting flywheel. Physica C. 2004,412-414: 784-788
    [39] Miya K, Uesaka M , Yoshida Y. Applied electromagnetics research and application. Progress in Nuclear Energy. 1998,32(1/2): 179-194
    [40] Guilherme GSotelo, Antonio C.Ferreira, Rubens de Andrade.Jr. Halbach array superconducting magnetic bearing for a flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2253-2256
    [41] T A Coombs, A Cansiz, A M Campbell. A superconducting thrust-bearing system for an energy storage flywheel. Superconductor Science and Technology. 2002, 15(5): 831-835
    [42] K Matsunaga, M Tomita, N Yamachi, K Iida, J Yoshioka, M Murakami. YBCO bulk of the superconducting bearing for a 10 kWh flywheel. Superconductor Science and Technology. 2002, 15(5): 842-845
    [43] A C Day, M Strasik, K E McCrary, P E Johnson, J W Gabrys, J R Schindler, R A Hawkins, D L Carlson, M D Higgins, J R Hull. Design and testing of the HTS bearing for a 10 kWh flywheel system. Superconductor Science and Technology. 2002,15(5): 838-841
    [44] R. M. Stephan, R. Nicolsky, M. A. Neves, et al. A superconducting levitation vehicle prototype. Physica C. 2004, 408-410: 932-934
    [45] S. Y. Wang, J. S. Wang, Z. Y. Ren, et al. High temperature superconducting maglev equipment on vehicle. Physica C. 2003, 386: 531-535
    [46] J. S. Wang, S. Y. Wang, Z. Y. Ren, et al. Experiment results of high temperature superconducting maglev vehicle. Physica C. 2003, 386: 431-437
    [47] Zhang Yong, Xu Shangang. Research of high temperature superconductor maglev vehicle. Proceedings of the symposium on maglev train application in China (SMLTA'97), Hangzhou, China, 1997. pp. 53-58
    [48] John R. Hull, Ahmet Cansiz. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor. Journal of Applied Physics.1999, 86 (11): 6396-6404
    [49] M. Tomita, K. Nagashima, T. Herai, et al. Resin-impregnated bulk RE-Ba-Cu-O current leads for the superconducting magnet on maglev train. Physica C. 2002,372-376: 1216-1220
    [50] Chen Gu, Menglin Liu, Huawei Xing, et al. Design, construction and performance of an EMS-based HTS maglev vehicle.Physica C.2005,423:37-44
    [51]Xiaojing Zheng,Jianjun Wu,Youhe Zhou.Effect of spring non-linearity on dynamic stability of a controlled maglev vehicle and its guideway system.Journal of Sound and Vibration.2005,279:201-215
    [52]Hyung-Woo Lee,Ki-Chan Kim,Ju Lee.Review of maglev train technologies.IEEE Transactions on Magnetics.2006,42(7):1917-1925
    [53]R.J.Cruise,K.Vandenbroucke,C.F.Landy,et al.Design and evaluation of a high temperature superconducting maglev system.Physica C.2000,341-348:2627-2628
    [54]Jiasu Wang,Suyu Wang,Changyan Deng,et al.Laboratory-Scale high temperature superconducting maglev launch system.IEEE Transactions on Applied Superconductivity.2007,17(2):2091-2094
    [55]Wenjiang Yang,Yu Liu,Xiaodong Chen,et al.Levitation characteristics of a high-temperature superconducting maglev system for launching space vehicles.Physica C.2007,455:13-18
    [56]刘宇,杨文将,段毅,陈晓东.航天运载器磁悬浮助推发射关键技术.北京航空航天大学学报.2006,32:1180-1185
    [57]杨文将,温正,丘明.航天发射超导磁浮平台设计的初步实验研究.低温物理学报.2005,27:1040-1044
    [58]杨文将,刘宇,杨博.航天发射用磁悬浮助推发射系统概念研究.北京航空航天大学学报.2005,31:105-110
    [59]杨文将,刘宇,于有志.航天磁悬浮发射脉冲磁流体供能系统方案分析.宇航学报.2005,26:828-832
    [60]徐伟,孙广生,李耀华,金能强等.磁悬浮技术在高速轨道交通中的应用.轨道交通.2008,1:33
    [61]毛保华,黄荣,贾顺平等.磁悬浮技术在中国的应用前景分析.交通运输系统工程与信息.2008,8(1):29-39
    [62]卢乃宽.高速轮轨和磁悬浮技术在世界轨道交通体系中的发展.中国铁道科学.2003,24(6):105-109
    [63]高路.Transrapid磁悬浮列车和喷气式火车技术比较.国外铁道车辆.2005,42(4):1-6
    [64]张瑞华,严陆光,徐善刚,武瑛.几种典型的高速磁悬浮列车比较.电工电能新技术.2004,23(2):46-50
    [65]古木.日本超导磁悬浮铁路技术开发现状.交流技术与电力牵引.2005,1:1-3
    [66]J.G.Bednorz,K.A,M(u|¨)ller.Zs Phys.B.,1986,64:189
    [67]王家素,王素玉.超导技术应用.成都:成都科技大学出版社,1995
    [68]C.P.Bean.Magnetization of hard superconductors.Physical Review Letters.1962,8:250-253
    [69]C.P.Bean.Magnetization of high-field superconductors.Reviews of Modern Physics.1964,36:31-39
    [70]C.P.Bean.Surface barrier in type-2 superconductors.Physical Review Letters.1964,12:14-16
    [71]H.Hashizume,T.Sugiura,K.Miya,et al.Numerical analysis of a.c.losses in superconductors.Cryogenics.1991,31:601-606
    [72]J.Paasi and M.Lahtinen.AC losses in high-temperature superconductors:revisting the fundamentals of the loss modeling.Physica C.1998,310:57-61
    [73]T.Sugiura,M.Tasayuki,Y.Uematsu,et al.Mechanical stablity of a high-Tc superconducting levitation system.IEEE Transactions on Applied Superconductivity.1997,7(2):386-389
    [74]T.Sugiura and H.Fujimori.Mechanical resonance characteristics of a high-Tc superconducting levitation system.IEEE Transactions on Magnetics.1996,32(3):1066-1069
    [75]Y.Yoshida,M.Uesaka,K.Miya.Evaluation of dynamic magnetic force of high Tc superconductor with flux flow and creep.Int.J.Appl.Electromagn.Mater.1994,5:83-89
    [76]Y.Yoshida,M.Uesaka,K.Miya.Magnetic field and force analysis of high Tc superconductor with flux flow and creep.IEEE Transactions on Magnetics.1994,30(5):3503-3506
    [77]A.A.Kordyuk,V.V.Nemoshkalenko.Resonance oscillations of a permanent magnet levitated above granular superconductors.Applied Physics Letters.1996,68:126-128
    [78]Mochimitsu Komori,Toru Kawashima.Improving the dynamics of a flywheel energy storage system with superconducting magnetic bearings.IEEE Transactions on Applied Superconductivity.2004,14(2):1655-1658
    [79]A.N.Terentiev,H.J.Lee,C.J.Kim,et al.Identification of magnet and superconductor contributions to the ac loss in a magnet-superconductor levitation system.Physica C.1997,290:291-296
    [80]肖玲,任洪涛,焦玉磊.郑明辉.YBCO超导块的悬浮力及其测量.低温物理学报.1999,21(4):317-320
    [81]Takashi Hikihara,Hitoshi Adachi,Francis C.Moon,et al.Dynamical behavior of flywheel rotor suspended by hysteretic force of HTSC magnetic bearing.Journal of Sound and vibration.1999,228:871-887
    [82]S.Ohashi,Y.Hirane,T.Hikihara.Three-dimensional vibration of the rotor in the HTSC-permanent magnet flywheel system.IEEE Transactions on Magnetics.1999,35:4037-4039
    [83]Takashi Hikihara,Hitoshi Adachi,Shunsuke Ohashi,et al.Levitation drift of flywheel and HTSC bearing system caused by mechanical resonance.Physica C.1997,291:34-40
    [84]H.Teshima,M.Tanaka,K.Miyamoto,K.Nohguchi,et al.Vibrational properties in superconducting levitation using melt-processed YBaCuO bulk superconductors.Physica C.1996,256:142-148
    [85]K.Nagaya,M.Tsukagoshi,Y.Kosugi,et al.Vibration control for a high-Tc superconducting non-linear levitation system.Journal of Sound and Vibration.1997,208:299-311
    [86]Y.Sanagawa,H.Ueda,M.Tsuda,et al.Characteristics of lift and restoring force in HTS bulk.IEEE Transactions on Applied Superconductivity.2001,11:1797-1800
    [87]Y.Teranishi,H.Ueda,M.Tsuda,et al.Static and dynamic characteristics in levitating X-Y transporter using HTS bulk.IEEE Transactions on Applied Superconductivity.2002,12:911-914
    [88]Hiroshi Ueda,Manbbu Itoh,Atsushi Ishiyama.Trapped field characteristic of HTS bulk in AC external magnetic field.IEEE Transactions on Applied Superconductivity.2003,13:2283-2286
    [89]H.Ueda,A.Ishiyama.Dynamic characteristics and finite element analysis of a magnetic levitation system suing a YBCO bulk superconductor.Superconductor Science and Technology.2004,17:s170-s175
    [90]T.Sugiura,H.Ura,K.Kuroda.Magnetic stiffness of a coupled high-Tc superconducting levitation system.Physica C.2003,392-396:648-653
    [91]T.Sugiura,T.Inoue,H.Ura.Nonlinear vibration of a coupled high-Tc superconducting levitation system.Physica C.2004,412-414:778-783
    [92]Yong Yang,Xiaojing Zheng.Method for solution of the interaction between superconductor and permanent magnet.Journal of Appled Physics.2007,101:113922-1-113922-8
    [93]Xiaojing Zheng,Yong Yang.Transition cooling height of high-temperature superconductor levitation system.IEEE Transactions on Applied Superconductivity.2007,17:3862-3866
    [94]Nuria Del-Valle,Alvaro Sanchez,Caries Navau,et al.Lateral-displacement influence on the levitation force in a superconducting system with translational symmetry.Applied Physics Letters.2008,92:042505-1-042505-3
    [95]Fedda Y.Alzoubi,Mohammed K.Alqadi,Hasan M.Al-Khateeb,et al.The interaction force between a permanent magnet and a superconducting ring.IEEE Transactions on Applied Superconductivity.2007,17(3):3814-3818
    [96]Y Tachi,N Uemura,K Sawa,et al.Force measurements for levitated bulk superconductors.Superconductor Science and Technology.2000,13:850-853
    [97]K Nagashima,T Miyamoto,S I Yoo,et al.Levitation of bulk superconductors controlled by two coils.Superconductor Science and Technology.2000,13:857-860
    [98]Ken Nagashima,Yukikazu Iwasa,Koichiro Sawa,et al.Controlled levitation of bulk superconductors.IEEE Transactions on Applied Superconductivity.2000,10(3):1642-1648
    [99]王琳.超导悬浮系统的悬浮力分析.中国科学院研究生院硕士学位论文.2006,50-70
    [100]王琳,王厚生,王秋良.超导悬浮系统中电磁力的有限元分析.低温与超导.2006,34(3):190-193
    [101]蔡传兵,傅耀先,杨宏川等.熔融法YBCO超导块材的制备及磁悬浮力的研究.低温与超导.1995,23(4):8-12
    [102]赵宪锋,谭永顺,周又和.系统参数对最大超导磁悬浮力的影响研究.低温与超导.2004,32(4):33-36
    [103]K.Yamagishi,I.Asaba,S.Sekizawa,O.Tsukamoto,et al.AC losses in HTS bulk at various temperatures.IEEE Transactions on Applied Superconductivity.2005,15(2):2879-2882
    [104]T.Suzuki,E.Ito,T.Sakai,et al.Temperature dependency of levitation force and its relaxation in HTS.IEEE Transactions on Applied Superconductivity.2007,17(2):3020-3023
    [105]H.Fujimoto,H.Kamijo.Superconducting bulk magnets for magnetic levitation systems.Physica C.2000,335:83-86
    [106]Hiroyuki Fujimoto,Hiroki Kamijo.Preliminary study of superconducting bulk magnet for maglev.Physica C.2000,341-348:2529-2530
    [107]W.M.Yang,L.Zhou,Y.Feng,et al.The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors.Physica C.2001,354:5-12
    [108]W.M.Yang,L.Zhou,et al.The relationship of levitation force between single and multiple YBCO bulk superconductors.Physica C.2002,371(3):219-223
    [109]W.M.Yang,L.Zhou,et al.The effect of different field cooling processes on the levitation force and attractive force of single-domain YBa2Cu307-x bulk.Superconductor Science and Technology.2002,15(10):1410-1414
    [110]W.M.Yang,L Zhou and R Nicolsky.The relationship of levitation force between individual discs and double-layer disc YBa2Cu307-x superconductors.Superconductor Science and Technology.2003,16:451-454
    [111]W.M.Yang,Y.Feng,et al.The effect of the grain alignment on the levitation force in single domain YBa Cu O bulk superconductors.Physica C.1999,319(3-4):164-168
    [112]王素玉,王家素,张庆福,连级三.超导磁浮列车的研究与发展.低温与超导,1995,23(4):1-7
    [113]王素玉,王家素,连级三.高温超导磁浮车,低温与超导,1997,25(1):17-22
    [114]Wang Suyu,Wang Jiasu,Lian Jisan.Some considerations using high Tc bulk superconductors for Mag-Lev transportation systems.In:Lin Liangzhen,Shen Guoliao,Yan Luguang,ed.Proceeding of Fifteenth International Conference on Magnet Technology Part one,pp 767-769.Beijing:Science Press,1998
    [115]王素玉,王家素.高温超导电磁悬浮.低温与超导,1999,27(4):8-11
    [116]王素玉,王家素.一种薄底液氮低温容器.低温与超导,1999,27(3):1-3
    [117]Wang Jiasu,Wang Suyu,Ren Zhongyou,Lian Jisan,Lin Guobin,Zhang Cuifang,Huang Haiyu,Deng Changyan,Zhu Degui.A Scheme of Maglev Vehicle Using High Tc Bulk Superconductors.IEEE Transactions on Applied Superconductivity,1999,9(2):904-907
    [118]王素玉,唐启雪,任仲友,朱敏,江河,王家素.车载高温超导磁悬浮系统的设计.低温与超导,2001,29(1):14-17
    [119]John R.Hull,Ahmet Cansiz.Vertical and lateral forces between a permanent magnet and a high-temperature superconductor.Journal of Applied Physics.1999,86(11):6396-6404
    [120]Zhang Yong,Xu Shangang.Research of high temperature superconductor Maglev vehicle.Proceedings of the Symposium on Maglev Train Application in China(SMLTA'97),Hangzhou,China,1997.pp.53-58
    [121]Y.Zhang and S.G.Xu.Measurement and analysis of a HTSC Maglev model vehicle.In:L.Z.Lin,G.L.Shen,L.G.Yan,editors.Proceeding of the Fifteenth International Conference on Magnet Technology,Beijing,1998.Science Press,Part one,pp.763-766.
    [122]Ken Nagashima,Yukikazu Iwasa,Koichiro Sawa.Controlled levitation of bulk superconductors.IEEE Transactions on Applied Superconductivity.2000,10(3):1642-1648
    [123]张永,徐善纲,金能强.高温超导磁悬浮列车模型悬浮方案的研究.电工电能新技术.1998,17(4):32-35
    [124]任仲友.熔融法YBCO块材在NdFeB轨道上的悬浮力和导向力的研究.西南交通大学硕士学位论文.2001
    [125]任仲友,王素玉,王家素,唐启雪,朱敏,江河.多块YBaCuO高温超导体在永磁轨道上的悬浮力.低温与超导,2000,28(2):17-21
    [126]Zhongyou Ren,Min Zhu,He Jiang,Xiaorong Wang,Suyu Wang,Qixue Tang,Jiasu Wang.Investigation of magnetic levitation of a single of YBaCuO bulk HTS over a NdFeB guideway.Proceedings of Beijing International Conference on Cryogenics(Beijing-ICC),Beijing,October 5-8,2000:173-176
    [127]Xiaorong Wang,Zhongyou Ren.Experimental study of relationship between levitation force on YBCO superconductor and gradient of applied magnetic field.Proceedings of Beijing International Conference on Cryogenics (Beijing-ICC),Beijing,October 5-8,2000:177-180
    [128]Ren Zhongyou,Zhu Min,Wang Suyu,Wang Jiasu,Jiang He,Tang Qixue,Levitation Force of Origin YBaCuO Bulk HTS over a NdFeB Guideway.Proceedings of International Conference on Engineering and Technological Sciences 2000,Advanced Materials,Edited by Jian Song and Ruiyu Yin,International Conference on Engineering and Technological Sciences 2000(ICETS'2000),Beijing,China,Oct.11-13,2000,Vol.1,725-728
    [129]Suyu Wang,Jiasu Wang,Zhongyou Ren,He Jiang,Min Zhu,Qixue Tang.Levitation force of multi-block YBaCuO bulk high temperature superconductors.IEEE Transactions on Applied Superconductivity,2001,11(1):1808-1811
    [130]Jiasu Wang,Suyu Wang,Zhongyou Ren,Min Zhu,He Jiang,Qixue Tang.Levitation force of a YBaCuO bulk high temperature superconductor over a NdFeB guideway.IEEE Transactions on Applied Superconductivity,2001,11(1):1801-1804
    [131]王家素,王素玉,林国彬,黄海于,张翠芳,曾佑文,王少华,邓昌延,许志沛,唐启雪,任仲友,江河,朱敏.高温超导磁悬浮测试系统.高技术通讯,2000,10(8):55-58
    [132]Jiang He,Tang Qixue,Wang Suyu,Ren Zhongyou,Zhu Min,Wang Jiasu.Wang Xiaorong.The design of a HTS Maglev measurement equipment using 20K G-M refrigerator.Proceedings of Beijing International Conference on Cryogenics(Beijing-ICC),Beijing,October 5-8,2000:223-226
    [133]Zhu Min,Ren Zhongyou,Wang Suyu,Wang Jiasu,Jiang He,Tang Qixue,Influence of Thickness and Shape of a YBaCuO Bulk High Temperature Superconductor on Levitation Fore.Proceedings of International Conference on Engineering and Technological Sciences 2000,Advanced Materials,Edited by Jian Song and Ruiyu Yin,International Conference on Engineering and Technological Sciences 2000(ICETS'2000),Beijing,China,Oct.11-13,2000, Vol.1,578-581
    [134]朱敏,任仲友.YBaCuO超导块的厚度和形状对其悬浮力的影响.低温物理学报.2002,24(3):213-217
    [135]江河.深冷条件下高温超导体磁悬浮特性研究.西南交通大学硕士学位论文.2002
    [136]Jiang He,Wang Jiasu,Wang Suyu,Ren Zhongyou,Zhu Min,Wang Xiaorong,Shen Xuming.The magnetic levitation performance of YBaCuO bulk at different temperature.Physica C,2002,378-381:869-872
    [137]任仲友,王家素,王素玉,朱敏,江河,王晓融,沈旭明,宋宏海.NdFeB 永磁导轨上YBaCuO块材悬浮力与磁场和磁场梯度关系的研究.低温物理学报,2002,24(4):293-297
    [138]Ren Zhongyou,Wang Jiasu,Wang Suyu,Jiang He,Zhu Min,Wang Xiaorong,Shen Xuming.A hybrid maglev vehicle using permanent magnets and high temperature superconductor bulks.Physica C,2002,378-381:873-876
    [139]Wang Xingzhi,Wang Jiasu,et al.Guidance forces of HTS maglev device over tilted guideway,In:Jiasu Wang ed.Proceedings of International Workshop on HTS Maglev(ISMAGLEV'2002),Chengdu,P.R.China,2002.pp.100-104
    [140]王兴志.横坡角度与高温超导磁悬浮车的导向力关系.西南交通大学学士学位论文.2002
    [141]Wang Xiaorong,Wang Suyu,et al.Guidance force and lateral stiffness of YBaCuO superconductors in array,In:Jiasu Wang ed.Proceedings of International Workshop on HTS Maglev(ISMAGLEV'2002),Chengdu,P.R.China,2002.pp.87-93
    [142]王晓融.高温超导YBCO块材在永磁导轨上方的导向力研究.西南交通大学硕士学位论文.2003
    [143]Jiasu Wang,Suyu Wang,Zhongyou Ren,Xiaorong Wang,Min Zhu,He Jiang,Honghai Song,Xingzhi Wang,Jun Zheng.Guidance Forces on High Temperature Superconducting Maglev Test Vehicle.IEEE Transactions on Applied Superconductivity,2003,13(2):2154-2156
    [144]Xiaorong Wang,Jiasu Wang,Suyu Wang,Zhongyou Ren,Honghai Song,Xingzhi Wang,Jun Zheng,Xuming Shen.The relationship of guidance force between single and multiple cylindrical Y-Ba-Cu-O superconductors.Physica C,2003,390(2):113-119
    [145]X.R.Wang,H.H.Song,Z.Y.Ren,M.Zhu,J.S.Wang,S.Y.Wang,X.Z.Wang.Levitation force and guidance force of YBaCuO bulk in applied field.Physica C,2003,386:536-539
    [146]任仲友,王家素,王素玉,王晓融,宋宏海,王兴志.高温超导磁悬浮车导向力测试装置.电工电能新技术,2003,22(1):77-80
    [147]Xiaorong Wang,Zhongyou Ren,Honghai Song,Xingzhi Wang,Jun Zheng,Suyu Wang,Jiasu Wang and Yong Zhao.Guidance force in an infinitely long superconductor and permanent magnetic guideway system.Supercond.Sci.Technol.,2005,18:S99-S104
    [148]H.H.Song,J.S.Wang,et al.Relationship between levitation force and levitation stiffness in both symmetrical and unsymmetrical applied field.The 4th International Workshop on Processing and Applications of Superconducting(RE)BCO Large Grain Materials(PASREG 2003),Jena,Germany,2003
    [149]宋宏海,王晓融等.高温超导体在对称和不对称外磁场中的悬浮力计算.低温与超导.2004,32(2):47-50
    [150]H.H.Song,J.S.Wang,S.Y.Wang,O.De Haas,Z.Y.Ren,X.R.Wang,X.Z.Wang,J.Zheng and Y.Zhao.The relationship between levitation force and stiffness in symmetrical and unsymmetrical applied fields.Supercond.Sci.Technol.,2005,18:S95-S98
    [151]宋宏海,王家素,王素玉,王兴志.高温超导磁悬浮系统中横向运动对悬浮力和导向力影响的研究.低温与超导.2005,27(5):81
    [152]Honghai Song,Oliver de Haas,Christoph Beyer,Gernot Krabbes,Peter Verges,Ludwig Schultz.Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor Maglev system.Applied Physics Letters,2005,86(19):192506-192508
    [153]H.H.Song,Zhongyou Ren,Jun Zheng,Xizhi Wang,S.Y.Wang,J.S.Wang.Exponential model for levitation force of YBa2Cu307-delta bulks in applied fields.International Journal of Modern Physics B(IJMPB),2005,19(1-3):395-397
    [154]Suyu Wang,Jun Zheng,Honghai Song,Xingzhi wang.Experiment and numerical calculation of high temperature superconducting maglev.IEEE Transactions on Applied Superconductivity.2005,15(2):2277
    [155]Honghai Song,Jun Zheng,Minxian Liu,Longcai Zhang,Yiyun Lu.Optimization and design of the permanent magnet guideway with the high temperature superconductor.IEEE Transactions on Applied Superconductivity.2006,16(2):1023
    [156]岑冀娜,王家素,宋宏海,郑珺.脉冲场励磁YBCO块材俘获磁通特性.低温与超导.2006,34(3):198-200
    [157]Jun Zheng,Honghai Song,Jiasu Wang,Suyu Wang,Minxian Liu.Numerical method to the excited High-Tc superconducting levitation system above the NdFeB guideway.IEEE Transactions on Magnetics.2006,42(4):947-950
    [158]Zigang Deng,Jun Zheng,Honghai Song,Suyu Wang and Jiasu Wang.A new HTS/PMG Maglev Design using Halbach Array.Materials Science Forum,2007,546-549:1941-1944.
    [159]H.Jing,J.Wang,S.Wang,L.Wang,L.Liu,J.Zheng,Z.Deng,G.Ma,Y.Zhang,J.Li.A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle.Physica C,2007,463-465:426-430
    [160]王璐琳,荆华,刘璐,王家素.三种永磁轨道上YBCO的高温超导磁悬浮性能.低温与超导,2007,35(4):300-303
    [161]Longcai Zhang,Jiasu Wang,Qingyong He,Jianghua Zhang,Suyu Wang.Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system.Physica C.2007,459(1-2):33-36
    [162]Suyu Wang,Jiasu Wang,Changyan Deng,Yiyu Lu,Youwen Zeng,Honghai Song,Haiyu Huang,Hua Jing,Yonggang Huang,Jun Zheng,Xingzhi Wang,and Ya Zhang.An update High-Temperature Superconducting Maglev Measurement System.IEEE Trans Appl Supercond,2007,17(2):2067-2070
    [163]Jiasu Wang,Suyu Wang,Changyan Deng,Youwen Zeng,Longcai Zhang,Zigang Deng,Jun Zheng,Lu Liu,Yiyun Lu,Minxian Liu,Yaohui Lu,Yonggang Huang,and Ya Zhang.A High-Temperature Superconducting Maglev Dynamic Measurement System.IEEE Trans Appl Supercond,2008, 18(2):791-794
    [164]Minxian Liu,Suyu Wang,Jiasu Wang,Guangtong Ma.Influence of the air gap between adjacent permanent magnets on the performance of NdFeB guideway for HTS maglev system.Journal of Superconductivity and Novel Magnetism.2008,21(7):431-435
    [165]Yiyun Lu,Jiasu Wang,Suyu Wang,Jun Zheng.3D-modeling numerical solutions of electromagnetic behavior of HTSC bulk above prmanent magnetic guideway.Journal of Superconductivity and Novel Magnetism.2008,21(8):467-472
    [167]Chunfa Zhao,Wanming Zhai,et al.Dynamic responses of the high temperature superconducting maglev test vehicle.In:Jiasu Wang ed.Proceedings of International Workshop on HTS Maglev(ISMAGLEV'2002),Chengdu,P.R.China,2002.pp.119-127
    [168]郑珺.平移对称式高温超导磁悬浮系统振动性能分析.西南交通大学博士学位论文.2007
    [169]Zigang Deng,Jun Zheng,Honghai Song,Lu Liu,Lulin Wang,Ya Zhang,Suyu Wang,and Jiasu Wang.Free Vibration of the High Temperature Superconducting Maglev Vehicle model.IEEE Trans Appl Supercond,2007,17(2):2071-2074
    [170]Jun Zheng,Zigang Deng,Lulin Wang,Lu Liu,Ya Zhang,Suyu Wang,and Jiasu Wang.Stability of the Maglev vehicle model using bulk high Tc superconductors at low speed.IEEE Trans Appl Supercond,2007,17(2):2103-2106
    [171]J.Zheng,Z.Deng,S.Wang,J.Wang,Y.Zhang.Vibration properties dependence on the trapped flux of bulk high-temperature superconductor.Physica C,2007,463-465:1356-1360
    [172]郑珺,邓自刚,李婧,张娅,王素玉,王家素,高温超导块材磁体悬浮系统的振动特性.稀有金属材料与工程,2008(录用)
    [173]Longcai Zhang,Jiasu Wang,Suyu Wang,Qingyong He.Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway.Physica C.2007,459(1-2):43-46
    [174]Longcai Zhang,Suyu Wang,Jiasu Wang,Jun Zheng.Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway.Physica C.2007,467(1-2):96-100
    [175]Longcai Zhang,Jiasu Wang,Suyu Wang,Jun Zheng,Qingyong He.Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway.Physica C.2007,467(1-2):27-30
    [176]Wenjiang Yang,Yu Liu,Zheng Wen,et al.Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle.Superconductor Science and Technology.2008,21:015014
    [177]Zheng Wen,Yu Liu,Wenjiang,et al.Vibration measurements and analyses for a magnet-superconductor levitated system.Journal of Physics D:Applied Physics.2007,40:7281-7286
    [178]M.Tsuchimoto,T.Kojima,H.Takeuchi and T.Honma.Numerical analyses of levitation force and flux creep on high Tc superconductor.IEEE Transactions on Magnetics.1993,29(6):3577-3579
    [179]M.Sawamura,H.Teshima and M.Tsuchimoto.Advances in Superconductivity.1998:X 1345
    [180]F.C.Moon,Superconducting Levitation.Wiley,New York.1994
    [181]Z.J.Yang and J.R.Hull.Effect of size on levitation force in a magnet/superconductor system.Journal of Applied Physics.1996,79(6):3318.
    [182]D.Camacho,J.Mora,J.Fontcuberta and X.Obradors.Calculation of levitation forces in permanent magnet-superconductor systems using finite element analysis.Journal of Applied Physics.1997,82(3):1461.
    [183]张江华,曾佑文,王家素,王素玉,宋宏海.高温超导磁悬浮轴承悬浮力数值分析.低温与超导.2007,35(2):125-128
    [184]C.Navau and A.Sanchez.Magnetic properties of finite superconducting cylinders.Ⅱ.Nonuniform applied field and levitation force.Phys.Rev.B.2001,64:214507.
    [185]M.Zeisberger,T.Habisreuther et al.Optimization of levitation forces[in superconducting magnetic bearings].IEEE Transactions on Applied Superconductivity.2001,11(1):1741-1744
    [186]C Hofmann and G Ries.Modelling the interactions between magnets and granular high-Tc superconductor material with a finite-element method.Superconductor Science and Technology.2001,14:34-40.
    [187]A M Campbell.Forces between arrays of magnets and superconductors.Superconductor Science and Technology,2002,15:759-762
    [188]M.J.Qin,G.Li,H.K.Liu,et al,Calculation of the hysteretic force between a superconductor and a magnet,Phys.Rev.B,2002,66:024516.
    [189]M.Tsuchimoto,T.Kojima and T.Honma,Numerical analysis of frozen field model for levitation force of HTSC,Cryogenics,1994,34(10):821-824.
    [190]Xiaofan Gou,Xiaojing Zheng,Youhe Zhou,Drift of levitated/suspended body in high-Tc superconducting levitation system under vibration,2007,17(3):3795-3808
    [191]Xiaojing Zheng,Jianjun Wu,Youhe Zhou,Numerical analyses on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways,Journal of Sound and Vibration,2000,235(1):43-61
    [192]Zheng Wen,Yu Liu,Wenjiang Yang and Ming Qiu.Experimental and numerical analysis of vibration stability for a high-Tc superconducting levitation system.Superconductor Science and Technology.2007,20(1):100-104
    [193]Y.Luo,T.Takaga,K.Miya.Reduction of levitation decay in high-Tc superconducting magnetic bearing.Cryogenics.1999,39:331-338
    [194]B.M.Smolyak,G.N.Perelshtein,G.V.Ermakov,and E.V.Postrekhin.Stopping of levitation force relaxation in superconductors:the flux-locking effect.Physica C.2000,341-348:1129-1130.
    [195]E.Postrekhin,KiBuiMa,Hong Ye,Wei-Kan Chu.Dynamics and relaxation of magnetic stress between magnet and superconductor in a levitation system.IEEE Transactions on Applied Superconductivity.2001,11(1):1984-1987
    [196]B.M.Smolyak,G.N.Perelshtein,and G.V.Ermakov.Effects of relaxation in levitating superconductors.Cryogenics.2002,42:635-644
    [197]苟晓凡.高温超导悬浮体的静、动力特性分析.兰州大学博士论文.2004:36-37
    [198]王璐琳.永磁外场中高温超导体悬浮力弛豫的研究.西南交通大学硕士论文.2008:23-33
    [199]P.W.Anderson.Theory of flux creep in hard superconductors.Physical Review Letters.1962,9:309.
    [200]Y.B.Kim,C.F.Hempstead,and A.R.strand.Critical persistent currents in hard superconductors.Phys.Rev.Lett.1962,9(7):306-309
    [201]K Yamafuji,Y Mawatari.Electromagnetic properties of high Tc superconductors:relaxation of magnetization.Cryogenics.1992,32(6):569-577
    [202]Y.B.Kim,C.F.Hempstead,and A.R.strand.Resistive states of hard superconductors.Rev.Modern Phys.,1964,36:43-49
    [203]芦逸云.高温超导磁悬浮测试系统SCML-02技术手册.西南交通大学超导技术研究所资料室
    [204]罗昆,尹力明,谢云德.中低速磁悬浮列车线路选线参数分析-坡度值计算与分析.机车电传动.2007,4:17-19
    [205]何欣,岳辉.铁路动车组动力与线路坡度适应能力分析.甘肃科技纵横.2006,35(4):65-66
    [206]Qingyong He,Jiasu Wang,Longcai Zhang,Suyu Wang,Siting Pan.Influence of the ramp angle on levitation characteristics of HTS maglev.Physica C.2008,468(1):12-16
    [207]郑珺.平移对称式高温超导磁悬浮系统的动态特性.西南交通大学博士论文.2007
    [208]张新义.高温超导悬浮系统在不同条件下的电磁力实验研究.兰州大学博士论文.2008:85-87
    [209]Qingyong He,Jiasu Wang,Suyu Wang,Jiansi Wang,Hao Dong,Yuxin Wang,Senhao Shao.Levitation force relaxation caused by reloading in HTS maglev.Physica C.2009,469:91-94
    [210]Qingyong He,Jiasu Wang,Suyu Wang.Levitation force relaxation of HTS YBCO bulk under load.Journal of Superconductivity and Novel Magnetism.2008,22:409-415
    [211]C.Navau,A.Sanchez.Stability and hysteretic losses in superconductor-permanent magnet levitation systems.Physica C.2002,372-376(3):1474-1477
    [212]何庆勇,王家素,王素玉,潘泗廷.高温超导YBCO块材临界电流密度与 悬浮力磁滞的关系.稀有金属材料与工程.2008,37:404-406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700