大间隙磁力传动装置的控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁力传动是以永磁材料或电磁机构产生的磁力作用实现力或力矩非接触式传递的一种新技术,克服了机械传动中机件磨损的严重缺陷,具有机械式传动无可比拟的优势。目前,磁力传动的研究主要是基于主、从磁极间距为小间隙的磁力传动系统的磁场分布、传递电磁转矩等方面,在人工心脏的驱动研究过程中,外磁场驱动方式的提出有效地解决了以往血泵供能系统的不足,通过非接触式磁场驱动,解决了一系列传统血泵驱动方式难以克服的工程和医学上的困难。
     本文以当前国内外磁力传动技术研究成果为平台,大间隙磁场驱动轴流式血泵为研究对象,心室功作为血泵输出的控制目标,提出了一种基于行波磁场的主动磁极静止式大间隙磁力传动系统,用电磁体代替“电机-永磁转子”结构,避免了高频率、高转速下由于电机易损坏的缺陷,使得结构简单、可传动间隙大、可靠性和实用性好,具有重要的创新意义。
     通过对这种全新的驱动方式的探索研究,提出了用以实现交变磁场的静止式电磁体机械结构,并基于单片机设计了驱动控制电路,通过理论和实验相结合,计算能量传递效率。主要研究内容如下:
     1.基于主动磁极静止式的驱动思想,设计电磁体机械结构,根据电磁场相关理论,建立电磁体在空间某处产生的磁感应强度的数学模型,据此确定最佳的电磁体设计参数;
     2.分析电磁体同血泵永磁转子的空间磁场耦合过程,得出电磁体线圈的脉冲控制方式,基于单片机,设计驱动控制电路,编写控制程序,并通过仿真软件预先修正电路中各元件参数,指导电路板的制作;
     3.以计算电磁学、电磁场机电能量转换为基础,通过对大间隙磁力驱动系统能量传递过程的分析,得出能量传递各部分功率损耗,建立磁场能量传递效率的数学模型;
     4.搭建血泵综合实验台,进行血泵驱动实验,得到输出电流与血泵转速、泵水高度的对应关系曲线,根据实验结果以及建立的磁场能量传递效率模型,计算大间隙磁力传动系统的能量传递效率,为磁能量传递规律的进一步深入研究奠定了基础。
Magnetic drive is a new technique which uses permanent magnetic material or electromagnetic mechanism produce magnetic force to realize the force or moment non-contact transfer. It has conquered the critical defect of work-pieces' attrition in mechanical drive, and has the unexampled advantage of mechanical drive. At present, the research of magnetic drive, such as the magnetic field of magnetic drive system and transfer electromagnetism torque, is primarily based on small gap between the initiative magnetic pole and the passive magnetic pole. At the process of mechanical heart drive research, it is the very extracorporeal magnetic driving method that effectively resolves blood pump's shortage for lacking of energy. Through the non-contact magnetic driving method, a series of difficulties on engineering and iatrology have been solved, which used to be an insurmountable drawback for tradition blood pump driving mode.
     In this paper, the research findings on magnetic drive technique of home and abroad is used as reaearch platform, and large gap magnetic drive axial flow blood pump as the research target and ventricular work as control objective of blood pump's output, a large gap magnetic drive system, whose initiative magnetic pole keeps static, was presented based on traveling wave magnetic field. This structure uses electromagnet instead of motor and permanent magnet, avoiding the defect for easy damage of motor under the condition of large gap and high speed. Besides, its construture is simple, and it will have the larger drive gap, better reliability and practicability, and significant innovation.
     Through research on this bran-new driving means, a statically electromagnet mechanical structure is proposed to realize alternating magnetic field. Based on Single Chip Micyoco (SCM), the driving control circuit is designed. Combining theoretics and experimention, energy transfer efficiency of the system is calculated. The main research contents are introduced as following:
     1. Based on the driving thought, in which initiative magnetic pole keeps static, designing the electromagnet mechanical structure. According to the related theory on electromagnetic field, establishing the mathematical model of magnetic induction which is produced in space somewhere by the electromagnet, and confirming its first class design parameter.
     2. Through analysing coupling process of magnetic field in space between blood pump and permanent rotor, gainning the pulse control mode of electromagnet coil. Based on SCM, the driving control circuit is designed, and the control program is writed. Using simulation software to modify the elements parameter in circuit, by which guiding the manufacture of circuit board.
     3. On the basis of computational electromagnetics and electromechanical energy conversion of electromagnetic field, the power dissipation of each energy transfer portions are getted out, and the mathematical model of magnetic field energy transfer efficiency is established, according to the analysis of energy transfer process in large gap magnetic drive system.
     4. The comprehensive experimental bench of blood pump is built. According to the experiments of driving blood pump, acquiring the relation curves between rotating speed of blood pump and water column height, and the relation curves between deferent current and water column height. Based on the experimental results and the mathematical model of magnetic field energy transfer efficiency, the energy transfer efficiency of large gap magnetic drive system is calculated, so as to lay a foundation for the further research on the law of the magnetic field energy transfer.
引文
[1]兴涛,杨建波,郭永献.U型磁铁磁路分布与气隙磁感应强度[J].机械设计与制造,2008,7:82-83
    [2]倪平涛,王开文,陈健.一系纵向定位间隙对磁流变耦合轮对车辆横向动力学性能的影响[J].交通运输工程学报,2007,7(2):6-9
    [3]尹华杰,金振荣,林金铭.正弦波永磁同步电机空载气隙磁场分析[J].微电机,1995,28(4):9-11,57
    [4]樱井良文.现代工程磁学[M].北京:机械工业出版社,1987
    [5]田杰,邓辉华,张萍等.考虑非线性磁导率稀土永磁齿轮磁场研究[J].机械工程师,2006,1:92-94
    [6]Hsien-Tsung Chang,Chia-Yen Lee.Theoretical analysis and optimization of electromagnetic actuation in a valve less micro impedance pump[J].Microelectronics Journal.May,2007:791-799
    [7]杨清新,严珩志,付伟华.一种管内壁自动清淤器磁转子的特性[J].机械设计,2006,5:20-22786x:2-15.
    [8]Y.Gelfgat.Effects of system parameters on MHD flows in rotating magnetic fields[J].Journal of Crystal Growth.Nov,1999:788-796
    [9]田杰,邓辉华,赵韩等.稀土永磁齿轮传动系统动态仿真研究[J].中国机械工程,2006,22:2315-2318
    [10]赵韩,陶骏,田杰等.磁场积分法在稀土永磁齿轮传动机构场分析中的应用[J].机械工程学报,2000,8:29-32
    [11]赵韩,杨志轶,王忠臣.磁力轴承电磁力计算的两种建模方法与比较[J].农业机械学报,2002,7:84-87
    [12]Smolkin.M.R,Smolkin.R.D.Calculation and analysis of the magnetic force acting on a particle in the magnetic field of Separator.Analysis of the equations used in the magnetic methods of separation[J].IEEE Transactions on Magnetics.Nov.2006:82-93
    [13]Karel Frana.A numerical study of flows driven by a rotating magnetic field in a square container[J].European Journal of Mechanics B/Fluids.Oct.2007:1-10
    [14]陈匡非,杜玉梅.平行轴永磁齿轮的特性研究[J].微特电机,2004,4:5-7
    [15]MASATSUGU TAKEMOTO.Torque and Suspension Force in a Bearingless Switched Reluctance Motor[J].Electrical Engineering.Vol.157,No.2,2006:72-82
    [16]赵国涛,谭庆昌,李为.直线往复运动磁力传动[J].机械工程学报,2007,1:100-103
    [17]王洪群,虞培清,章志耿.减小磁传动隔离套涡流损耗的研究[J].机械传动,2007,6:18-20
    [18]赵克中,徐成海等.磁力驱动器涡流损失的研究[J].化工机械,2003,6:326-329
    [19]赵韩,李露,王勇.电磁轴承中磁场时间和空间变化对涡流的影响[J].农业机械学报,2007,38(6):129-133
    [20]刘建瑞,王鸿睿.磁力泵冷却系统的数值模拟[J].排灌机械,2008,26(4):26-29
    [21]张清.圆盘式磁力驱动器的涡流分析[D].吉林:吉林大学学位论文,2008
    [22]郑福胜,谭庆昌,张清,张永奇.盘式磁力驱动器隔离套的涡流损耗分析[J].工程与试验,2008,3:62-66
    [23]赵韩,田杰,杨志轶.磁力机械学[M].北京:高等教育出版社,2003
    [24]田杰.稀土永磁齿轮的理论与实验研究[D].合肥:合肥工业大学学位论文,1999
    [25]钱坤喜,吕利昌,茹伟民等.一种新颖的磁力弹簧及其弹性[J].机械工程学报,1998,34(3):57-59
    [26]赵韩,王勇,田杰.磁力机械研究综述[J].机械工程学报,2003,12:31-36
    [27]刘华清编译.德国磁悬浮列车Transrapid[M].成都:电子科技大学出版社,1995
    [28]韩继文.不同磁场定向控制方式下高速磁悬浮列车牵引特性的分析[D].中国科学院研究生院学位论文,2006
    [29]赵春发.磁悬浮车辆系统动力学研究[D].成都:西南交通大学学位论文,2002
    [30]E.H.Maslen,D.C.Meeker.Fault-tolerance of magnetic bearings by generalized bias current linearization.IEEE Transactions on Magnetics,AG-31(3):2304-2314,1995.
    [31]E.H.Maslen,P.E.Allaire,M.D.Noh,and C.K.Sortore.Magnetic bearings for reduced power consumption.Journal of Tribology,page to appear,July 1996.
    [32]B.T.Costic,M.S.de Queiroz,D.M.Dawson.A New Learning Control Approach to the Active Magnetic Bearing Benchmark System Proceedings of the American Control Conference Chicago,Illinois June 2000:2639-2643
    [33]谢宝昌,任永德,土庆文.磁悬浮电机及其应用的发展趋势[J].微电机,1999,32(6):28-30
    [34]王延风.磁悬浮精密定位工作台机电一体化CAD/CAE集成研究[D].中国科学院研究生院学位论文,2004
    [35]姚小伟.磁悬浮系统的控制研究[D].哈尔滨:哈尔滨理工大学学位论文,2007
    [36]国内首台氟塑料自吸式磁力泵研制成功[J].有机硅氟资讯,2008,(10):9
    [37]马威.磁力泵在热油系统中的应用[J].流体机械,2008,36(6):45,55,65,92
    [38]赵韩,陶骏,田杰等.磁场积分法在永磁传动机构场分析中的应用[J].机械工程学报,2000,36(8):29-32
    [39]Axoum.K,Besbes.M,Bouillault.F.Modeling of magnetostrictive phenomena.Application in magnetic force control[J].European Physical Journal,Applied Physics.Oct.2006,43-7
    [40]M.I.Kilani,S.Y.Jaw,Y.Haik,C.J.Chen.Proceedings of the 14th Engineering Mechanical Conference of ASCE,Austin,TX,2000
    [41]Hoshi.Hideo,Katakoa.Kiroyuki,Ohuchi.Katsuhiro,et al.Magnetically suspended centrifugal blood pump with a radial magnetic driver[J].ASAIO Journal.Feb.2005:60-64
    [42]Weiss W J,et al.Recent improvement in a completely implanted total artificial heart[J].ASAIO Journal,1996,42:342-347
    [43]Frazier O.H.,Myers TJ.Surgical therapy for ever heart failure.Current problems in cardiology,1998,23:727-764
    [44]云忠,龚中良,谭建平.旋转叶轮血泵的发展与展望.生物医学工程学杂志,2005,22(1):151-154.
    [45]Karolina M,Zareba.The artificial heart- past,present,and future.Med Sci Monit,2002,8(3):72-77
    [46]姜以岭,蔺嫦燕.左心辅助装置中血泵的发展现状.北京生物医学工程,2000,19(1):63-65
    [47]Patois SM,Conger JL,Fuqua JM,et al.Progress in the development of a transcutaneously Powered axial flow blood pump ventricular assist system.ASAIO J,1997,43:M567-M580
    [48]Bulter KC,Moise JC,Wampler RK.The Hemopump—a new cardiac prothesis device.IEEE Trans Biomed Eng,1990,37:193-196.
    [49]Frazier O.H.Chronic left ventricular support with a vented electric assist device.Ann Thorac Surg,1993(55):273-275.
    [50]Mitamcira Y,et al.The valvo-pump an axial nonpulsatile blood pump.ASAIO Transactions 1991,37:M668
    [51]Qian KX,et al.In vivo study of pulsatile implantable impeller assist and total heart[J].Artificial Organs,1995,19(4):328-330
    [52]Yoshiyuki Taenaka,et al.Development of acentrifugal pump with improved an tith rom bogenicity and hemolytic property for chronic circulatory support[J].Artifical Organs,1996,20(6):491-494
    [53]蔺嫦燕.植入式左心辅助装置.国外医学生物医学工程分册,1995,18(1):20-23
    [54]Lyle D.Joyce,George P.Noon,David L.Joyce,et al.Mechanical circulatory support-a historical review.ASAIO 50th anniversary,2004:Ⅹ-Ⅻ
    [55]Singh P,et al.Copulsating left ventricular blood pump[J].ASAIO Trans,1982,28:117
    [56]Takami,Yoshiyuki,et al.Mapping of Pump Efficiency on the Pressure-Flow Curve of a Centrifugal Blood Pump,Artificial Organs.21(8):953-957,August 1997
    [57]李国荣,马维国,胡盛寿等.动力性主动脉瓣研究近况[J].生物医学工程学杂志,2000,27(4):407-409
    [58]马惠生,朱晓东,李国荣等.心室辅助循环的方法及其装置[P],中国发明专利,99126259,1999
    [59]Li G R,Ma W G,Zhu X D,et al.Preliminary study on an introaortic pump driven by a distant rotary magnet[J].ASAIO Journal,2000,46:151
    [60]Yarnoz MD,et al.Magnetically actuated LVAD[J].ASAIO Trans,1983,29:574
    [61]俞晓青,丁文祥等.磁偶合驱动轴流式血泵的可行性研究[J].生物医学工程学杂志,2004,21(1):131-133
    [62]万福凯,曾培,茹伟民等.永磁磁浮叶轮血泵及转子悬浮性能分析[J].北京生物医学工程,2005,24(3):199-203
    [63]王凤祥,徐龙亚.一种用于人工心脏的无轴承无刷永磁直流电动机的设计与特性[J].电机与控制学报,1997,1(12):203-207
    [64]赵克中.磁力驱动技术与设备[M].北京:化学工业出版社,2004:3-4
    [65]Ikuta K,Makita S,Arimoto S.Non-contact magnetic gear for micro-transmission mechanism.[C]//Proceedings of the 1991 IEEE Micro Electro Mechanical Systems.1991:125-130.
    [66]张建涛,夏东.永磁齿轮在人工心脏中的应用研究[J].微特电机,2005,9:5-6,10.
    [67]谭建平,许焰,廖平,刘云龙.一种非接触式大间隙磁力驱动方法:中国,200810030 545.1[P].2008-1-25
    [68]A.E.Fitzgerald,Charles Kingsley,Jr.,Stephen D.Umans.Electric Machinery Sixth Edition[M].McGraw-Hill Education,2003
    [69]余永权.AT89系列Flash单片机原理及应用.电子工业出版社,2001,132-194
    [70]Cheng-Tsung Liu,Shih-Chia Lee.Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles[J].Journal of Magnetism and Magnetic Materials,2006,304:454-456.
    [71]Thomas Frank Petersen,Nini Pryds,Anders Smith,Jesper Hattel.Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator[J].international journal of refrigeration,2007:1-12.
    [72]任来平,赵俊生,侯世喜.磁偶极子磁场空间分布模式[J].海洋测绘,2000,3:18-21.
    [73]彭智刚,金新民,童亦斌,梁京哲等.IGBT驱动电路[J].电子产品世界,2007(2):122-123,130
    [74]舒正国.电容模块在缓冲电路中的应用[J].国外电子元器件,2001(10):34-37
    [75]卓忠疆.机电能量转换[M].水利电力出版社,1987
    [76]陈秉乾,王稼军.电磁学[M].北京:北京大学出版社,2003
    [77]王玉良.磁力泵面临的技术问题及对策[J].石油化工设备技术,1998,(1)
    [78]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,2003
    [79]姜寿亭,李卫编.凝聚态磁性物理[M].北京:科学出版社,2003
    [80]丁祖荣.流体力学[M].北京:高等教育出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700