管材滚压剪切过程的数值模拟及关键设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管的连续生产过程中,在线切断设备是整个生产线中的关键设备之一。目前,一般所采用的管材切断方法存在许多问题。由于管材断面呈空心状,在切断过程中很难保证切口质量。为了提高管材的切口质量,圆截面管材无芯旋转滚压式剪切是近年出现的新型切断技术。滚切机是利用三把带有楔角的圆盘形滚切刀片,采用滚动压入的方法将管材切断。由于采用了滚压无屑剪切,刀具的滚切行程略大于管材壁厚即可切断管材,因而效率高(尤其是对于大直径管材)。不仅可以保证管材切口质量,还实现小噪音、无切屑、无毛刺切管,简化了生产工艺、降低了生产成本,改善了生产环境。
     本文介绍了新型滚压式剪切机的工作原理及结构。根据其特点,对系统进行了适当的简化,建立了滚切机横向振动的力学模型。用柔度系数法建立了系统的运动微分方程。得出了该设备的固有频率和主振型,求解了由转子质量偏心引起的失衡激振响应,分别求解了系统在无阻尼和有阻尼时的不平衡激振响应,绘制了响应曲线图,讨论了转子的质量偏心距和系统阻尼比对系统激振响应的影响规律。
     滚压剪切过程属于金属的塑性大变形和韧性断裂,所以使得对这一过程的分析非常困难。根据尖楔形体压入半无限体的滑移线解法,对钢管的滚压切断进行了理论分析,得出了滚切力计算公式及钢管与刀具接触面积公式。
     为了更加充分的发挥管材滚压式剪切机的优点,分析了在剪切过程中影响切口质量和刀具应力的一些因素。利用大变形有限元的基本理论,以管材切口质量和刀具应力为研究目标,以DEFORMTM 3D有限元分析软件为平台,对管材滚压剪切过程进行了模拟仿真。得到了滚切力行程曲线,找出了影响滚切力的各种因素,分析了影响切口质量和刀具应力的各种因素,确定了合理工艺参数匹配:滚切力值、刀具形状、单圈进给量等。为了实际生产应用时查询方便,本文建立了各参数对滚切过程影响的查询数据库。
     针对管材滚切实验研究,设计了一套测量滚切力和进给速度的实验系统。通过实验研究得到了滚切力与切入深度关系曲线、进给速度与切入深度关系曲线以及切口尺寸,与有限元计算结果相比较,两者基本吻合,证明了利用有限元数值模拟管材滚切过程是可靠的。以有限元模拟结果为基础分析的各工艺参数对管材滚切过程的影响是正确的。
     理论分析和实验研究表明,管材滚压剪切涉及到许多复杂问题,对这些问题进行分析和研究,可以揭示滚切过程的变形机理和刀具破坏机理,有助于控制管材切口特征及改善刀具受力状态,以便提出更为合理的滚切工艺。当然对相关问题还需要许多更深入细致的工作。
The cutting machine is important equipment in producing and using the tube. There are a few problems in the tube cutting methods which are used normally. It is difficult to make cutting quality good because tube is hollow shape. For the sake of improving cutting quality, the tube roll-cutting is widely used in recent years. It uses three dishing blades to wheel on the tube exterior surface and cut into the material gradually. In the whole process, the blades turn around the tube axis and spins about their own axis as well. Because the blade stroke in the radial direction is just a little larger than the tube wall thickness, the size of the cutting tool can be reduced. In the roll-cutting process, there is no noise and no burrs exist. The tube roll-cutting not only samplifies the product process, but also improves the working environment.
     The roll-cutting principle and schematic arrangement of the roll-cutting machine is demonstrater in the paper. According the roll-cutting machine’s principle of work and the structure feature, the machine has been simplified. The roll-cutting system transverse vibration mechanics model has been established using the flexibility method of correlates. The natural frequency and first mode shape has been calculated. The imbalanced dynamic response caused by the mass bias with and without the damping has been solved. The response diagrams of curves have been drawn up. The rotor mass bias moment and the system damping ratio to the system dynamic response influence rule has been discussed.
     The large plastice deformation and ductile fracture happens in the roll-cutting process. It’s very difficult to calculate the cutting process. This paper has made the theoretical analysis using the theory of wedge indentation of ductile material. The equations of the cutting force and contacted area have been obtained.
     For the sake of taking the advantage of the roll-cutting machine and removing some bed factors, the process of roll-cutting has been simulated on the basis of the principle of large deformation FEM by using DEFORMTM 3D program. The relationship between the cutting force and cutting depth has been demonstrated. The influences of process parameters on the cutting force, cutting quality and balde stress have been found out. The reasonable parameters match has been obtained. The database of the effect of process parameters on the roll-cutting process has been founded for the convenience of inquiry.
     The author has designded an experiment system which is used to measure the roll-cutting force and feed speed. The curves for the cutting force with cutting depth, feed speed with the cutting depth and the dimension of fraction have been obtained using the experimental method. The results of the FE analysis are in agreement with the results of the experiment, through comparison between the simulated and measured result. It verified the validity of the simulation. By studying the cutting force, the effects of process parameters on the cutting force can be obtained. It is the foundation of the blade stress analysis.
     The theoretical analysis and experimental research indicate that there are many complicated problem involved in the roll-cutting process and researches on these problems can reveal mechanisms of deformation and balde failure. It is helpful to get a good cutting quality and improve the blade stress state. Also, it is useful to propose new cutting process. Of course, it is required that much profound and detail work of roll-cutting process will be done in the future.
引文
1孔令铭. 2006年上半年我国钢管行业发展基本情况及下半年生产预测.焊管, 2006, 29(5): 5-8
    2彭在美.整合优势跨越发展争雄国内跻身世界.焊管, 2004, 27(1): 1-6
    3马浩洁,译.生产无缝钢管用的行星轧机. Tube International, 1984, (1): 49-50
    4孙永喜.我国油气输送用焊管工业发展的前沿问题.焊管, 2005, 28(5): 1-5
    5张家梁,邵新如,王革.管材切断技术综述.华东冶金学院学报, 1994, 11(4): 4
    6王建华,宋玉昌,孔庆虎.冷拔无缝钢管对锯机的改进.钢管, 1999, (2): 28-30
    7戴勇.定尺飞剪剪刃的快速更换.机械工程师, 1999, (10): 11-12
    8王建华,孔庆虎.冷拔无缝钢管对锯机的改进.钢管, 1999, (2): 29-30
    9李景方,习容堂,绍新如,等.钢管圆周剪切法的试验研究.钢铁, 1997, 32(2): 2-3
    10胡大超.钢管剪切正圆的研究与实践.上海金属, 2002, (5): 2-3
    11胡真,李志成,王开和.钢管切断刀具研究与设计.天津轻工业学院学报, 1999, (1): 1-4
    12杨祖孝,姜军生,李平.单层薄壁焊接钢管切断飞模.模具技术, 1999, (3): 37-39
    13杨祖孝.精密焊接钢管切断飞模设计.金属成形工艺, 1999, (2): 3-4
    14石光林.双圆弧切刀冲切管材的分析研究.广西工学院学报, 2002, (2): 20-22
    15韩宪章.适合切断方矩管材的飞矩结构.焊管, 1999, (1): 31-33
    16夏文辉.钢管切尾圆锯速度控制回路分析与改进.液压与气动, 2002, (4): 48-49
    17张书林.焊管在线切割.科技信息(学术版), 2006, (10): 437-438
    18矫庆春,黄晓娟,任崇立,等.大规格数控仿形旋铣飞锯机的技术与应用.焊管, 2006, 29(6), 82-83
    19郭继富,郑红艳,周玉燕,等. ERW钢管的数控仿形锯切技术概述.焊管, 2006, 29(2): 33-35
    20林德成.液压式切管机力能参数的研究.重型机械,1984, 11(9): 45-47
    21林德成.滚切式飞剪的动力分析.重型机械, 1996, 9(2): 9-13
    22于恩林.管材滚切机滚切力的研究.力学与实践, 1996, 18(5): 29-31
    23于恩林,冯向阳.气动小直径精密管材滚切机的研究.钢铁, 1997, 32(3): 72-76
    24柴晓艳,张玉华,温殿英.滚切式焊管飞剪机力能参数计算.重型机械, 1999, 5(4): 49-51
    25 Enlin Yu. Analysis of the Roll-cutting Shearer for a Tube. Tube International. 1986, (9): 45-47
    26赵晓雯.管材滚压剪切过程的数值模拟及实验研究. [燕山大学工学硕士学位论文]. 2003: 29-60
    27赵笑影.浅谈钢管切断中切口收缩问题.焊管, 1999, 21(1): 52-55
    28 Klamecki B.E.. Incipient chip formation in metal cutting—a three dimension finite analysis.[Ph.D dissertation]. Urbana: University of Illinois at Urbana-Chanpaign, 1973: 1-10
    29 Lajczok M.R.. A study of some aspects of metal cutting by the finite element method. [Ph.D dissertation]. NC State University, 1980: 1-20
    30 Usui E., Shirakashi T.. Mechanice of machining-form descriptive to predictive theory. On the art of cutting metal-75 years layer attribute to F.W. Taylor, ASME PED-7, 1982:13-30
    31 Iwata K., Osakada K., Terasaka T.. Process modeling of orthogonal cutting by the rigid-plastic finite element method. Trans ASME J Eng Mater Technol, 1984, 106: 132-138
    32 Strebjiwsjum H.S., Carroll J.T.. A finite element model of orthogonal metal cutting. In: Proceedings of North American Manufacturing Research Conference, Bethlehem, Pennsylvania, 1987: 506-509
    33 Strenkowski J.S., Moon K.J.. Finite element prediction of chip geometry and tool/workpiece tempratur distribution in orthogonal metal cutting. rans ASME J Eng Mater Technol, 1990, 127: 313-318
    34 Usui E., Maekawa K., Shirakashi T.. Simulation analysis of the built-up edge formation in machining of low carbon steel. Bull Jan Soc Process Eng, 1981, 15(4): 237-242
    35 Hashemi J., Chou P.C., Tseng A.A., Thermomechanical behacior of adiabatic shear band in high speed forming and machining. In: XXII ICHMT international Symposium on Manufacturing and Meterial processing, Cubrovnik, Yugoslavi, 27 August, 1990: 10-14
    36 Komvopoulos F.K., Erpenbeck S.A.. Modeling of orthogonal metal cutting. J Eng Mater Technol, 1991, 113: 253-267
    37 H. Sasahara, T. Obikawa, T. Shirakashi. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. Journal of Materials Processing Technology, 1996, 62(4): 448-453
    38 E. Ceretti, P. Fallb?hmer, W. T. Wu, T. Altan. Application of 2D FEM to chip formation in orthogonal cutting. Journal of Materials Processing Technology, 1996, 59(1-2): 169-180
    39 E. Ceretti, M. Lucchi, T. Altan. FEM simulation of orthogonal cutting: serrated chip formation. Journal of Materials Processing Technology, 1999, 95(1-3): 17-26
    40 E. Ceretti, C. Lazzaroni, L. Menegardo, T. Altan. Turning simulations using a three-dimensional FEM code. Journal of Materials Processing Technology, 2000, 98(1): 99-103
    41 Zhang Liangchi. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method. Journal of Materials Processing Technology, 1999, 88-89: 273-278
    42 J.M. Huang, J.T. Black. An evaluation of chip separation criteria for the FEM simulation of machining. ASME Journal of Manufacturing Science and Engineering, 1996, 118: 545-554
    43 Zone-Ching Lin, Wun-Ling Lai, H. Y. Lin, C. R. Liu. The study of ultra-precision machining and residual stress for nip alloy with different cutting speed and depth of cut. Journal of MaterialsProcessing Technology, 2000, 97: 200-210
    44雷建德.提高国产切管滚压刀使用寿命的措施.焊管, 1996, 19(2): 57-58
    45李卫民. Cr12MoV模具的热处理工艺.热加工工艺, 2007, 36(08): 85-86
    46程芳,马霄,王慧. Cr12MoV钢冷挤压模具的热处理工艺.河南机电高等专科学校学报, 2003, 11(01): 35-36
    47龚建国,刘建春,唐晓红.提高冷挤压凸模使用寿命的工艺研究.模具工业, 2006, 32(4): 67-70
    48 Zhang Yiping, Experimental Study on High Speed Milling Force of Quench Steel Cr12MoV, Coal Mine Machinery, 2006, 27(11): 87
    49高殿奎.复合凹凸模失效分析与工艺改进.金属热处理, 2002, 27(8): 55-57
    50张伟文,朱繁康,谢民,等. Cr12MoV钢制模板断裂失效分析.机电工程技术, 2006, 35(10): 75-77
    51洪扁,王树奇,苗润生.精铸热锻模具钢的强韧性与早期脆断.机械强度, 2004, 26(4): 436-438
    52杨长顺.冷挤压工艺实践.北京:国防工业出版社,1984: 179
    53丘建明,史厚忠.冷挤压模具的失效分析.金属热处理, 2007, 32(S1): 232-233
    54刘彦国,张红岩.组合凹模应力应变分析.机械研究与应用, 2004, 17(3): 45-47
    55赵昌盛. Cr12Cr12MoV模具钢材料缺陷及热处理断裂分析.机械工人, 2002, (5), 48-49
    56 R.A.C.斯莱特著,王仲仁,译.工程塑性理论及其金属成形中的应用.北京:机械工业出版社, 1983: 68
    57 R. Hill, Lee, E.H., Tupper, S.J.. A theory of wedge indentation of ductile material, Proc. R. Soc., 1947, Ser. A(2): 188-273
    58 R. Hill, On the mechanics of cutting metal strips with knife-edged tools. Journal of the Mechanics and Physics of Solids, 1953, 1(4): 265-270
    59 R. Hill, The mathematical theory of plasticity, Oxford University, 1953
    60江国屏,吴觉伪译.压力加工手册.北京:机械工业出版社, 1975: 296-297
    61贾建军,彭颖红,阮雪榆.精冲过程的韧性断裂.上海交通大学学报, 1999, 33(2): 2-3
    62秦泗吉.板材剪切与冲裁加工过程有限元模拟及实验研究. [燕山大学工学博士学位论文]. 2001: 67-82
    63方刚,曾攀.金属板料冲裁过程的有限元模拟.金属学报, 2001, 3(6): 5-7
    64 C. Y. Tang, C. L. Chow, W. Shen, W. H. Tai, Development of a damage-based criterion for ductile fracture prediction in sheet metal forming, Journal of Materials Processing Technology, 1999, 91(1-3):272
    65 G. -B. An, M. Ohata, M. Toyoda, Effect of strength mis-match and dynamic loading on ductile fracture initiation. Engineering Fracture Mechanics, 2003, 70(11):1362
    66 Jinkook Kim, Guihua Zhang, Xiaosheng Gao. Modeling of ductile fracture: Application of the mechanism-based concepts, International Journal of Solids and Structures, 2007, 44(6):1844
    67 Fahrettin Ozturk, Daeyong Lee. Analysis of forming limits using ductile fracture criteria. Journal of Materials Processing Technology, 2004, 147(3), 397-404
    68郑长卿,张克实,周利.金属韧性破坏的细观力学及其应用研究.北京:国防工业出版社, 1995. 138-165
    69 J. Grunzweig, I. M. Longman, N. J. Petch. Calculations and measurements on wedge-indentation. Journal of the Mechanics and Physics of Solids, 1954, 2(2): 81-86
    70 W. Johnson, H. Kudo. The cutting of metal strips between partly rough knife-edge tools. International Journal of Mechanical Sciences, 1961, 2(4): 224-230
    71 F. Grimpe, J. Heyer, W. Dahl. Influence of temperature, strain rate and specimen geometry on the microscopic cleavage fracture stress. Nuclear Engineering and Design, 1999, 188(2): 155-160
    72虞松,陈军,阮雪榆.韧性断裂准则的试验与理论研究.中国机械工程, 2006, 17(19): 2049-2052
    73 Z.C. Lin, S.Y. Lin. An investigation of ductile fracturing in mild steel during upsetting. International Journal of Machine Tools and Manufacture, 1993, 33(1): 31-50
    74 Maretic, Ratko. Transverse vibration and stability of an eccentric rotating circular plate. Journal of Sound and Vibration, 2005, 280(3): 467-478
    75 A. A. Jafari, S.M.R. Khalili and R. Azarafza. Transient dynamic response of composite circular shells under radial impulse load and axial compressive loads, Thin-Walled Structures, 2005, 43(11): 1763-1786
    76 Jeong S H, Kang J J, Oh S I. Advanced Technology of Plasticity 1996-Proceedings of the Fifth International Congerence on Technology of Plasticity, Columbus. Ohio Statue University Press, 1996: 631
    77 Kachanov L M. Foundation of the Theory of Plasticity. North-Honthand Publication Company, 1971, (8): 23-24
    78轩福贞,惠虎,黄振海,等.内压下挤压三通的塑性极限载荷研究.压力容器. 2003, 20(1): 1-5
    79 Gillo Giuliano. Process design of the cold extrusion of a billet using finite element method. Materials & Design, 2007, 28(2): 726-729
    80 Li Chun Bian. Material plasticity dependence of mixed mode fatigue crack growth in commonly used engineering materials. International Journal of Solids and Structures, 2007, 44(25-26): 8440-8456
    81 E. Silveira, G. Atxaga, A.M. Irisarri. Failure analysis of a set of compressor blades. Engineering Failure Analysis, 2008, 15(6): 666-674
    82 C. Park, J.Y. Lim, B.B. Hwang, A process-sequence design of an axle-housing by cold extrusion using thick-walled pipe, J Mater Process Tech, 1998, 75(1-3): 33–44
    83 N. I. Tymiak, D. E. Kramer, D. F. Bahr, T. J. Wyrobek, W. W. Gerberich. Plastic strain and strain gradients at very small indentation depths. Acta Materialia, 2001, 49(6): 1021-1034
    84 K. R. Jayadevan, R. Narasimhan. Finite element simulation of wedge indentation. Computers & Structures, 1995, 51(5): 915-927
    85哈宽富.断裂物理基础.北京:科学出版社, 2000: 78
    86冯端.金属物理基础.北京:科学出版社, 1999: 89
    87 T.S. Kwak, Y.J. Kim, W.B. Bae. Finite element analysis on the effect of die clearance on shear planes in fine blanking. Journal of Materials Processing Technology, 2002, 130–131: 462.
    88 A. A. Jafari, S.M.R. Khalili and R. Azarafza. Transient dynamic response of composite circular shells under radial impulse load and axial compressive loads. Thin-Walled Structures, 2005, 43(11): 1763-1786
    89刘先兰,张文玉,刘楚明.细观损伤力学及其在金属塑性加工中的应用.锻压技术, 2008, 33(1), 9-13
    90 J. F. Zhao, Z. M. Xiao, An inclined Zener–Stroh crack near a free surface, International Journal of Solids and Structures, 2004, 4(20): 5663
    91 G. -B. An, M. Ohata, M. Toyoda, Effect of strength mis-match and dynamic loading on ductile fracture initiation, Engineering Fracture Mechanics, 2003, 70(11): 1362
    92钟群鹏,赵子华.断口学.北京:高等教育出版社. 2006: 44
    93钟群鹏,田永江.失效分析基础.北京:机械工业出版社, 2004: 96
    94 M. Ciavarella, D. A. Hills, G. Monno. Contact problems for a wedge with rounded apex. International Journal of Mechanical Sciences, 1998,40(10): 977-988
    95 Zhong Q. Zhang Z., et al. A research on two kinds of three-dimensional cold short fracture controlling diagram and mechanism diagram. Progress in Natural Science, 1994, 4(3): 341-350
    96 Cottrell A.H.. Theory of brittle fracture in steel and similar metals. Trans. AIME, 1958, 212(4): 192-203
    97 C.G. Xu, G.H. Liu, G.S. Ren, Z. Shen, C.P. Ma, W.W. Ren. Finite Element Analysis of Axial Feed Bar Rolling. Acta Metallurgica Sinica (English Letters), 2007, 20(6): 463-468
    98 K.D. Hur, Y. Choi, H.T. Yeo. A design method for cold backward extrusion using FE analysis. Finite Elements in Analysis and Design, 2003, 40(2): 173–185
    99 C. Cosenza, L. Fratini, A. Pasta, F. Micari. Damage and fracture study of cold extrusion dies. Engineering Fracture Mechanics, 2004, 71(7-8): 1021–1033
    100 Lu′?s M.M. Alves, Paulo A.F. Martins, Jorge M.C. Rodrigues. A new yield function for porous materials. Journal of Materials Processing Technology, 2006, 179(1-3): 36-43
    101 A.Venugopal Rao,N.Ramakrishnan, R.Krishna kumar. A comparative evaluation of the theoretical failure criteria for workability in cold forging, Journal of Materials Processing Technology, 2003, 142(1): 29-42
    102 H. Takuda, K. Mori, N. Hatta. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. Journal of Materials Processing Technology, 1999, 95(1-3): 116-121
    103 R. Schiffmann, J. Heyer, W. Dahl. On the application of the damage work density as a new initiation criterion for ductile fracture. Engineering Fracture Mechanics, 2003, 70(12): 1543-1551
    104 H. Takuda, K. Mori, N. Takakura, K. Yamaguchi. Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. International Journal of Mechanical Sciences, 2000, 42(4): 785-798
    105胡韦华,王秋成,胡晓冬,等.切削加工过程数值模拟的研究进展.南京航空航天大学学报, 2005, 37(S1): 194-198
    106 J. Pujana, P.J. Arrazola, R. M’Saoubi, H. Chandrasekaran. Analysis of the inverse identification of constitutive equations applied in orthogonal cutting process. International Journal of Machine Tools and Manufacture, 2007, 47(14): 2153-2161
    107 D. Umbrello, R. M’Saoubi, J.C. Outeiro, The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 462-470
    108 P.A.R. Rosa, P.A.F. Martins, A.G. Atkins. Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 607-617
    109 Shigeru Nagasawa, Daisuke Yamagata, Yasushi Fukuzawa, Mitsuhiro Murayama. Stress analysis of wedged rupture in surface layer of coated paperboard. Journal of Materials Processing Technology, 2006, 178(1-3): 358-368
    110 A. Pramanik, L.C. Zhang, J.A. Arsecularatne, An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting. International Journal of Machine Tools and Manufacture, 2007, 47(10): 1497-1506
    111 Rober. D. Cook. Concept and Application of Finite Element Analysis. Asecond Edition. John Wiley&Sons, 1981: 55-63
    112 L. Filice, F. Micari, S. Rizzuti, D. Umbrello. A critical analysis on the friction modelling in orthogonal machining. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 709-714
    113 Oh S I, Wu W T. Capabilities and Applications of FEM Code DEFORM: the Perspective of theDeveloper, J.Mater.Processing Tech. 1999, (27): 25-42
    114 O. C. Zienkiewicz. The Finite Element Method in Engineering Science. Megraw-Hill, London, 1971: 35-47
    115 T Belyschko, JS J Ong, Liu W K. A Consistent Control of Spurious Singular Modes in the 90-node Lagrange Element for the Laplace and Mindlin Plate Equation. Comp. Meth. Appl. Meth. Eng, 1984, (8): 269-295
    116 R W Clough. The Finite Element Method in Analysis. On Electronic Computation. Pittsburgh Pa. Sopt, 1960: 345-349
    117 Leem T C, Chan L C, Zheng P F. The Finite Element Method. Process Tech, 1999, (63): 744
    118 Post J, Voncken R M J. Proceedings of the Fourth International Conference on Sheet Metal. The Netherlands. University of Twents, 1996, (8): 63
    119 Helio Fiori de Castro, Katia Lucchesi Cavalca, Rainer Nordmann. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration, 2008, 317(1-2): 273-293
    120 Zhang, Junhong. Torsional oscillation characteristics of rotary shafts based on torsion and bending coupled vibration, Transactions of Tianjin University, 2006, 12(1): 72-78
    121龚善初.轴向载荷作用下简支梁横向振动的固有频率.甘肃科学报, 2004, 16(3): 99-101
    122初嘉鹏,贺凤宝.机械设计基础.北京:高等教育出版社, 2005: 214-223
    123 Ayaho, M. Behavior of prestressed beam strengthened with external tendons. Journal of Structural Engineering, ASCE,2000, 126(9): 1030-1037
    124 Li-Qun Chen, Wei-Jia Zhao and Jean W. Zu. Simulations of transverse vibrations of an axially moving string: a modified difference approach. Applied Mathematics and Computation, 2005, 166(3): 596-607
    125诸德超,邢誉峰.工程振动基础.北京:北京航空航天大学出版社, 2004: 61-100
    126李滨城.带传动的横向振动对机床主轴偏移的影响.现代机械, 2005, (6):16-17
    127 M. Sathyamoorthy. Effects of large amplitude and transverse shear on vibrations of triangular plates. Journal of Sound and Vibration, 1985, 100(3): 383-391
    128 Huajiang Ouyang, Minjie Wang. A dynamic model for a rotating beam subjected to axially moving forces. Journal of Sound and Vibration, 2007, 308(3-5): 674-682
    129 Choudury, A. and Tandon, N. Vibration response of rolling element bearings in a rotor bearing system to a local defect under radial load. Journal of Tribology, 2006, 128(2): 252-261
    130梁红侠.管材滚切机振动问题分析. [燕山大学工学硕士学位论文]. 2007: 35-56
    131 Chance Elliott, Vipin Vijayakumar, Wesley Zink, Richard Hansen. National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement. Journal of the Association for Laboratory Automation, 2007, 12(1): 17-24
    132石博强,赵德永,李畅,等. LabVIEW6.1编程技术实用教程.北京:中国铁道出版社,2002: 174-184
    133 Gary W. Johnson著,武嘉澍译. LabVIEW图形编程.北京:北京大学出版社, 2002: 1-28
    134 G. Faraco, L. Gabriele. Using LabVIEW for applying mathematical models in representing phenomena. Computers & Education. 2007, 49(3): 856-872
    135刘君华,贾惠芹等.虚拟仪器图形化编程语言.西安:西安电子科技大学出版社, 2001: 1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700