三轴半挂汽车列车稳定性控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展和公路交通的改善,半挂汽车列车以其机动灵活的优点逐渐成为公路运输的主要车型之一,目前国内半挂汽车列车保有量21万辆,年产量2.5万辆。但由于其载重量大、尺寸大、质心高等问题,容易导致侧翻和横向失稳而引发交通事故,造成巨大损失。目前提高汽车列车稳定性主要通过优化车辆结构参数和安装稳定性控制系统两中手段,然而优化车辆参数对稳定性的提升有限,因此研究开发稳定性控制系统已成为各个主机厂的紧迫任务。
     目前比较成熟的稳定性控制系统主要有侧翻警示系统、侧翻控制系统、电子稳定性控制系统和主动防侧倾控制系统等,一般采用的控制方法有:降低发动机输出扭矩、对选定车轮主动施加制动力、调整左右悬架特性。其中电子稳定性控制系统在制动防抱死系统基础上增加了方向盘转角、侧向加速度、横摆角速度等传感器,并利用车载网络获取发动机、变速器等的控制器信息,实时检测车辆的运行状态,当车辆发生侧翻或横摆失稳时,主动降低发动机的输出扭矩并对选定车轮施加制动力以纠正车辆的失稳运动。
     论文结合科技部863专项、国际科技合作及省市科技支撑计划重大专项等项目的研究内容与中国第一汽车集团公司技术中心密切合作,根据企业对半挂汽车的技术需求,以三轴半挂汽车列车为研究对象,围绕稳定性控制系统的基础理论和控制算法展开研究。提出了稳定性控制算法的整体结构,开发了整车质量、质心位置、侧倾状态、折叠角、名义横摆角速度等车辆状态的估算算法。提出稳定性控制开始和退出的叛别条件,并根据不同的行驶工况设定不同的门限值,对选定车轮施加不同的压力控制。在Matlab环境下开发半挂汽车列车离线仿真平台和硬件在环试验台,对提出的稳定性控制算法在不同工况下进行离线仿真验证和硬件在环试验验证。论文研究成果为一汽集团半挂汽车列车稳定性控制系统的产品开发奠定了理论基础。
     全文主要内容包括:
     1、根据汽车列车的运动学原理,建立二十五自由度三轴半挂汽车列车非线性动力学模型。模型包括子系统动力学模型和整车动力学模型,子系统模型有发动机模型、传动系模型、制动器模型、悬架模型、轮胎模型、第五轮约束模型、车轮垂直载荷模型和辅助计算模型等,整车动力学模型包括牵引车和半挂车运动学模型和操纵稳定性模型。模型能够模拟汽车列车的在不同路面上的制动、转向、加速及组合工况,实现稳定性控制所需的仿真。
     2、提出了稳定性控制算法整体结构,确定半挂汽车列车稳定性控制系统的控制目标,将稳定性控制分为防侧翻控制和横摆稳定性控制两部分。根据对车辆的侧翻的情形分析,结合当前研究条件确定主要研究工况为转弯侧翻。
     3、半挂汽车载重量在很大范围内变化,导致车辆参数变动很大,从而影响稳定性控制系统的控制效果,因此对需要各种车辆状态进行估算,然后利用估算值对控制参数进行修正。利用多函数法根据发动机和轮速信号在起步加速工况下估算整车质量;利用空气弹簧气囊中的压力信号估算质心距离各车轴的位置;利用侧向加速度和侧倾角速度信号估算质心高度;利用轮速信号估算车速;利用侧倾角速度、侧向加速度和四自由度侧倾模型设计了状态观测器估算牵引车侧倾角;利用汽车列车三自由度模型和扩展卡尔曼滤波算法估算车辆折叠角;利用二自由度模型估算牵引车名义横摆角速度,用来识别牵引车的不足或过多转向特性。
     4、根据估算的状态变量和车辆转向特性来识别车辆的稳定状态,确定稳定性控制开始和退出的条件。当车辆有侧翻趋势时首先施加试验制动压力,以判断车轮是否离地,然后根据车辆侧翻趋势的不同和转向工况的的不同设定控制门限值和压力控制算法,对于回转转向的控制,在左右车轮充分接地时采用左右轮同时制动的压力切换策略。
     5、汽车列车发生横摆失稳时,根据所识别的不足或过多转向特性,降低发动机输出扭矩并采用主动制动的方式对选定的车轮施加制动,纠正车辆的失稳状态,当折叠角过大车辆发生折叠危险时,对其压力控制策略进行调整,进行防折叠控制。横摆稳定性控制过程中如果触发了防侧翻控制,则优先进行防侧翻控制。
     6、根据车辆动力学模型和控制算法,在Matlab环境下搭建包括车辆模型、控制器模型和用户图形界面的离线仿真平台,并利用此平台在高、中、低不同路面附着情况下进行开环方向盘角阶跃输入、鱼钩转向输入、正弦输入和闭环双移线等工况的仿真,对开发的稳定性控制算法进行验证,仿真结果表明所开发的离线仿真平台能够很好的完成稳定性控制算法的仿真试验,所开发的算法能够很好的防止车辆侧翻和横横摆失稳,提高行驶稳定性。
     7、在离线仿真平台的基础上,开发了基于Matlab/xPC的硬件在环试验台,试验台包括xPc Target实时运行平台、执行机构、传感器、数据采集及处理系统、硬件台架和仿真软件,其中硬件台架包括操纵台架、牵引车台架和半挂车台架三部分。利用硬件在环试验台对开发的稳定性控制算法在不同路面的多种工况下进行试验,试验结果表明所开发的稳定性控制算法能够在多种工况下抑制车辆侧翻和横摆失稳,提高车辆稳定性。
As the improvement of national highway transportation, tractor seimi-trailer has become one of the main vehicles for freight, because of its flexibility and mobility. Stock of tractor semitrailer is 210,000, and volume of production every year is 25,000. Howerver, they tend to rollover or loss of lateral stability, even cause severe traffic accidents and huge loss, with its big load capacity, large size, high center of gravity. There are two ways to improve the stability of the current tactor semitrailer, mainly through optimization of structural parameters or installation of stability control systems, but there is little margin for optimization of vehicle parameters to enhance its stability. So development of stabiliyt control systems becomes an urgent task for OEMs’customers.
     There are many stability products for tractor semitrailer available on the maket, such as rollover stability advisor (RSA), rollover stability control (RSC), electronic stabibility control system (ESC) and active anti-roll control (ARC). All the stability systems enhance vehicle stablility mainly through reducing the output torque of engine, applying braking pressure on selected wheels, or modifying characteristic of suspensions.
     ESC is developed based on antilock braking system and equipes a steer wheel angle sensor, a yaw rate sensor, a lateral acceleration sensor, etc. ESC also gets the infromation of engine, transmission and suspension through control area network. With these signals, ESC can detect vehicle state in realtime. When vehicle loses its lateral stabiliy or has the trends of rollover, ESC reduces the output torque of engine and applies brake on selected wheels to modify vehicle state.
     Combined with signaficant projects of 863 special project and international cooperation of ministry of science and technology and technology support program of Jilin provence, cooperated with Rearch center of FAW, according with the acquirements of FAW, a stability control system for tractor semi-trailer with 3 axles is researched in this dissertation. There are big differences between stability control system for tractor semitrailers and that for passenger cars. The stability control system for tractor semitrailers can be divided into two main parts: antirollvoer control and yaw stability control. An integrated structure of control algrithms is proposed in this dissertation, based on which the algorithms of estimation of vehicle states are designed. The algorithms mainly focus on estimation of vehicle mass, positon of center of gravity, rollover state, articulation angle, nomial yaw rate, and vehicle velocity, etc. The conditions of start and quit of stability control are determined, and the thresholds for different driving conditions are set, then the strategy of pressure control is used to control the pressure of the wheels. An offline simulation platform and a hardware-in-the-loop test bench are developed under the environment of Matlab to validate the stability control algrithms under different driving conditions.
     The main contents of the dissertaion are:
     1. According to the kinematic principle of tractor semitrailer, a 25 degree-of -freedom nonlinear dynamic model of triaxial tractor-semitrailer is built. The vehicle model includes the dynamics subsystem models and vehicle dynamics system models. The subsystem models include engine model, transmission model, brake model, suspension model, tire model, fifth wheel constraint model, model for calculation of wheel vertical load and auxiliary compute model. The vehicle dynamic models include tractor and trailer kinematics model and the handling stability model. The tractor semitrailer model can simulate braking, steering, accelerating and combined operating conditions on different roads, and perform the desired simulation for vehicle stability control system.
     2. An integrated structure of stability control algrithm is proposed. The control target of stability control system for tractor semitrailer is determined. The control system is divided into two parts, which are anti-rollover control and yaw stability control. With the analysis of different conditions of rollover, the rollover caused by steering is selected to study in this dissertaiton.
     3. As the great fluctuation of vehicle load, lots of vehicle paprameters change with load conditions, which may have some effects on stability control, so, some parameters used must be estimated to modify the control parameters. Multi-function is designed to estimate vehicle mass in which the information of engine and wheel speed under starting acceleration conditon is used. The distances between every axle and center of gravity are calculated using pressure signals of air suspension. Height of center of gravity is estimated using the signals of lateral acceleration and roll rate from lateral acceleration sensor and roll rate sensor available in stability control system. Vehicle velocity is estimated using wheel speed signals. A state observer is designed to estimate tractor roll angle using signals of roll rate lateral acceleration and a 4-DOF roll plane model. Extended Kalman Filter and a 3-DOF vehicle model are used to estimate articulation angle of tractor semitrailer. A 2-DOF linear model is built to calcualte the nominal yaw rate of tractor in order to identify the steering characteristics of the tractor.
     4. According to the estimated vehicle state parameters and the vehicle steering characteristics, which aim to identify the steady state of the vehicle, to determine the start and exit conditions of stability control. When the vehicle has the trend of rollover, firstly a test brake pressure is applied on the tralier wheels to determine whether the wheels lift off the ground, then, according to the different degree of rollover and the steering conditions, it sets different control thresholds and pressure control algorithms. For the backup steering condition, full wheel brake pressure is applied on left and right wheels while the wheels are fully contacted with ground.
     5. When loss of yaw stability occurs, in accordance with the identified under-or over steering characteristics, the stability control system reduces the engine output torque and actively applies brakes on the selected wheels, to correct the vehicle instability state. When jackknife risk occurs, the pressure control strategy must be adjusted, and anti-jackknife control must be performed. If it triggers anti-roll control during yaw stability control, anti-rollover control will take the priorty.
     6. According to the tractror semitrailer dynamics model and control algorithms presented above, an offline simulation platform under Matlab environment is built, and the platform includes vehicle model, controller model and the graphical user interface. With this platform, off-line simulations of steering angle of open loop as step input, fishook input, sinusoidal input and closed-loop as double lane etc. on high, medium and low adhesion coefficient road, are perfomed. The simulation results show that the off-line simulation platform is able to complete the validation of stability control algorithm and the algorithm can prevent vehicle from rollover and loss of lateral stability and the stability control system can enhance driving stability under many conditions.
     7. Based on the offline simulation platform, a hardware-in the-loop test bentch is developed using the toolbox of Matlab / xPC. The test bentch includes xPc Target real-time platform, actuators, sensors, data acquisition, processing system and simulation software. The hardware of test bentch includes three parts, manipulation bentch, tractor bentch and semitrailer bentch. Tests are perfomed on the test bentch in different road conditions to validate the developed stability control algorithm furtherly. The test results show that the stability of control algorithms developed in the dessertation can prevent vehicle from rollover and yaw instability, and improve vehicle stability in a variety of driving conditions.
引文
[1]时培成,李文江.当前经济形势下我国专用汽车产业的发展[J].机械工程师,2009(5):93-95.
    [2]谭秀卿.重型汽车发展趋势简析[J].山东交通学院学报, 2007,15(1):8-11.
    [3]多轴半挂车制动系统发展现状及走势[OL].中国汽车工业信息网, 2008-4-8. http://www.autoinfo.gov.cn/autoinfo_cn/lbj/zdx/ztfx/webinfo/2008-04-08/1205035515558091.htm
    [4]韩林.重型化是物流专用汽车的发展趋势[J].中外物流,2007(1):85-87.
    [5]心语.我国重型专用汽车发展趋势分析[J].重型汽车,2003(1):23-24.
    [6] NHTSA,Traffic Satety Facts 2008[OL],June,2009. http://www.nhtsa.gov.
    [7] Chen Chieh, Tomizuka, Masayoshi. Lateral control of commercial heavy vehicles [J], Vehicle System Dynamics, VSD, 2000, 33(6):391-420.
    [8]刘宏飞.半挂汽车列车横摆动力学仿真及控制策略研究[D],长春:吉林大学,2005.
    [9] Zimmermann A., Hipp E., D?rner Kh, Schwertberger W.. Lateral control of heavy duty vehicles [J]. VDI Berichte, 2005, 1907:113-125.
    [10] Ukawa H., Idonuma H., Fujimura T.. A study on the autonomous driving system of heavy duty vehicle [J]. International Journal of Vehicle Autonomous Systems, 2002, 1(1):45-62.
    [11] Amy Houser, John Pierowicz, Dan Fuglewicz Concept of operations and voluntary operational requirements for vehicular stability system (VSS) on board commercial Motor Vehicles [R]. U.S. Department of Transportation Federal Motor Carrier Safety Administration, FMCSA-MCRR-05-006, 2005.
    [12] BENDIX. BENDIX ABS-6 ADVANCED WITH ESP STABILITY SYSTEM [OL]. www.bendix.com
    [13] WABCO, ESC electronic stability control for commercial vehicles [OL]. www.wabco-auto.com
    [14] Erwin Petersen, Ralf Koschorek and Thomas Reich. Vehicle Stability Control for Trucks and Buses [C]. SAE Paper 982782, 1998.
    [15] David J.M. Sampson, David Cebon. Active Roll Control of Single Unit Heavy Road Vehicles [J]. Vehicle System Dynamics, 2003, 40(4):229-270.
    [16]罗文发.威伯科防抱制动(ABS)系统的拓展技术[J].商用车与发动机, 2009,25(6):66-69.
    [17]陈春毅.威伯科公司的商用车电子稳定控制系统[J].汽车与配件,2006,30(7):48-49.
    [18]冯向敏.半挂汽车列车的主动侧倾控制[D],长春:吉林大学,2005.
    [19]宋上彬.半挂汽车列车侧倾控制系统的仿真研究[D],长春:吉林大学.,2007.
    [20]朱天军,郑红艳,侯红娟.基于最优控制的重型车主动侧倾控制研究[J],河北工程大学学报(自然科学版),2008,25(2):55-57.
    [21]段小成.多功能运动型汽车侧倾主动控制仿真研究[D].武汉:华中科技大学, 2006.
    [22] Selim Solmaz, Mehmet Akar, Robert Shorten and Jens Kallluhl. Realtime Multiple-Model Estimation of Center of Gravity position in Automotive Vehicles [J]. Vehicle system Dynamics, 2008, 46(9):763-788.
    [23] WABCO. TRAILER EBS: Electronic Controlled Braking Systems for Trailers [OL]. www.wabco-auto.com, 2010.
    [24] WABCO. TRAILER EBS with Roll Stability Support (RSS) [OL]. www.wabco-auto.com, 2010.
    [25] Chandrasekharan Santhosh, Guenther, Dennis A., Heydinger Gary J., Salaani M. Kamel, Zagorski Scott B. Development of a roll stability control model for a tractor trailer vehicle [J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2009,2(1):670-679.
    [26] Ott Friederichs, Harald Koster, Konrad Rode, Hartmut Rosendahl. Process for attenuating the yawing momnet in a vhicle with an anti-lock braking system (ABS) [P]. US. 5644394, 1999.
    [27] Thomas Diechmann. Process to prevent the overturning of a vehicle [P]. US. 6384719B1, 2002.
    [28] Horst Eckert, Arnd Gaulke. System and method for monitoring brake overload in electronically-controled brake system of vehicles and vhicle combinations [P]. US. 6934618B2, 2005.
    [29] Bendix. Service Data-Bendix EC-60 ABS/ATC/ESP Controller (Advanced Models) [OL] www.bendix.com, 2010.
    [30] Bendix. Road Map for the Future, Marking the case for full-stability [OL]. www.bendix.com, 2010.
    [31] KNORR-BREMSE. EBS 5- new EBS Generation with integrated Electronic Stability Program (ESP) for increased driving safety and comfort [OL]. www.knorr-bremse.com, 2010.
    [32] KNORR-BREMSE. Electronic Braking System for Trailers [OL]. www.knorr-bremse.com, 2010.
    [33] Mohamed I. Salem. Rollover Stability of Partially Filled Heavy-Duty Elliptical Tankers Using Trammel Pendulums to Simulate Fluid Sloshing [D]. Morgantown, US.: West Virginia University, 2000.
    [34] Aquaro M.. Stability of Partially Filled Tanker Trucks Using a Finite Element Modeling Approach [D]. Morgantown, US.: West Virginia University, April 1999.
    [35] Goldman Robert,El-Gindy Moustafa, Kulakowski Bohdan. Development of a software-based rollover warning device [J]. International Journal of Heavy Vehicle Systems, 2005, 12(4):282-306.
    [36] Don Cunefare, Casimir Pawlowki. Anti-jackknifing tractor trailer system [P]. US. 2007/0252358A1, 2007.
    [37] Matthias Horn, Stefan Hummel, Falk Hecher, Ulrich Gueeker. Method for stablizing the driving state of a utility vehicle combination [P]. US. 7226134B2, 2007.
    [38] Weiwen Deng, Yong Han Lee. Anti-jackknife control for vehicle trailer baking up using rear-wheel control [P]. US. 6854557B1, 2005.
    [39] Pahngroc Oh, Scott Funke, Kevin J. Pavlov. Tralier control system [P]. US., 6668225B2, 2003.
    [40]周淑文,张思奇,郭立新,唐传茵.半挂汽车列车高速紧急避障稳定性控制研究[J].汽车工程,2009,31(2):161-165.
    [41]王国林,韦超毅,陆永华,周孔亢,张赫.半挂汽车列车模型的建立与试验[J].农业机械学报,2005,36(11):17-20.
    [42]李庆军,冯向敏,朱愿,曹亚娟,张英锋.半挂式汽车列车的主动侧倾仿真分析[J].军事交通学院学报,2008,10(6):43-48.
    [43] Rakheja S., Piche A. Development of directional stability criteria for early warning safety device [C]. SAE paper, 902265, 1990.
    [44] Peijun Liu. Analysis,Detection and Early Warning Control of Dynamic Rollover of Heavy Freight Vehicles[D]. Quebec, Canada: Department of Mechanical Engineering , Concordia University,1999.
    [45] Hinch, J., etal. NHTSA’s Rollover Rule making Program-Results of Testing and analysis [C]. SAE paper 920581, 1992.
    [46] Lund.Y.I., Bernard,J.E. Analysis of Simple Rollover Metrics[C]. SAE paper 950306, 1995.
    [47] Bo-Chiuan Chen. Warning and Control for Vehicle Rollver Prevention [D]. Michigan, USA: University of Michigan, 2001.
    [48] Bo-Chiuan Chen, Huei Peng. Rollover Warning for Articulated Heavy Vehicles Based on a Time-To-Rollover Metric [J]. Transaction of the ASME,2005,127(3):406-414.
    [49] Bo-Chiuan Chen , Peng Huei. Rollover Warning of Articulated Vehicles Based on a Time-To-Rollover Metric [J]. Dynamic Systems and Control Division ,DSC,1999, 67:247-254.
    [50] Dongyoon Hyun. Predictive Modeling and Active Control of Rollover in Heavy Vehicles [D]. Texas, US.: Texas A&M University, 2001.
    [51] Hyun Dongyoon, Langari Reza. Predictive modeling for rollover warning of heavy vehicles [C].ASME International Mechanical Engineering Congress and Exposition, 2002, 71:715-721.
    [52] BO-CHIUAN CHEN, HUEI PENG. Differential-Braking-Based Rollover Prevention for Sport Utility Vehicles with Human-in-the-loop Evaluations [J]. VSD,2001, 36(4):359-389.
    [53] Solmaz Selim1, Corless Martin, Shorten Robert. A methodology for the design of robust rollover prevention controllers for automotive vehicles: Part 1-Differential braking [C]. Proceedings of the 45th IEEE Conference on Decision and Control 2006, CDC, 2006, 1739-1744.
    [54] Solmaz Selim, Akar Mehmet, Shorten Robert. Adaptive rollover prevention for automotive vehicles with differential braking [C]. Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC, 2008, 17(1).
    [55] Chen Liang-Kuang, Hsu Sheng-Yung. Investigation of driver-controller interaction in vehicle rollover prevention [C], IEEE International Conference on Systems, Man and Cybernetics, 2007, 2:998-1003.
    [56] H. Yu, L. G venc, . zg ner. Heavy duty vehicle rollover detection and active roll control [J]. Vehicle System Dynamics, 2008, 46(6):451-470.
    [57] Darling Jos, Rosam Neil. Interconnected Hydragas roll control active suspension [C]. Proceedings of the 1996 ASME International Mechanical Engineering Congress & Exhibition, Atlanta, GA, USA, 1996.
    [58] Darling J., Ross-Martin T.J. Theoretical investigation of a prototype active roll control system [J]. Journal of Automobile Engineering, 1997, 211(1):3-12.
    [59] Darling Jos, Hickson Luke R. Investigation of a roll control suspension hydraulic actuation system [C]. Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 1998, 5:49-54.
    [60] D J M Sampson and David Cebon. Achievable roll stability of heavy road vehicles [C]. Proceedings of the Institution of Mechanical Engineers, 2003, 217(4):269-287.
    [61] D J M Sampson and David Cebon, Active roll control of single unit heavy road vehicles [J]. VSD, 2003, 40(4):229-270.
    [62] Miege Arnaud J.P, Cebon David. Optimal roll control of an articulated vehicle: Theory and model validation [J]. VSD, 2005,43(12):867-884.
    [63] Dunwoody A.B. Active Roll Control of a Semi-Trailer [C]. SAE Paper 933045,1993.
    [64] Bayrakceken H., Tasgetiren S., Aslantas K.. Fracture of an automobile anti-roll bar [J]. Engineering Failure Analysis,2006, 13(5):732-738.
    [65] Kim Sung-Soo, Jeong Wan Hee, Ha Kyoungnam. Anti-roll bar force computation algorithm forreal time multibody vehicle dynamics [J]. Transactions of the Korean Society of Mechanical Engineers, 2008, 32(2):170-176.
    [66] Gosselin-Brisson S., Bouazara M. Richard M.J. Design of an active anti-roll bar for off-road vehicles [J]. Shock and Vibration,2009, 16(2):155-174.
    [67] Sorniotti A. , Morgando A., Velardocchia M.. Active roll control: System design and hardware-in-the-loop test bench [J]. Vehicle System Dynamics,2006, 44:489-505.
    [68] Ryu Y.I., Kang D.O., Heo S.J., In J. H.. Rollover mitigation for a heavy commercial vehicle [J]. International Journal of Automotive Technology, 2010, 11(2):283-287.
    [69] Furleigh D.D.,Vanderploeg M.J.,Oh,C.Y.,Multiple Steered Axles forReducing the Rollover Risk of Heavy Articulated Trucks [C]. SAE Paper 881866,1988.
    [70] Allan Y.Lee. Coordinated Control of Steering and Anti-Roll Bars to Alter Vehicle Rollover Tendencies [J]. ASME, 2002, 124:127-132.
    [71] Ashley Liston Dunn, M.S.M.E. Jackknife stability of articulated tractor semitrailer vehicles with high-output brakes and jackknife detection on low coefficient surfaces [D]. Ohio, USA: Ohio State University, 2003.
    [72] Joseph A.Valentino. Jackknife Warning System for Trailered Vehicle [P]. US. 5912616, 1999.
    [73] M. Bouteldja, A.Koita, V.Dolcemascolo, et al. Prediction and Detection of Jackknifing Problems for Tractor Semi-trailer [C]. IEEE, 2006.
    [74] McCann Roy, Le Anh. Electric motor based steering for jackknife avoidance in large trucks [C]. IEEE Vehicle Power and Propulsion Conference, VPPC, Chicago, United states, 2005, 2005:103-109.
    [75] Weiwen Deng, Rochester Hills, Yong Han Lee. Anti-Jackknife control for Vehicle-Trailer Backing up Using Rear-wheel Steer control [P]. US. 6854557B1, 2005.
    [76]何锋,杨利勇.非满载罐式汽车准静态侧翻阈值的计算与分析[J].贵州师范大学学报(自然科学版), 2004,22(2):73-76.
    [77]何锋.非满载罐式汽车静态侧翻模型的参数敏感性分析[J].贵州师范大学学报(自然科学版), 2004,33(5):41-44.
    [78]刘静.液罐车防侧翻姿态控制与报警策略[D].南京:南京林业大学,2009.
    [79]黄朝胜.重型载货汽车底盘性能设计参数控制研究[D].长春:吉林大学,2006.
    [80]许洪国,关志伟,刘宏飞,任有.汽车列车直线行驶横向稳定性模拟实验台[P].中国,CN03211709.4,2005-7.
    [81]张建国.基于闭环控制的半挂汽车列车行驶稳定性研究[D].长春:吉林大学,2010.
    [82]李显生,张建国,王梦瑶.半挂汽车列车闭环系统侧向稳定性仿真分析[J].系统仿真学报,2009,21(3):647-650.
    [83]关志伟,郭墅,许洪国,任有,刘宏飞.半挂汽车列车闭环非线性系统行驶稳定性分析[J].公路交通科技,2005,22(12):144-147.
    [84]关志伟,李春明,许洪国,刘宏飞.汽车列车直线行驶稳定性的模拟试验研究方法[J].汽车技术,2003,7:14-16.
    [85]董金松.半挂汽车列车弯道制动形式方向稳定性及协调控制策略研究[D].长春:吉林大学,2010.
    [86]黄杰燕.基于TTR预警的重型车辆防侧翻控制系统[D].长春:吉林大学,2008.
    [87]朱天军,宗长富,郑宏宇,田承伟,黄朝胜.基于LQG/LTR的重型半挂车主动侧倾控制仿真分析[J].系统仿真学报,2008,20(2):476-479.
    [88]宗长富,朱天军,郑宏宇,田承伟.二次型最优控制的半挂汽车列车主动侧倾控制算法研究[J].中国机械工程,2008,19(7):872-877.
    [89]于尧.基于差动制动的半挂汽车列车稳定性仿真与控制研究[D].长春:吉林大学,2007.
    [90]王坤.半挂汽车防侧翻控制算法研究[D].长春:吉林大学,2009.
    [91]于志新,宗长富,黄乾生.重型牵引车稳定性控制策略的仿真分析[J].煤矿机械. 2009,30(12):34-37.
    [92]黄乾生.基于差动制动的半挂汽车列车主动安全控制的仿真研究[D].长春:吉林大学, 2009.
    [93]朱天军.基于改进TTR重型车辆侧翻预警及多目标稳定性控制算法研究[D].长春:吉林大学,2010.
    [94]黄真,李艳文,高峰.空间运动构件姿态的欧拉角表示[J].燕山大学学报,2007,26(3):189-192.
    [95]许社教,张郁.基于方向余弦参量的物坐标系与世界坐标系间的坐标转换[J].工程图学学报,2004(1):123-127.
    [96]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学,2007.
    [97]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999年.
    [98]袁忠诚,卢荡,郭孔辉.Unitire与Magic Formula稳态模型的对比研究[J].汽车技术,2006(2):7-11.
    [99]郭孔辉,袁忠诚,卢荡.Unitire轮胎稳态模型的联合工况预测能力研究[J].汽车工程,2006,28(6):565-568.
    [100] Bakker E, Nyborg L, Pacejka H B. Tyre modeling for use in vehicle dynamics studies [C]. SAE Technical Paper, 870421,1987.
    [101] Bakker E, Pacejka H B, Linder L. A New Tire Model with an Application in Vehicle Dynamics Studies [C]. SAE Technical Paper, 890087,1989.
    [102] Hans B. Pacejka. Tyre and Vehicle Dynamics [M]. Burlington: Elsevier, 2006.
    [103]郭建华.双轴汽车电子稳定性协调控制系统研究[D].长春:吉林大学,2008.
    [104] Trucksim help document. Tire models. 2009.
    [105] Wei Liang, Jure Medanic, Roland Ruhl. Simulation of Intelligent Convoy with Autonomous Articulated Commercial Vehicles [C]. SAE Technical Paper, 2003-01-3419.
    [106] D. J. M. Sampson. Active Roll Control of Articualated Heavy Vehicles [R]. Technical Report CUED/C-Mech/TR 82, 2002.
    [107] David John Matthew Sampson. Active Roll Control of Articulated Heavy Vehicles [D]. Englad: Engineering Department of Cambridge University,2000.
    [108] Gordon E. Cole. Parameters for Proposed Fifth Wheel Coupler Installation Practices [C]. SAE technical paper, 700193, 1970.
    [109] Toru Sakakura, Haruo Shimosaka, Noburo Ehara. A Study on the braking stability of an articulated Vehicle by controlling Braking Force [C]. AVEC, 9837391, 1998.
    [110] Richard T. O’Brien, Jr. George E. Piper. Steering Control of an articulated vehicle using differential braking [C]. AVEC, 2000.
    [111] Suh M.W., Park Y. K., Kwon S.J. Braking performance simulation for a tractor-semitrailer vehicle with an air brake system [J]. Journal of Automobile Engineering, 2002, 216(1):43-54.
    [112] Philip M.Leucht. The Directional Dynamics of the Commercial Tractor-semitrailer Vehicle During Braking [C]. SAE techinical paper, 700371,1970.
    [113] E.C. Mikulcik. The Dynamics of Tractor-Semitrailer Vehicles: The Jackknifing Problem [C]. SAE technical paper, 710045, 1971.
    [114]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].长春:吉林大学,2008.
    [115] Jim Ehlbeck, Chris Kirn, Joerg Moellenhoff. Freightliner/Meritor Wabco Roll Advisory and Control System [C]. SAE technical paper 2000-01-3507.
    [116] Erwin petersen, Detlev Neuhaus, Klaus Glabe. Vechicle Stability Control for Trucks and Buses [C]. SAE technical paper 982782, 1998.
    [117]鈴木直幸,中浜亮治,橘敦之.アクティブロールバー装置:日本,特開平7-164985[P].1995-06-27.
    [118]実井昭德.車両用横転判定装置:日本,特開2001-83172[P].2001-03-30.
    [119]阿賀正已,関塚誠.ロールオーバ判定装置:日本,特開2002-200951[P].2002-07-16.
    [120]三菱电机株式会社.车辆侧翻判别装置及车辆侧翻判别方法[P].中国,200410063305.3, 2004.
    [121] A. VAHIDI, A. STEFANOPOULOU and H. PENG. Recursive least squares with forgetting foronline estimation of vehicle mass and road grade: theory and experiments. Vehicle System Dynamics, 2005, 43(1):31-55.
    [122] Genise T., Control method system including determination of an updated value indicative of gross combination weight of vehicles [P]. US.5490063, 1994.
    [123] T.Massel, E.L.Ding and M.Amdt.. Estimation of Vehicle Loading State [C]. Proceding of IEEE International Conference on Control Applications, 2004(2):1260-1265.
    [124] Solmaz Selim, Akar Mehmet, Shorten Robert. Online center of gravity estimation in automotive vehicles using multiple models and switching [C]. 9th International Conference on Control, Automation, Robotics and Vision, ICARCV, 2006.
    [125] Sivaramakrishnan Shyam. Simultaneous identification of tire cornering stiffnesses and vehicle center of gravity [C]. Proceedings of the American Control Conference, ACC, 2008:2846-2851.
    [126] Momiyama Fujio, Kitazawa Keiichi, Miyazaki Kiyoaki, Soma Hitoshi, Takahashi Toshimichi. Gravity center height estimation for the rollover compensation system of commercial vehicles [J]. JSAE review, 1999, 20(4):493-497.
    [127] Feng Yang. On the Estimation of Center of Gravity Height of Arbitraily Loaded Articulated Freight Vehicle [D]. Quebec, Canada: Concordia University, 2005.
    [128]王志贤.最优状态估计与系统辨识[M].陕西:西北工业大学出版社,2004年.
    [129]耿聪,堀洋一,青木良文.电动汽车稳定性控制中的车体侧偏角观测器研究[J].河北工业大学学报,2007,36(1):13-18.
    [130]潘晓中.基于Matlab的线性系统极点配置问题的算法分析[J].系统工程与电子技术,2002,24(3):78-80.
    [131]张德丰.Matlab控制系统设计与仿真[M].北京:电子工业出版社,2009.
    [132]杨财,宋健.ABS/TCS/AYC中参考车速和滑移率算法研究[J].汽车工程,2009,31(1):24-27.
    [133] Zhu Wen-Hong, Lamarche Tom. Velocity estimation by using position and acceleration sensors [J]. IEEE Transactions on Industrial Electronics, 2007,54(5):2706-2715.
    [134] Li L., Song J., Kong L., Huang Q. Vehicle velocity estimation for real-time dynamic stability control [J]. International Journal of Automotive Technology, 2009, 10(6):675-685.
    [135] Zhao Lin-Hui, Liu Zhi-Yuan, Chen Hong. Sliding mode observer for vehicle velocity estimation with road grade and bank angles adaptation [C]. IEEE Intelligent Vehicles Symposium proceedings,2009:701-706.
    [136] Manfred Mitschke, Henning Wallentowitz.陈荫三,余强.汽车动力学[M].北京:清华大学出版社,2009.
    [137] A.J.P. Miège and D. Cebon. Design and Implementation of an Active Roll Control System for Heavy Vehicles[C]. AVEC, 2002.
    [138] Azad N.L., Khajepour A., McPhee J. Analysis of jackknifing in articulated steer vehicles [C]. IEEE Vehicle Power and Propulsion Conference, VPPC. 2005:216-220.
    [139] S.L. Dorion, J.G. Pickard, S. Vespa. Feasibility of anti-jackknifing systems for tractor simitrailers [C]. SAE paper 891631, 1989.
    [140] M. Tanelli L., Piroddi S.M. Savaresi. Real-time identification of tire–road friction conditions [J]. IET Control Theory Appl.2008, 3(7):891-906.
    [141] Chang-Sei Kim, Keum-Shik Hong , Wan-Suk yoo, Yong-Woon Park. Tire-Road Friction Estimation for Enhancing the Autonomy of Wheel-Driven Vehicles [C]. International Conference on Control, Automation and Systems, 2007:273-277.
    [142] Paul J.Th. Venhovens, Karl Naab. Vehicle Dynamics Estimation Using Kalman Filters [C]. AVEC 9836617, 1998.
    [143] Takehiko Fujioka, Torahiko Yamanouchi. Estimation System for Vehicle Position by Use of Kalman Filter and Distrubance Observer [C]. AVEC 9836608, 1998.
    [144]郭孔辉,付浩,丁海涛.基于扩展卡尔曼滤波的汽车质心侧偏角估计[J].汽车技术,2009(4):1-3.
    [145] Anton van Zanten, Rainer Erhardt, Georg Pfaff. VDC, The vehicle dynamics control system of bosch[C]. SAE Paper, 950759.1995.
    [146] Youssef A Ghoneim, William C Lin, David M Sidlosky, et al. Integrated chassis control system to enhance vehicle stability [J]. International Journal of Vehicle Design, 2000, 23:124-144.
    [147]朱建胜.三轴汽车电子稳定性控制方法的仿真研究[D].长春:吉林大学,2009.
    [148]任国新.商用车ABS/TCS集成控制系统硬件在环仿真试验技术研究[D].长春:吉林大学, 2008.
    [149]郎志涛.商用车ABS系统ECU的开发及硬件在环验证D].长春:吉林大学,2007.
    [150]黄有林.气压ABS硬件在环仿真试验台开发D].长春:吉林大学,2007.
    [151]侯艳丽.商用车气压ABS电磁阀的动态特性研究D].长春:吉林大学,2007.
    [152]刘建宏.商用车防抱死制动系统的电子控制单元研究与开发D].长春:吉林大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700