电针不同穴位对实验性类痛经大鼠镇痛效应及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电针不同穴位对实验性类痛经大鼠镇痛效应及其机理的研究
     针灸学认为刺激穴位可特异性地对相应脏腑器官产生调治作用,这种作用与非穴和其它经穴比较存在差异。这种差异就是经穴效应的特异性。经穴效应特异性是经络学说的核心内容,是针灸临床循经取穴的重要依据。而且大量临床实践及实验研究都证实穴位效应确实存在特异性。
     现代神经科学对针灸机理的研究结果已显示经穴效应存在特异性。但这种特异性的产生主要是由于支配穴位所在部位的神经节段的不同而引起的。它主要与穴位所在的部位有关,而与经典针灸理论所强调的穴位所处的“经”关系不大。即处于同神经节段的不同经脉上的穴位、相同经脉上的不同穴位以及与非穴位间的效应不存在差异。那么,经穴效应特异性到底为何?同神经节段内非穴位以及不同经脉上的穴位间是否存在效应特异性?相同经脉上不同穴位间的效应又如何呢?
     本研究以实验性类痛经大鼠模型为研究对象,从电针镇痛作用及机制入手,观察电针同神经节段支配的胞宫相关经穴、非相关经穴以及非经非穴对实验性类痛经大鼠的行为学反应、子宫平滑肌收缩力、子宫组织局部致痛物质以及中枢痛觉调制系统的影响,探讨同神经节段支配的经穴与非经穴、相关经穴与非相关经穴,以及同一经脉不同穴位间是否存在经穴效应特异性以及经穴效应特异性是否具有一定的规律。为经穴效应特异性的研究提供系统有力的实验依据。
     实验中所选经穴为:相关经穴为足太阴脾经三阴交、血海穴;非相关经穴为足少阳胆经悬钟穴;非经非穴为胆经与胃经之间平悬钟穴处的非经非穴点。
     实验选用动情间期SD雌性大鼠156只,按照随机数字法分为盐水组、模型组、电针三阴交组、电针血海组、电针悬钟组、电针非穴组6组,每组26只。除盐水组外,其余各组大鼠均皮下注射苯甲酸雌二醇连续10天,第1、10天每只大鼠皮下注射0.5 mg,第2-9天每只均皮下注射0.2mg。末次给药1h后,腹腔注射缩宫素2u/只。盐水组每日给予同等剂量的生理盐水。根据Schmauss行为学评分标准,记录20分钟内扭体反应的潜伏期、扭体评分及扭体次数;应用BL-420E+生物机能实验系统记录仪记录20分钟内大鼠子宫收缩次数和强度;采用放射免疫法检测子宫前列腺素E2(PGE2)、前列腺素F2α(PGF2α)含量;采用免疫组化法检测脊髓背角内K-阿片受体表达;采用ELISA法定量检测中脑中央导水管周围灰质(PAG)中脑啡肽(ENK)、β内啡肽(β-EP)、强啡肽(Dyn)、内吗啡肽(EM)的含量。实验结果如下:
     1电针不同经穴对大鼠行为学反应的影响
     模型组与盐水组相比:扭体潜伏期明显缩短,扭体评分、扭体次数明显增高,均有统计学意义(P<0.01);说明模型制备成功。
     三阴交组扭体潜伏期与模型组相比明显延长,差异有统计学意义(P<0.05),其余各组扭体潜伏期与模型组相比亦延长,但差异无统计学意义(P>0.05);扭体评分和次数各组与模型组相比均明显减少,差异有统计学意义(P<0.01)。但三阴交组扭体评分与盐水组相比差异亦无统计学意义(P>0.05)。说明电针不同穴位后,可减轻实验性类痛经大鼠的扭体反应,其中电针三阴交穴的效应最佳,而血海穴、悬钟穴与非穴间的效应无明显差异。
     2电针不同经穴对大鼠子宫收缩程度的影响
     模型组与盐水组相比:子宫收缩次数明显增加,子宫收缩强度明显增强,差异均有统计学意义(P<0.01);说明造模后子宫平滑肌出现痉挛性收缩。
     三阴交组和血海组的子宫收缩次数与模型组相比均减少,差异有统计学意义(P<0.05),悬钟组和非穴组的子宫收缩次数与模型组相比亦减少,但差异无统计学意义(乃0.05);三阴交组的子宫收缩强度与模型组相比明显降低,差异有统计学意义(P<0.05),其余各组的子宫收缩强度与模型组相比亦降低,但差异无统计学意义(P>0.05)。除非穴组外,其余各组的子宫收缩强度与盐水组相比,差异均无统计学意义(P>0.05)。结果说明:电针穴位后,可调节实验性类痛经大鼠子宫痉挛性收缩程度,从而缓解痛反应。其中,电针三阴交穴的效应最佳,血海穴和悬钟穴亦有一定的缓解效应,血海穴较悬钟穴效应稍佳。非穴的效应无明显改变。
     3电针不同经穴对大鼠子宫PGE2、PGF2α含量及PGE2/PGF2α比值的影响
     模型组与盐水组相比:PGF2α含量明显增高,PGE2含量明显降低,比值明显升高,差异均有统计学意义(P<0.01);说明造模后,子宫组织中致痛物质含量升高。
     各电针组PGF2α含量与模型组相比均明显降低,差异有统计学意义(三阴交:P<0.05;其余各组:P<0.01)。三阴交组PGE2含量与模型组相比明显升高,差异有统计学意义(P<0.01),且与盐水组相比差异无统计学意义(P>0.05),三阴交组PGE2含量比其它各组均明显升高,差异有统计学意义(P<0.01);其余各组PGE2含量与模型组相比均无明显升高,差异无统计学意义(P>0.05)。各电针组比值与模型组相比均明显降低,差异有统计学意义(P<0.01),且三阴交和悬钟组比值与盐水组相比差异亦无统计学意义(P>0.05)。结果说明:电针穴位后,可通过调节实验性类痛经大鼠子宫组织致痛物质的含量而达到镇痛作用。综合效应来看,三阴交组的调节作用较强,其余各组间效应无明显差异。
     4电针不同经穴对大鼠各节段脊髓背角K-阿片受体表达的影响
     针刺不同穴位及非穴对各脊髓节段K-阿片受体表达的影响不同。T13节段:
     模型组与盐水组相比:IOD值升高,但差异无统计学意义(P>0.05)
     三阴交和血海组的IOD值与模型组相比明显升高,差异有统计学意义(P<0.01);悬钟和非穴组的IOD值与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交和血海组的IOD值与非穴相比明显升高,差异有统计学意义(P<0.01)。
     L1节段:
     模型组与盐水组相比:IOD值升高,但差异无统计学意义(P>0.05)
     三阴交和血海组的IOD值与模型组相比明显升高,差异有统计学意义(P<0.01);悬钟和非穴组的IOD值与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交和血海组的IOD值与悬钟组和非穴组相比明显升高,差异有统计学意义(P<0.01)
     L2节段:
     模型组与盐水组相比:IOD值升高明显,差异有统计学意义(P<0.01)
     三阴交和血海组的IOD值与模型组相比明显升高,差异有统计学意义(P<0.01);悬钟和非穴组的IOD值与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交组的IOD值与非穴组相比明显升高,差异有统计学意义(P<0.01)。三阴交组的IOD值较血海和悬钟组也明显升高,差异有统计学意义(P<0.01)。
     L6节段:
     模型组与盐水组相比:IOD值升高,但差异无统计学意义(P>0.05)
     三阴交、血海和非穴组的IOD值与模型组相比明显升高,差异有统计学意义(P<0.01);悬钟组的IOD值与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交组的IOD值与非穴组相比升高,差异有统计学意义(P<0.05)。三阴交和血海组的IOD值均较悬钟组明显升高,差异有统计学意义(P<0.01)。
     S1节段:
     模型组与盐水组相比:IOD值升高,但差异无统计学意义(P>0.05)
     三阴交、血海和悬钟组的IOD值与模型组相比明显升高,差异有统计学意义(三阴交:P<0.01,血海、悬钟:P<0.05);非穴组的IOD值与模型组和盐水组相比差异均无统计学意义(P>0.05)。三阴交组的IOD值与非穴相比明显升高,差异有统计学意义(P<0.01)。三阴交组的IOD值较血海组亦明显升高,差异有统计学意义(P<0.05)。
     以上结果说明:电针可调节各脊髓节段背角内κ-受体的表达,但不同穴位对不同节段调节的强度不同。三阴交和血海穴在各节段都有调节作用,三阴交穴的调节作用较血海穴明显;悬钟穴和非穴也有一定的调节作用,但作用均较三阴交和血海穴组弱。悬钟和非穴间无明显差异。
     5电针不同经穴对PAG内阿片肽物质的影响
     5.1电针不同经穴对大鼠PAG内ENK含量的影响:
     模型组与盐水组相比:PAG内ENK含量有所升高,但差异无统计学意义(P>0.05)。说明实验性类痛经模型使大鼠PAG内ENK含量升高不明显。
     三阴交和悬钟组的ENK含量与模型组相比明显升高,差异有统计学意义(三阴交:P<0.01;悬钟组:P<0.05);血海和非穴组的ENK含量与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交组的ENK含量与血海、悬钟和非穴组相比明显升高,差异有统计学意义(血海、非穴:P<0.01,悬钟:P<0.05)。悬钟与血海的组间差异无统计学意义(P>0.05)。说明电针穴位可调节大鼠PAG内ENK含量的水平,但调节程度不同。三阴交和悬钟穴可明显调节PAG内ENK含量,其中以三阴交穴较好。而电针血海穴和非穴无明显变化。
     5.2电针不同经穴对大鼠PAG内β-EP含量的影响:
     模型组与盐水组相比:PAG内β-EP含量有所升高,但差异无统计学意义(P>0.05)。说明实验性类痛经模型使大鼠PAG内β-EP含量升高不明显。
     三阴交和悬钟组的β-EP含量与模型组相比明显升高,差异有统计学意义(P<0.01);血海和非穴组的β-EP含量与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交和悬钟组β-EP含量与非穴相比均明显升高,差异有统计学意义(三阴交:P<0.01;悬钟组:P<0.05)。三阴交与血海和悬钟组相比差异均有统计学意义(P<0.01)。悬钟与血海组间差异无统计学意义(乃0.05)。说明电针穴位可调节大鼠PAG内β-EP含量的水平,但调节程度不同。三阴交和悬钟穴可明显调节PAG内β-EP含量,其中以三阴交穴较好。而电针血海穴和非穴无明显变化。
     5.3电针不同经穴对大鼠PAG内Dyn含量的影响:
     模型组与盐水组相比:PAG内Dyn含量有所升高,但差异无统计学意义(P>0.05)。说明实验性类痛经模型使大鼠PAG内Dyn含量升高不明显。
     三阴交和悬钟组的Dyn含量与模型组相比明显升高,差异有统计学意义(P<0.01);而血海和非穴组的Dyn含量与模型组相比亦有升高,但差异无统计学意义(P>0.05)。三阴交组Dyn含量与非穴组相比明显升高,差异有统计学意义(P<0.01)。三阴交与血海和悬钟组相比差异均有统计学意义(P<0.01)。悬钟与血海组间差异无统计学意义(P>0.05)。说明电针穴位可调节大鼠PAG内Dyn含量的水平,但调节程度不同。三阴交和悬钟穴可明显调节PAG内Dyn含量,其中以三阴交穴较好。而电针血海穴和非穴无明显变化。
     5.4电针不同经穴对大鼠PAG内EM含量的影响:
     模型组与盐水组相比:PAG内EM含量有所升高,但差异无统计学意义(P>0.05)。说明实验性类痛经模型使大鼠PAG内EM含量升高不明显。
     各组EM含量与模型组相比均有升高,但差异无统计学意义(P>0.05)。说明:针刺各穴位及非穴均无明显调节大鼠PAG内EM含量的作用。
     综上所述:电针不同经穴可引起实验性类痛经大鼠PAG内阿片肽含量发生变化,说明针刺可通过调节脑内阿片肽的水平而起到镇痛作用。但电针不同经穴及非穴对PAG内阿片肽含量的影响不同。在电针同神经节段的三个穴位中,三阴交和悬钟穴均可使ENK、β-EP和Dyn的含量升高,三阴交穴的升高效应较明显,悬钟次之,而血海和非穴无明显调节作用;四个穴位对EM的含量均无明显调节作用,说明EM可能不参与电针对内脏痛的调节。
     结论
     电针同神经节段支配的穴位与非穴位对内脏痛均有镇痛作用,但它们的镇痛效应不同,相关经脉上的特定穴镇痛效应最佳,相关经脉上的非特定穴与非相关经穴效应相近,并且与非穴的效应也相近。针刺穴位可通过调节子宫功能状态和中枢内痛觉调制系统来达到对内脏痛的镇痛作用。并且不同穴位对各部位的调节作用不同。相关经脉上的穴位较之非相关经脉上的穴位以及非穴有更明显的脊髓节段性调节作用,其中以相关经脉中的特定穴作用最强;相关经脉和非相关经脉上的特定穴对脊髓上中枢均有调节作用,但相关经脉上特定穴的调节作用更明显;相关经脉上的非特定穴和非穴无明显调节作用。因此,穴位不同,其调节机制不同,从而产生的效应就不同。由此认为:经穴效应具有特异性,这种特异性是相对的,而不是绝对的。经穴效应特异性虽与其所处的神经节段密切相关,但与其所在的“经”可能有更加密切的联系。
Electroacupuncture Analgesia on Experimental Dysmenorrhea Model Rat and Its Mechanism
     The theory of acupuncture considers that stimulating acupoints can regulate the functions of the corresponding viscera specifically, of which is different comparing to the functions regulated by stimulating non-acupoint or acupoints on other meridians. This difference is specificity of the acupoint effect, which is the core content of the meridian theory and an important basis of locating acupoints along meridian in clinical. A large amount of clinical research and experimental study have confirmed the existence of specificity.
     The research results of modern neuroscience on acupuncture mechanism also showed the existence of specificity of acupoint effect, which was mainly caused by different nerve segments innervating acupoint area. And it was mostly related to the locations of acupoints but had nothing to do with the meridians. That meant there was no difference found among acupoint effect of different meridians innervated by the same nerve segment or difference between acupoints on the same meridian and non acupoints. And what is specificity of acupoint effect in the end? Is there effect specificity among the different meridian acupoints and non-acupoint innervated by the same nerve segment? How about the effect of different acupoints on the same meridian?
     The aim of the present study was to explore whether the specificity of acupoint effects exists and has certain principles or not by comparing the effect and possible mechanism of electroacupuncture analgesia on experimental dysmenorrhea model rat at different acupoints innervated by the same nerve segment.
     Selected acupoints for the experiment were as follows:Sanyinjiao(SP 6), Xuehai(SP 10) on the Spleen meridian of Foot Taiyin as relevant acupoints; Xuanzhong(GB 39) on Gallbladder Meridian of Foot Shaoyang as non-relevant acupoints; and non-acupoints located in the middle acupoint between the gallbladder meridian and the stomach meridian at the horizontal line of Xuanzhong(GB 39).
     The experiments used 156 female Sprague-Dawley (SD) rats which were during their diestrus. SD rats were randomly divided into 6 groups, which included saline control group, model control group, EA Sanyinjiao group, EA Xuehai group, EA Xuanzhong group, EA non-acupoint group, and 26 rats in each group. Except the saline control group, the rest of groups were injected estradiol benzoate for 10 days, the first and 10th day 0.5 mg for each, and from 2th to 9th days 0.2mg for each.1 hour after the last injection, Oxytocin was given to each by intraperitoneal injection with 2u. The saline control group was given for the same dose of saline everyday. According to the standard of Schmauss behavior score, we recorded latency of writhing, writhing times and writhing score in 20 minutes; applied BL-420E+logger of experimental system to record times and intensity of uterine contraction in 20 minutes; used radio immunoassay to detect the content of PGE2, PGF2a in uterine; observed expression ofκ-opioid receptor in the dorsal horn of the spinal cord by immunohistochemical staining; and detected ENK, B-EP, Dyn, EM content in the periaqueductal gray (PAG) of midbrain by ELISA. The results were as follows:
     1 Effect of Electroacupuncture at different acupoints on writhing response in rats
     Compared to the saline control group, latency of writhing, writhing times and writhing score of model control group significantly changed (P<0.01), that meant the model was successfully prepared.
     All the EA groups comparing to the model control group:writhing latency of EA Sanyinjiao group was significantly prolonged (p<0.05), writhing latency of the other groups was also prolonged, but there was no statistical difference (p>0.05); writhing score and writhing times decreased significantly in each group.(p<0.01).but the writhing score of Sanyinjiao group had no statistical difference comparing to the saline control group (p>0.05).
     The results above showed that:After electro-acupuncture treatment on different acupoints, the writhing response of experimental dysmenorrheal model in rats could be relieved at different degrees. There was the best effect in EA Sanyinjiao group, and the differences were not significant among EA Xuehai group, EA Xuanzhong group and EAnon acupoint group.
     2 Effect of electroacupuncture on different acupoints about the uterine contraction of rats
     Model control group comparing to the saline control group:the time and intensity of uterine contraction significantly increased (p<0.01) which meant the smooth muscle of uterus was induced spasmodic contraction.
     the model was successfully prepared.
     All the EA groups comparing to model control group:time of uterine contractions were reduced significantly in Sanyinjiao group and Xuehai group (p <0.05); and the intensity of uterine contraction in Sanyinjiao group had a better effect than other groups (p<0.05).
     All the EA groups comparing to the saline control group, intensity of uterine contraction hadn't a significant difference in other groups except non-acupoint group (p>0.05).
     The results above showed that:acupuncture could improve spasmodic contraction of uterus of experimental dysmenorrhea rat to alleviate pain in the uterus. As a conclusion, the EA Sanyinjiao group had the best effect than others, Xuehai group and Xuanzhong group also had a certain effect, with a better effect in Xuehai group. The effect of non-acupoint hadn't significantly changed.
     3 Effect of electroacupuncture on different acupoints on the content of PGE2, PGF2a and the content ratio of PGE2/PGF2a in the rat uterus
     Model control group comparing to the saline control group:the content of PGF2a significantly increased, and the content of PGE2 decreased significantly. The both ratio increased significantly (p<0.01); which implied that the content of pain-producing substance in uterine tissue increased after modeling.
     All the EA groups comparing to model control group:PGF2a content decreased significantly (Sanyinjiao group:p<0.05; the other groups:p<0.01); PGE2 content in Sanyinjiao group increased more significantly than other groups (p<0.01); and the ratio of PGE2/PGF2a in EA groups significantly decreased (p< 0.01).
     All the EA groups comparing to the saline control group:PGE2 content of all groups except Sanyinjiao group significantly decreased (Xuehai group:p<0.05; the other groups:p<0.01); the ratio of PGE2/PGF2a between Sanyinjiao group and Xuanzhong group showed no statistical differences (p>0.05)
     PGE2 content in Sanyinjiao group were significantly increased than the other groups (p<0.01).
     The results above indicated that:Acupuncture could regulate the content of pain-producing substance in uterus tissue of experimental dysmenorrhea rat to relieve pain. According to the comprehensive effect, Sanyinjiao group achieved best effect than the other groups.
     4 Effect of electroacupuncture on different acupoints on expression of theκ-opioid receptor in dorsal horn of spinal cord of different segments of rat spinal cord
     Different acupoints and non-acupoint have different effects on the expression ofκ-receptor in the spinal cord segments. T13 segment:
     Model control group comparing to the saline control group:The integral optical density (IOD) of the K-receptors positive expression increased, but had no statistical differences (P>0.05).
     All the EA groups comparing to model control group:the IOD in Sanyinjiao group and Xuehai group both increased significantly (P<0.01); the IOD in Xuanzhong group and non-acupoint group increased, but had no statistical differences (P>0.05).
     The acupoint groups comparing to non-acupoint group:the IOD in Sanyinjiao group and Xuehai group both increased significantly (P<0.01); the IOD in Xuanzhong group hadn't showed any statistical differences (P>0.05). L1 segment:
     Model control group comparing to the saline control group:the IOD increased, and the difference was not significant (P> 0.05).
     All the EA groups comparing to model control group:the IOD in Sanyinjiao group andXuehai group both increased significantly (P<0.01); the IOD in Xuanzhong group and non-acupoint group also increased, but had no statistical differences (P>0.05).
     Comparing to non-acupoint group and Xuanzhong group, the IOD in Sanyinjiao group andXuehai group significantly increased (P<0.01). L2 segment:
     Model control group comparing to the saline control group:the IOD significantly increased, and had statistical difference(P<0.01).
     All the EA groups comparing to model control group:the IOD in Sanyinjiao group and Xuehai group both increased significantly (P<0.01); the IOD in Xuanzhong group and non-acupoint group also increased, but had no statistical differences (P>0.05).
     Comparing to Xuehai group, Xuanzhong group non-acupoint group, the IOD in Sanyinjiao group significantly increased (P<0.01). L6 segment:
     Model control group comparing to the saline control group:the IOD increased, and the difference was not significant (P>0.05).
     All the EA groups comparing to model control group:the IOD in Sanyinjiao group, Xuehai group and non-acupoint group increased obviously (P<0.01); the IOD in Xuanzhong group also increased, but had no statistical differences (P>0.05).
     Comparing to non-acupoint group:the IOD in Sanyinjiao group significantly increased (P<0.01).there were more significant statistical differences in increasing of the IOD in Sanyinjiao group and Xuehai group than that in Xuanzhong group (P <0 .01). S1 segment:
     Model control group comparing to the saline control group:the IOD increased, and the difference was not significant (P>0.05).
     All the EA groups comparing to model control group:the IOD in Sanyinjiao group, Xuehai group and Xuanzhong group increased obviously (Sanyinjiao:P<0.01, Xuehai group, Xuanzhong group:P<0.05); the IOD in non-acupoint group had no statistical differences (P>0.05).
     Comparing to Xuehai group and non-acupoint group, the IOD in Sanyinjiao group significantly increased (P<0.01).
     Comparison among the acupoint groups, the IOD in Sanyinjiao group increased more significantly than that in Xuehai group (P<0.05).
     These results show that:EA can adjust K-receptor expression of dorsal horn of spinal cord in all segments, but different acupoints have different effect on the different segments. Sanyinjiao group and Xuehai group can regulate all the segments, and Sanyinjiao group has a better effect; Xuanzhong group and non-acupoint group just have a certain obvious effect in individual segment, and there are no significant differences among Xuanzhong group and non-acupoint group.
     5 Effect of electroacupuncture on different acupoints on endopioid peptide in PAG
     5.1 Effect of electroacupuncture on different acupoint on ENK content in PAG:
     Model control group comparing to the saline control group:ENK content in PAG increased, but had no statistical differences (P>0.05), which meant that in the rat model of experimental dysmenorrhea, the ENK content in PAG didn't increase significantly.
     All the EA groups comparing to model control group:the ENK content in Sanyinjian group and Xuanzhong group significantly increased (Sanyinjiao group:P <0.01; Xuanzhong group:P<0.05); but there were no significant differences in increasing of ENK content between Xuehai group and non-acupoint group (P>0.Q5).
     Comparing to the Xuanzhong group, Xuehai group and non-acupoint group, the ENK content in Sanyinjian group significantly increased, (Xuehai and non-acupoint group:P<0.01, Xuanzhong group:P<0.05); there were no significant differences on increasing of ENK content between Xuehai group and Xuanzhong group (P>0.05).
     These results suggest that:Acupuncture could regulate the levels of ENK in PAG of rats with different effects. Sanyinjiao group and Xuanzhong group could significantly adjust ENK content in PAG, and Sanyinjiao group had a better effect. And the Xuehai group and non-acupoint group had no significant changes.
     5.2 Effect of electro-acupuncture on different acupoints on B-EP content in the PAG:
     Model control group comparing to the saline control group:the B-EP content in PAG increased, but had no statistical differences (P>0.05), which meant that the B-EP content in PAG didn't increase significantly in the rat model of experimental dysmenorrhea.
     All the EA groups comparing to model control group:the B-EP content in Sanyinjian group and Xuanzhong group had increased significantly (P<0.01); and there were no statistical differences in increasing of B-EP content in Xuehai group and non-acupoint group (P>0.05).
     Comparing to the non-acupoint group, the B-EP content in Sanyinjian group and Xuanzhong group significantly increased(Sanyinjian group:P<0.01, Xuanzhong group:P<0.05).
     There were statistical differences between Sanyinjiao group and Xuehai group, and also between Sanyinjiao group and Xuanzhong group (P<0.01); and there were no significant differences between Xuanzhong group and Xuehai group (P>0.05).
     The results above suggest that:Acupuncture could adjust the B-EP content in PAG of rat with different effects. Sanyinjiao group and Xuanzhong group could significantly regulate the B-EP content in PAG, and Sanyinjiao group showed a better effect. But the Xuehai group and non-acupoint group hadn't changed significantly.
     5.3 Effect of electro-acupuncture on different acupoints on the Dyn content in PAG:
     Model control group comparing to the saline control group:the Dyn content in PAG increased, but had no statistical differences (P> 0.05), which meant that the Dyn content in PAG didn't increase significantly in the rat model of experimental dysmenorrhea.
     All the EA groups comparing to model control group:the Dyn content in Sanyinjian group and Xuanzhong group significantly increased (P<0.01); and there were no statistical differences in increasing of Dyn content in Xuehai group and non-acupoint group (P>0.05).
     Comparing to the non-acupoint group, the Dyn content in Sanyinjian group significantly increased (P<0.01).
     There were statistical differences between Sanyinjiao group and Xuehai group, Sanyinjiao group and Xuanzhong group (P<0.01); and there were no significant differences between Xuanzhong group and Xuehai group (P>0.05).
     The results above showed that:Acupuncture could adjust the Dyn content in PAG of the rat with different effects. Sanyinjiao group and Xuanzhong group could both regulate the Dyn content in PAG significantly, and Sanyinjiao group had a better effect. The Xuehai group and non-acupoint group showed no significant changes.
     5.4 Effect of electro-acupuncture on different acupoints on the EM content in PAG:
     Model control group comparing to the saline control group:the EM content in PAG increased, but had no statistical differences (P> 0.05), which meant that increasing of the EM content in PAG wasn't significant in the rat model of experimental dysmenorrhea.
     All the EA groups comparing to the model control group:EM content of each group all increased, but differences were not significant (P> 0.05).
     The experiment results above suggest that:Acupuncture on acupoints and non-acupoints could not improve the EM content in PAG of rats significantly.
     Conclusion
     Behavior response in rats showed that electroacupuncture on acupoints and non-acupoints innervated by the same nerve segment, all of which could alleviate dysmenorrhea reaction in rats with different effects. Sanyinjiao showed the best effect than Xuehai, Xuanzhong and non-acupoint, and the three groups had no significant differences. EA could adjust contraction of uterine smooth muscle and the content of pain-producing substances in uterus and the central pain modulation system to play an analgesic effect. However, acupuncture on different acupoints played different roles. Comparing to EA on Xuanzhong as non-relevant acupoint and non-acuppoint, EA on Sanyinjiao and Xuehai as relevant acupoints had more significant effect onκ-opioid receptor expression of dorsal horn of spinal cord in all segments, and Sanyinjiao has a best effect. Sanyinjiao and Xuanzhong as the special acupoints of relevant and non-relevant meridian could regulate the contents of endopioid peptide in PAG, and Sanyinjiao has a better effect. All of this implied that the existence of specificity of acupoint effect, the effect of acupoints was not only closely related to innervation of the nerve segment, but also "meridian" still played a key role, and the specificity of acupoint effect is relative, not absolute.
引文
1. 林文注.实验针灸学[M].上海:科学技术出版社.1996:88-93.
    2. 承焕生,何文权,陈尔瑜,等.用PIXE研究经络穴位元素浓度的异常分布[J].核计术.1999,22(8):494-499.
    3. 刘俊岭,陈振荣. “九五”国家攀登计划预选项目“经络的研究”进展[J].针刺研究.2002,27(3):230-237.
    4. 赵宁侠,高巍,史恒军,等.电针足三里及非经非穴点对大鼠细胞免疫的影响[J].云南中医学院学报.2001,24(1):37-39.
    5. 于建春,于涛,韩景献.从基因表达差异分析腧穴和非腧穴针刺效应差异[J].中国针灸.2002,22(11):749-751.
    6. 张俊海,冯晓源,李雯,等.穴位和非穴位电针镇痛的脑功能磁共振对照研究[J].中国医学计算机成像杂志.2005,11(1):10-16.
    7. Kim KS, Kim KN, Hwang KG, et al. Capsicum plaster at the Hegu point reduces postoperative analgesic requirement after orthognathic surgery[J]. Anesth Analg.2009,108(3):992-996.
    8. 魏建子,张爱梅,沈雪勇,等.月经前后手三阴经原穴伏安特性[J].中西医结合学报.2006,4(3):260-264.
    9. 张唐法,张红星,刘悦平.针刺单穴降压的穴位特异性观察[J].湖北中医杂志.1999,5(21):235.
    10.余明哲,朱忠春,彭美凤,等.针刺治疗十二指肠溃疡的腧穴特异性研究[J].上海针灸杂志.2001,20(5):4-6.
    11.严洁,常小荣,黄必群,等.针刺足阳明经不同穴点对胃窦面积影响的结果分析[J].中国针灸.1999,19(3):167-169.
    12.何伟,胡和平.试从体表-内脏相关探讨经穴-脏腑相关的本质[J].亚太传统医药.2006,6:40-41.
    13. Scharf HP, Mansmann U, Streitberger K, et al. Acupuncture and knee osteoarthritis:a three-armed randomized trial[J]. Ann Intern Med. 2006,145(1):12-20.
    14. Linde K, Streng A, Jurgens S, et al. Acupuncture for patients with migraine:a randomized controlled trial[J]. JAMA.2005,293(17):2118-2125.
    15.葛秦生.实用女性生殖内分泌学[M].北京:人民卫生出版社.2008:285.
    16. Davis AR, Westhoff CL. Primary dysmenorrhea in adolescent girls and treatment with oral contraceptives[J]. J Pediatr Adolesc Gynecol.2001,14(1):3-8.
    17. Banikarim C, Chacko MR, Kelder SH. Prevalence and impact of dysmenorrhea on Hispanic female adolescents[J]. Arch Pediatr Adolesc Med. 2000,154(12):1226-1229.
    18. Strinic T, Bukovic D, Pavelic L, et al. Anthropological and clinical characteristics in adolescent women with dysmenorrhea[J]. Coll Antropol. 2003,27 (2):707-711.
    19. Ludwig H. Dysmenorrhea[J]. Ther Umsch.1996,53(6):431-441.
    20. Tzafettas J. Painful menstruation[J]. Pediatr Endocrinol Rev.2006,3,Suppl 1:160-163.
    21. Dawood MY. Primary dysmenorrhea:advances in pathogenesis and management[J]. Obstet Gynecol.2006,108(2):428-441.
    22. Liedman R, Hansson SR, Howe D, et al. Reproductive hormones in plasma over the menstrual cycle in primary dysmenorrhea compared with healthy subjects[J]. Gynecol Endocrinol.2008,24(9):508-513.
    23.黄荷凤,何赛男.子宫前列腺素研究进展[J].国外医学:妇产科学分册.1995,22(5):265-268.
    24. Healy DL, Hodgen GD. The endocrinology of human endometrium[J]. Obstet Gynecol Surv.1983,38 (8):509-530.
    25. Levin JH, Stanczyk FZ, Lobo RA. Estradiol stimulates the secretion of prostacyclin and thromboxane from endometrial stromal cells in culture[J]. Fertil Steril.1992,58(3):530-536.
    26.李美芝.妇科内分泌学[M].北京:人民军医出版社,2001:234.
    27. Durain D. Primary dysmenorrhea:assessment and management update[J]. J Midwifery Womens Health.2004,49(6):520-528.
    28. Benedetto C. Eicosanoids in primary dysmenorrhea, endometriosis and menstrual migraine[J]. Gynecol Endocrinol.1989,3(1):71-94.
    29.杨建花.近年来针灸治疗原发性痛经临床概况与思考[J].中国针灸.2004,24(5):364-366.
    30. Dawood MY, Khan-Dawood FS. Clinical efficacy and differential inhibition of menstrual fluid prostaglandin F2alpha in a randomized,. double-blind, crossover
    treatment with placebo, acetaminophen, and ibuprofen in primary dysmenorrhea[J]. Am J Obstet Gynecol. 2007,196(1):35. e1-5.
    31.华永庆,洪敏,朱荃.原发性痛经研究进展[J].南京中医药大学学报.2003,19(1):62-64.
    32. Dingfelder JR. Primary dysmenorrhea treatment with prostaglandin inhibitors: a review[J]. Am J Obstet Gynecol.1981,140(8):874-879.
    33.彭芝配,滕久祥,党海珍,等.九气拈痛胶囊对催产素所致痛经大鼠镇痛作用机制的研究[J].湖南中医学院学报.2005,25(2):7-10.
    34.曹泽毅.中华妇产科学[M]-2版.北京:人民卫生出版社.2004:2482-2483.
    35.刘敏如,谭万信.中医妇产科学[M].北京:人民卫生出版社.2004:232.
    36.张玉珍.新编中医妇科学[M].北京:人民军医出版社.2001:308.
    37.陈旭,解秸萍,朱江,等.针灸治疗痛经取穴规律探究[J].上海针灸杂志.2008,27(6):45-46.
    38.马玉侠,衣华强,孙玉国,等.针灸治疗原发性痛经的取穴现状分析[J].山东中医药大学学报.2009,33(5):359-361.
    39.高树中,陈少宗,马玉侠,衣华强.针灸治疗原发性痛经优化方案评价及临床共性技术研究概述[J].山东中医杂志.2009,28(7):443-444.
    40.杨欢,陈旭,金侣位,等.国内外近二十年针灸治疗原发性痛经临床对照试验的概况[J].中华中医药杂志(原中国医药学报).2009,24(1):72-74.
    41.任晓暄.针刺对下丘脑促性腺激素释放激素神经元活动的影响[D].中国中医研究院硕士研究生学位论文.北京:中国中医研究院.2005.
    42.黄志刚.针灸辨证治疗原发性痛经疗效观察[J].上海针灸杂志.2009,28(7):377-379.
    43.熊秀蓉,严炜,姚志芳,等.针灸治疗原发性痛经68例临床观察[J].福建中医学院学报.2001,11(3):33-34.
    44.郑兆俭.针灸治疗原发性痛经疗效观察[J].浙江中西医结合杂志.2006,16(2):78-79.
    45.金锦兰.针灸治疗原发性痛经[J].辽宁中医杂志.2009,36(10):1783-1784.
    46.任蓉,陈兴华.针灸治疗寒凝型原发性痛经临床观察中国中医急症[J].2009,18(12):1972-1973.
    47.贾立新,赵春峰,王奎生,等.针灸中医辨证取穴治疗原发性痛经48例的疗效观察[J].中外医疗.2009,17:108.
    48.蓝天飞,陈希锋,张自忠.神阙穴贴敷结合针灸治疗青春期原发性痛经[J].中国实用乡村医生杂志.2007,14(8):15-16.
    49.贺俊伟,常金兔,赵静梅.针灸疗法治疗原发性痛经的临床观察[J].中华当代医药.2005,3(3):10-11.
    50.赵福学,赵芳,赵鹏.点揉关元、地机穴治疗原发性痛经96例[J].河南中医.2005,25(6):59-60.
    51.潘放鸣.对女青年原发性痛经针刺三阴交穴治护效果之分析[J]. Chinese Journal of the Practical Chinese with Modem Medicine.2007,20(21):1850-1852.
    52.葛书翰,葛继魁,唐明鑫,等.针刺配合拔火罐治疗原发性痛经98例疗效观察[J].中国针灸.1999,19(12):725.
    53.任路,孟安琪,鲁立宪.针刺关元俞加罐治疗血瘀型原发性痛经临床研究[J]中国中医药信息杂志.2001,8(3):73.
    54.刘芳,郑翠红,黄光英,等.Cx43对针灸治疗原发性痛经大鼠效应的影响[J].中国针灸.2008,28(10):751-756.
    55.赵宁侠,郭瑞林,任秦有,等.针灸治疗原发性痛经临床疗效及血液流变学相关性分析[J].浙江中医药大学学报.2007,31(3):364-367.
    56.刘芳,熊瑾,黄光英,等.针刺对痛经大鼠神经-内分泌影响的机制初探[J].针刺研究.2009,34(1):3-7.
    57.王黎,鞠琰莉,邝枣园,等.针刺治疗痛经的免疫机制研究[J].广州中医药大学学报.2007,24(3):219-221.
    58.杨雅琴,黄光英.针刺对痛经小鼠止痛作用及其机制的研究[J].中国针灸.2008,28(2):119-121.
    59.韩济生.神经科学[M].北京:北京大学医学出版社.2009:655-658.
    60. MilIan MJ. Descending control of pain[J]. Prog Neurobiol.2002,66:355-474
    61.吴根诚,王彦青,朱崇斌,等.孤啡肽(OFQ)参与痛觉调制和针刺镇痛及其中枢机制[J].医学研究通讯.2002,31(10):19-20.
    62. Dubner R, Bennett GJ. Spinal and trigeminal mechanisms of nociception[J]. Annu Rev Neurosci.1983,6:381-418.
    63. Willis WD, Westlund KN, Carlton SM. Pain. In:Paxions Ged[M]. The rat nervous system,2nded. San Diego:Academic Press.1995:725-750.
    64.李云庆.镇痛机制的研究思路及研究进展[R].复旦神经生物学讲座.1999,15:13-24.
    65. Li YQ,Li H, Kaneko T, et al. Substantia gelatinosa neurons in.the medullary dorsal horn:An intracellular labeling study in the rat[J]. J Comp Neurol. 1999,411 (3):399-412.
    66. Dubner R. The neurobiology of persistent pain and its clinical implications[J]. Suppl Clin Neurophysiol..2004,57:3-7.
    67. MillanMJ. Descending control of pain[J]. Prog Neurobiol.2002,66(6):355-474.
    68. Heinricher MM, Tavares I, Leith JL, et al. Descending control of nociception: Specificity, recruitment and plasticity[J]. Brain Res Rev.2009,60(1):214-225.
    69. Luo C, Kumamoto E, Furue H, et al. Nociceptin inhibits excitatory but not inhibitory transmission to substantia gelatinosa neurones of adult rat spinal cord[J]. Neuroscience.2002,109(2):349-358.
    70. Wu SY, Dun SL, Wright MT, et al. Endomorphin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons in vitro[J]. Neuroscience.1999,89(2):317-321.
    71. Hori Y, Endo K, Takahashi T. Presynaptic inhibitory action of enkephalin on excitatory transmission in superficial dorsal horn of rat spinal cord[J]. J Physiol.1992,450:673-685.
    72. Kohno T, Kumamoto E, Higashi H, et al. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord[J]. J Physiol.1999,518(Pt3):803-813.
    73. Glaum SR, Miller RJ, Hammond DL. Inhibitory actions of deltal-, delta2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord[J]. J Neurosci.1994,14(8):4965-4971.
    74. Zachariou V, Goldstein BD. Delta-Opioid receptor modulation of the release of substance P-like immunoreactivity in the dorsal horn of the rat following mechanical or thermal noxious stimulation[J]. Brain Res. 1996,736(1-2):305-314.
    75. Zachariou V, Goldstein BD. Kappa-opioid receptor modulation of the release of substance P in the dorsal horn[J]. Brain Res.1996,706(1):80-88.
    76. Li JL, Ding YQ, Li YQ, et al. Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin
    gene-related peptide. A light and electron microscope study in the rat[J]. Brain Res.1998,794 (2):347-352.
    77. Minami M, Maekawa K, Yabuuchi K, et al. Double in situ hybridization study on coexistence of mu-, delta-and kappa-opioid receptor mRNAs with preprotachykinin A mRNA in the rat dorsal root ganglia[J]. Brain ResMol Brain Res.1995,30(2):203-210.
    78. Ruda MA. Opiates and pain pathways:demonstration of enkephalin synapses on dorsal horn projection neurons[J]. Science.1982,215(4539):1523-1525.
    79. Ruda MA, Coffield J, Dubner R. Demonstration of postsynaptic opioid.modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry[J]. J Neurosci. 1984,4(8):2117-2132.
    80. Luo C, Kumamoto E, Furue H, et al. Nociceptin-induced outward current in substantia gelatinosa neurones of the adult rat spinal cord[J]. Neuroscience. 2001,108(2):323-330.
    81. Jeftinija S. Enkephalins modulate excitatory synaptic transmission in the superficial dorsal horn by acting at mu-opioid receptor sites[J]. Brain Res. 1988,460(2):260-268.
    82. Yoshimura M, North RA. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin[J]. Nature.1983,305(5934):529-530.
    83. Grudt TJ, Williams JT. Kappa-Opioid receptors also increase potassium conductance[J]. Proc Natl Acad Sci USA.1993,90(23):11429-11432.
    84. Rusin KI, Randic M. Modulation of NMDA-induced currents by mu-opioid receptor agonist DAGO in acutely isolated rat spinal dorsal horn neuronstj], Neurosci Lett.1991,124(2):208-212.
    85. Kolaj M, Randic M. Mu-opioid recetor mediated reduction of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-activated current in dorsal horn neurons[J]. Neurosci Lett,1996,204(1-2):133-137.
    86. Randic M, Cheng G, Kojic L. Kappa-opioid receptor agonists modulate excitatory transmission in substantia gelatinosa neurons of the rat spinal, cord[J]. J Neurosci.1995,15(10):6809-6826.
    87. Chen L, Gu Y, Huang LY. The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin[J]. J Neurosci,1995,15(6):4602-4611.
    88. Wang XM, Mokha SS. Opioids modulate N-methyl-D-aspartic acid (NMDA)-evoked responses of trigeminothalamic neurons[J]. J Neurophysiol. 1996,76(3):2093-2096.
    89. Shu YS, Zhao ZQ, LiM Y, et al. Orphanin FQ/nociceptin modulates glutamate-and kainic acid-induced currents in acutely isolated rat spinal dorsal horn neurons[J]. Neuropeptides.1998,32(6):567-571.
    90. Todd AJ, Spike RC, Russell G, et al. Immunohistochemical evidence that Met-enkephalin and GABA coexist in some neurons in rat dorsal horn[J]. Brain Res.1992,584(1-2):149-156.
    91. Wang RA, Randic M. Activation of mu-opiod receptor modulates GABAA receptor-mediated currents in isolated spinal dorsal horn neurons [J]. Neurosci Letts.1994,180(2):109-113.
    92. Heinricher MM, Morgan MM, Fields HL. Direct and indirect actions of morphine on medullary neurons that modulate nociception[J].'Neuroscience. 1992,48 (3):533-543.
    93. Barbaro NM, Heinricher MM, Fields HL. Putative pain modulating neurons in the rostral ventral medulla:reflex-related activity predicts effects of morphine[J]. Brain Res.1986,366(1-2):203-210.
    94. Fields HL, Vanegas H, Hentall ID, et al. Evidence that disinhibition of brain stem neurones contributes to morphine analgesia[J]. Nature. 1983,306 (5944):684-686.
    95. Heinricher MM, Morgan MM, Tortorici V, et al. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla[J]. Neuroscience.1994;63(1):279-288.
    96. Heinricher MM, Schouten JC, Jobst EE. Activation of brainstem N-methyl-D-aspartate receptors is required for the analgesic actions of morphine given systemically[J]. Pain.2001,92(1-2):129-138.
    97. Heinricher MM, McGaraughty S, Farr DA. The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine[J]. Pain.1999,81(1-2):57-65.
    98. Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla[J]. J Neurophysiol.2001,85 (1):280-286.
    99. Cleary DR, Neubert MJ, Heinricher MM. Are opioid-sensitive neurons in the rostral ventromedial medulla inhibitory interneurons? [J]. Neuroscience.2008 Jan 24:151(2):564-571.
    100. Li AH, Wang HL. G protein-coupled receptor kin.ase 2 mediates mu-opiod receptor desensitization in GABAergic neurons of the nucleus raphe magnus[J]. J Neurochem. 2001,77(2):435-444.
    101. Osborne PB, Vaughan CW, Wilson HI, et al. Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro[J]. J. Physiol.1996,490(Pt2):383-389.
    102. Wang H, Wessendorf MW. Mu-and delta-opioid receptor mRNAs are expressed in periaqueductal gray neurons projecting to the rostral ventromedial medulla[J]. Neuroscience.2002,109(3):619-634.
    103. Pan ZZ, Fields HL. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostral ventromedial medulla[J]. Neuroscience. 1996,74(3):855-862.
    104. Vaughan CW, Conno rM, Jennings EA,et al. Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro[J]. J Physiol.2001,534(Pt3):849-859.
    105.Ackley MA, Hurley RW, Virnich DE, et al. A cellular mechanism for the antinociceptive effect of a kappa opioid receptor agonist[J]. Pain. 2001,91 (3):377-388.
    106. Pan YZ, Li DP, Chen SR, et al. Activation of delta-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs[J]. J Neurophysiol.2002,88(5):2675-2683.
    107.van Bockstaele EJ, Commons K, Pickel VM. Delta-opioid receptr is present in presynaptic axon terminals in the rat nucleus locus coeruleus:relationships with methionine5-enkephalin[J]. J Comp Neurol.1997,388(4):575-586.
    108. Pan ZZ, Tershner SA, Fields HL. Cellular mechanism for anti-analgesic actions of agonists of the kappa-opioid receptor[J]. Nature.1997,389(6649):382-385.
    109. Wang JB, Imai Y, Eppler CM, et al. mu opiate receptor:cDNA cloning and expression[J]. Proc Natl Acad Sci USA.1993,90(21):10230-10234.
    110. Knapp RJ, Malatynska E, Fang L, et al. Identification of a human delta opioid receptor:cloning and expression[J]. Life Sci.1994,54(25):463-469.
    111. Fukuda K, Kato S, Mori K, et al. Primary structures and expression from cDNAs of rat opioid receptor delta-and mu-subtypes [J]. FEBS Lett.1993,327(3):311-314.
    112.Minami M, Toya T, Katao Y, et al. Cloning and expression of a cDNA for the rat kappa-opioid receptor[J]. FEBS Lett.1993,329(3):291-295.
    113.Varga EV, Li X, Stropova D, et al. The third extracellular loop of the human delta-opioid receptor determines the selectivity Of delta-opioid agonists [J]. Mol Pharmacol.1996,50(6):1619—1624.
    114. Bunzow JR, Saez C, Mortrud M, et al. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type[J]. FEBS Lett.1994,347(2-3):284-288.
    115. Fukuda K, Kato S, Mori K, et al. cDNA cloning and regional distribution of a novel member of the opioid receptor family[J]. FEBS Lett.1994,343(1):42-46.
    116. Singh VK, Bajpai K, Biswas S, et al. Molecular biology of opioid receptors: recent dvances[J]. Neuroimmunomodulation.1997,4(5-6):285-297.
    117. Quirion R. Pain, nociception and spinal opioid receptors[J]. Prog Neuropsychopharmacol Biol Psychiatry.1984,8(4-6):571-579.
    118. Reisine T, Bell GI. Molecular biology of opioid receptors [J]. Trends Neurosci. 1993,16(12):506-510.
    119.方秀斌.神经肽与神经营养因子[M].北京.人民卫生出版社.2002:31-32.
    120. Medina VM, Wang L, Gintzler AR. Spinal cord dynorphin:positive region-specific modulation during pregnancy and parturition [J]. Brain Res.1993,623(1):41-46.
    121. Arvidsson U, Riedl M, Chakrabarti S, et al. The kappa-opioid receptor is primarily postsynaptic:combined immunohistochemical localization of the receptor and endogenous opioids[J]. Proc Natl Acad Sci USA. 1995,92(11):5062-5066.
    122. Mizoguchi H, Wu HE, Narita M, et al. Lack of mu-opioid receptor-mediated G-protein activation in the spinal cord of mice lacking Exon 1 or Exons 2 and 3 of the MOR-1 gene[J]. J Pharmacol Sci.2003,93(4):423-429.
    123. Sora I, Funada M, Uhl GR. The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia[J]. Eur J Pharmacol.1997, 324(2-3):R1-2.
    124. Simonin F, Valverde 0, Smadja C, et al. Disruption of the kappa-.opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal[J]. EMBO J.1998,17(4):886-897.
    125.Gallantine EL, Meert TF. Antinociceptive and adverse effects of mu-and kappa-opioid receptor agonists:a compari-son of morphine and U50488-H[J]. Basic Clin Pharmacol Toxicol.2008,103(5):419-427.
    126. Kitamura T, Ogawa M, Yamada Y. The individual and combined effects of U50,488, and flurbiprofen axetil on visceral pain in conscious rats[J]. Anesth Analg. 2009,108 (6):1964-1966.
    127. Wang HQ, Kampine JP, Tseng LF. Antisense oligodeoxynucleotide to a delta-opioid receptor messenger RNA selectively blocks the antinociception induced by intracerebroventricularly administered delta-, but not mu-, epsilon-or kappa-opioid receptor agonists in the mouse[J]. Neuroscience. 1996,75(2):445-452.
    128. Pasternak GW, Standifer KM. Mapping of opioid receptors using antisense oligodeoxynucleotides:correlating their molecular biology and pharmacology [J]. Trends Pharmacol Sci.1995,16(10):344-350.
    129. Larsson MH, Bayati A, Lindstrom E, et al. Involvement of kappa-opioid receptors in visceral nociception in mice[J]. Neurogastroenterol Motil. 2008,20 (10):1157-1164.
    130. Sandner-Kiesling A, Eisenach JC. Pharmacology of opioid inhibition to noxious uterine cervical distension[J]. Anesthesiology.2002,97(4):966-971.
    131. Zadina JE, Hackler L, Ge LJ, et al. A potent and selective endogenous agonist for the mu-opiate receptor[J]. Nature.1997,386(6624):499-502.
    132.韩济生.神经科学[M].北京,北京大学医学出版社.438-454.
    133.MillanMJ. Descending control of pain[J]. Prog Neurobiol.2002,66(6):355-474.
    134. DunNJ, Dun SL, Hwang LL. Nociceptin-like inununoreactivity in autonomic nuclei of the rat spinal cord[J]. Neumsei Lett.1997,234(2-3):95-98.
    135. Zhang G, Murray TF, Grandy DK. Orphanin FQ has an inhibitory effect on the guinea pig ileum and the mouse vas deferens[J]. Brain Res.1997,772(1-2):102-106.
    136. Pare M, Elde R, Mazurkiewicz JE, et al. The Meissner corpuscle revised:a multiaferented mechanoreceptor with nociceptor immunochemical properties [J]. J Neurosei.2001,21 (18):7236—7246.
    137. Wang Yun, Zhang Yi, et al. A new proof of co-abirritation between EM and Dyn[J]. Chinese Journal of Pain Medicine.2002,8(2):118.
    138. Stein C,. Gramseh C, Herz A. Intrinsic mechanisms of antinociception in inflammation:local opioid receptors and beta-endorphin[J]. J Neurosci. 1990,10(4):1292-1297.
    139. Zadina JE, Hacker L, Ge LJ, et al. A potent and selective endogenous agonist for the mu-opiate receptor[J]. Nature.1997,386(6624):499-502.
    140. Zadina JE, Hacker L, Ge LJ, et al. A potent and selective endogenous agonist for the mu-opiate receptor[J]. Nature.1997,386(6624):499-502.
    141. Tseng LF, Narita M, Suganuma C, et al. Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse[J]. J Pharmacol Exp Ther. 2000,292 (2):576-583.
    142. Goldberg IE, Rossi GC, Letchworth SR, et al. Pharmacological characterization of endomorphin21 and endomorphin22 in mouse brain[J]. J.Pharmacol Exp Ther. 1998,286 (2):1007-13.
    143. Sanchez2Blazouez P, Rodriguez2Diaz M, DeAntonio I, et al. Endomorphin21 and endimorphin22 show differences in their activation of mu opioid receptor-regulated G proteins in supraspinal antinociception in mice[J]. J Pharmacol Exp Ther.1999,291 (1):12-8.
    144. Chapman V, Diaz A, Dickenson AH. Distinct inhibitory effects of spinal endomorphin-1 and endomorphin-2 on evoked dorsal horn neuronal responses in the rat[J]. Br J Pharmacol.1997,122(8):1537-1539.
    145. Tseng LF, Narita M, Suganuma C, et al. Differential antinociceptive effects of endomorphin21 and endomorphin22 in the mouse[J]. J Pharmacol Exp Ther. 2000,292 (2):576-83.
    146. Sakurada S, Zadina JE, Kastin A J, et al. Differential involvement of mu-opioid receptor subtypes in endomorphin-1-and-2-induced antinociception[J]. Eur J Pharmacol.1999,372(1):25-30.
    147.孙涛,宋文阁,姚尚龙,等.侧脑室注射内吗啡肽-1降低神经病理性疼痛大鼠海马和PAG IL-6 mRNA的表达[J].山东大学学报(医学版).2006,44(10):1028-1031.
    148.俞咏蓓.电针同异节段穴位对大鼠脊髓背角WDR神经元对作用[J].针刺研究.1991,16(3-4):189-190.
    149.刘乡,朱兵,王昱.穴位与非穴位电针对中缝大核神经元效应的比较[J].针刺研究.1988,13(3):77-80.
    150.刘乡.电针镇痛穴位特异性和广泛性的研究[J].针刺研究.1997,22(1):66-68.
    151.刘荣桓,唐敬师,侯宗濂等.穴位作用节段性特征的电生理学研究[A].西安交通大学学报(医学版).1987(4):303-304.
    152.高云飞,孟凡迅,张俊芳,等.大鼠不同经脉线上针刺痛阈相关性比较[J].辽宁中医杂志.200,34(6):843-844.
    153.张苗苗,孟凡迅,施耀成,等.大鼠任脉、督脉不同腧穴的针刺痛阈相关性比较[J].四川中医.2007,25:14-15.
    154. Houdeau E, Rousseau A, Meusnier C, et al. Sympathetic innervation of the upper and lower regions of the uterus and cervix in the rat have different origins and routes[J]. J Comp Neurol.1998,399(3):403-412.
    155. Baljet B, J Drukker. The extrinsic innervation of the pelvic organs in the female rat[J]. ActaAnat. (Basel).1980,107(3):241-267.
    156. R. Epapka,H. H. Traurig.M. Schemann, et al. WilsonCholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat distribution of axons and presence of muscarinic receptors [J]. Cell Tissue Res.1999,296:293-305.
    157.杨安峰,杨平等.大鼠的解剖和组织[M].北京:科学出版社.1985,178-179,176-177.
    158.徐叔云,卞如濂,陈修.药理实验方法学[M]-3版.北京:人民卫生出版社.2002:1582-1587.
    159.林文注,王佩.实验针灸学[M].上海:上海科技技术出版社.1999,9-288.
    160. Schmauss C, Yaksh TL. In vivo studies on spinal opiate receptor systems mediating antinociception. Ⅱ. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat [J]. J Pharmacol Exp Ther.1984,228(1):1-12.
    161.陈奇.中药药理研究方法学[M]-2版.北京:人民卫生出版社.2006:464
    162.王北婴,李仪奎.中药新药研制开发技术与方法[M].上海:上海科学技术出版社.2001:701-792.
    163.李仪奎.中药药理实验方法学[M].上海:上海科技出版社.1991:419.
    164.陈奇.中药药理研究方法学[M]-2版.北京:人民卫生出版社.2006:464.
    165.毕明,陈奇,吴卫清,等.女金制剂对子宫活动的影响[J].中国临床药理学与治疗学.2002,7(1):37-40.
    166.王北婴,李仪奎.中药新药研制开发技术与方法[M].上海:上海科学技术出版社.2001:703.
    167.芮菁,吴燕敏,唐元泰.经痛宁颗粒治疗痛经的实验研究[J].中药药理与临床.2001,17(3):26-27.
    168. Bajaj P, Drewes AM, Gregersen H, et al. Controlled dilatation of the uterine cervix—an experimental visceral pain model. Pain[J].2002,99(3):433-42.
    169. Liedman R, Skillern L, James I, et al. Validation of a test model of induced dysmenorrhea[J]. Acta Obstet Gynecol Scand.2006,85(4):451-7.
    170. Poyser N. L. Production of prostaglandins by the guinea-pig uterus[J]. J. Endocrinol.1972,54(1):147-59.
    171.Naylor B, Poyser NL. Effects of oestradiol and progesterone on the in vitro production of prostaglandin F2alpha by the guinea-pig uterus [J]. Br J Pharmacol. 1975,55 (2):229-32.
    172. Lu YC, Chen HH, Ko CH, Lin YR, et al. The mechanism of honokiol-induced and magnolol-induced inhibition on muscle contraction and Ca2+mobilization in rat uterus[J]. Naunyn Schmiedebergs Arch Pharmacol.2003,368(4):262-9.
    173. Novakovic R, Milovanovic S, Protic D, et al. The effect of potassium channel opener pinacidil on the non-pregnant rat uterus [J]. Basic Clin Pharmacol Toxicol. 2007,101 (3):181-6.
    174. Abraham GE. Primary dysmenorrhea[J]. Clin Obstet Gynecol.1978,21(1):139-45.
    175. Ylikorkala O, Dawood MY. New concepts in dysmenorrhea[J]. Am J Obstet Gynecol. 1978,130(7):833-47.
    176. Feit A, Freund M, Ventura WP. Effect of stage of the estrous cycle on the motility of the uterus in the guinea pig in vivo[J]. Am J Obstet Gynecol. 1968,102(2):202-11.
    177. Hahn DW, Carraher R, McGuire JL. Effects of suprofen and other prostaglandin synthetase inhibitors in a new animal model for myometrial hyperactivity[J]. Prostaglandins.1982,23(1):1-16.
    178. Ikezono K, Fujita S, Umezato M, et al. General pharmacological properties of the new vasodilator flosequinan[J]. Arzneimittelforschung. 1992,42(10):1200-11.
    179. Celik H, Ayar A, Baltaci A, et al. Erythromycin inhibits prostaglandin F2alpha-induced contractions of myometrium isolated from non-pregnant rats[J]. BJOG.2002,109 (9):1036-40.
    180. Vedernikov YP, Hartke JR, de Long MA, et al. Sex hormone effects in non-pregnant rat and human myometrium[J]. Eur J Obstet Gynecol Reprod Biol. 2003,108(1):59-66.
    181.Asokan KT, Sarkar SN, Mishra SK, et al. Effects of mibefradil on uterine contractility[J]. Eur J Pharmacol.2002,455(1):65-71.
    182. Oropeza MV, Ponce-Monter H, Villanueva-Tello T, et al. Anatomical differences in uterine sensitivity to prostaglandin F(2alpha) and serotonin in non-pregnant rats[J]. Eur J Pharmacol.2002,446(1-3):161-6.
    183. Abd-Allah AR, El-Sayed el SM, Abdel-Wahab MH, et al. Effect of melatonin on estrogen and progesterone receptors in relation to uterine contraction in rats[J]. Pharmacol Res.2003,47(4):349-54.
    184. Fukawa K, Kawano O, Hibi M, et al. A method for evaluating analgesic agents in rats[J]. J Pharmacol Methods.1980,4(3):251-9.
    185. Downing SJ, Hollingsworth M. Influence of ovarian steroids on myometrial sensitivity and tolerance to relaxin in the rat in vivo:lack of cross-tolerance between relaxin, salbutamol and cromakalim[J]. J Endocrinol. 1992,135(1):17-28.
    186.嵇波,张露芬,朱江,等.痛经模型建立和评价方法的思考[J].中国医药学通报.2008,282: E139-146.
    187. Bajaj P, Drewes AM, Gregersen H, et al. Controlled dilatation of the uterine cervix—an experimental visceral pain model[J]. Pain.2002,99(3):433-42.
    188. Liedman R, Skillern L, James I, et al. Validation of a test model.of induced dysmenorrhea[J]. Acta Obstet Gynecol Scand.2006,85(4):451-7.
    189. Hunter DS, Hodges LC, Vonier PM, et al. Estrogen receptor activation via activation function 2 predicts agonism of xenoestrogens in normal and neoplastic cells of the uterine myometrium[J]. Cancer Res.1999,59(13):3090-9.
    190.卢凤昕,王自能.过期妊娠产妇外周血和羊水雌二醇及孕酮水平的测定[J].暨南大学学报(医学版).2002,23(2):37-41.
    191.王琴,陈竹钦,徐有奇,等.血清透明酸含量及雌孕激素比值与分娩发动的关系[J].中华妇产科杂志.1996,31(8):477-479.
    192. Murata T, Narita K, Honda K, et al. Changes of receptor mRNAs for oxytocin and estrogen during the estrous cycle in rat uterus[J]. J Vet Med. 2003,65 (6):707-12.
    193. Fuchs AR, Fuchs F, Husslein P, et al. Oxytocin receptors in the human uterus during pregnancy and parturition[J]. Am J Obstet Gynecol.1984,150(6):734-41.
    194.王霞灵,曹大农,单志群.艾附暖宫丸治疗痛经的实验研究[J].湖北中医学院学报.2003,5(2):18-19.
    195.张会常,冯勤喜,于春艳,等.痛经平抗痛经的实验研究[J].中国药学刊.2005,23(2):244-245.
    196. Benassi L, Bertani D, Avanzini A. An attempt at real prophylaxis of primary dysmenorrhea:comparison between meclofenamate sodium and naproxen sodium[J]. Clin Exp Obstet Gynecol.1993,20(2):102-107.
    197. Eldering JA, Nay MG, Hoberg LM, et al. Hormonal regulation of prostaglandin production by rhesus monkey endometrium[J]. J Clin Endocrinol Metab. 1990,71(3):596-604.
    198.宋卓敏,屈彩芹,张远,等.痛经宁颗粒对痛经大鼠子宫雌、孕激素受体的影响[J].中华中医药杂志.2006,21(1):35-38.
    199. MacKenzie LW, Garfield RE. Hormonal control of gap junctions in the myometrium[J]. Am J Physiol.1985,248(3 Pt 1):C296-308.
    200.Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone [J]. Endocrinology. 1993,133(1):284-90.
    201. Piersanti M, Lye SJ. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin-43, requires protein synthesis and
    is associated with increased expression of the activator protein-1, c-fos[J]. Endocrinology..1995,36(8):3571-8.
    202. Higuchi T, Liu CX, Saito H, et al. Effect of ovarian steroid hormones and the presence of the fetus on oxytocin gene expression in the uterus [J]. J Endocrinol. 1995,146(1):81-5.
    203.孙海燕,曹永孝,刘静,等.小鼠痛经模型的建立[J].中国药理学通报.2002,18(2):233-6.
    204.Jochle W. Current research in coitus-induced ovulation:a review[J]. J Reprod Fertil Suppl.1975,4(22):165-207.
    205. Katsuda SI, Yoshida M, Watanabe T, et al. Cycling and ovariectomized rats by in situ hybridization[J]. Proc Soc Exp Biol Med.1999,221 (3):207-14.
    206. Cameron VA, Autelitano DJ, Evans JJ, et al. Adrenomedullin expression in rat uterus is correlated with plasma estradiol[J]. Am J Physiol Endocrinol Metab. 2002,282(1):E139-46.
    2O7.Auletta FJ, Flint AP. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates, and women especially in relation to the time of luteolysis[J]. Endocr Rev.1988,9(1):88-105.
    208. Cao L, Chan WY. Effects of oxytocin and uterine and luteal prostaglandins on the functional regression of the corpus luteum in pseudopregnant rats[J]. J Reprod Fertil.1993,99(1):181-6.
    209. Fuchs AR. Oxytocin and ovarian function[J]. J Reprod Fertil Suppl. 1988,36:39-47.
    210. Koster R, Anderson M, deBeer EJ. Acetic acid for analgesic screening[J]. Fed Proc.1959,18:412.
    211.杨斌.内脏痛模型的研究进展[J].国外医学·麻醉学与复苏分册.2003,24(2):101-104.
    212.乐杰.妇产科学[M]-5版.北京:人民卫生出版社.2003:380.
    213.徐晓旭,张铁山,周九如,等.原发性痛经子宫血流灌注与中医辩证的关系[J].中国误诊学杂志.2006,22(6):4319-4321.
    214.李兰芳,张建新,郝娜,等.复方消经痛胶囊对动物子宫活动的影响[J].中国中药杂志.2007,32(9):843-846.
    215.孙庆录,陈声武,张秀波,等.甘芍胶囊对痛经动物模型及在体子宫平滑肌活动的影响[J].中成药.2006,28(3):431-432.
    216.徐叔云,卞如濂,陈修,主编.药理实验方法学[M]-3版.北京:人民卫生出版社.2002:1583.
    217.贾红玲,张永臣,单秋华.针刺镇痛的中医理论与西医神经内分泌免疫网络调节[J].针灸临床杂志.2006,22(9):6-7.
    218.董礼,严隽陶,李善敬.疼痛与针刺镇痛[J].辽宁中医杂志.2005,32(8):768-770.
    219. Lin JG, Chen WL. Review:acupuncture analgesia in clinical trials[J]. Am J Chin Med.2009,37(1):1-18.
    220. Paul F. White. Acupuncture analgesia can be a useful adjunct to conventional anaesthesia in maxillofacial surgery[J]. November.2005,101(55):5-22.
    221. Pohodenko-Chudakova 10. Acupuncture analgesia and its application in cranio-maxillofacial surgical procedures[J]. J Craniomaxillofac Surg. 2005,33 (2):118-22.
    222. Koo ST, Park YI, Lim KS, et al. Acupuncture analgesia in a new rat model of ankle sprain pain[J]. Pain.2002,99(3):423-31.
    223. Lang PM, Stoer J, Schober GM, et al. Bilateral Acupuncture Analgesia Observed by Quantitative Sensory Testing in Healthy Volunteers[J]. Anesth Analg. 2010,17.
    224. Silberstein M. The cutaneous intrinsic visceral afferent nervous system:a new model for acupuncture analgesia[J]. J Theor Biol.2009,261 (4):637-42.
    225. Zheng Z, Feng SJ, Costa CD, et al. Acupuncture analgesia for temporal summation of experimental pain:A randomised controlled study[J]. Eur J Pain.2009 Dec 30.
    226. Staud R, Price DD. Mechanisms of acupuncture analgesia for clinical and experimental pain[J]. Expert Rev Neurother.2006,6(5):661-7.
    227. Cao X. Scientific bases of acupuncture analgesia[J]. Acupunct Electrother Res. 2002,27(1):1-14.
    228.黄仕荣.针刺镇痛穴位结构与功能的特异性研究[J].中国中医药信息杂志.2006,13(9):3-5.
    229.韩济生.神经科学[M]-3版.北京:北京大学医学出版社.2009,660-662.
    230.包红,周正峰,于英心,等.C纤维不是电针镇痛的主要传人纤维,而是弥散性伤害性抑制的主要纤维[J].针刺研究.1991,16(2):120-124.
    231.刘乡.以痛制痛一针刺镇痛的基本神经机制[J].科学通报.2001,46(7):609-616.
    232.何晓玲,刘乡,朱兵,等.强电针穴位对背角神经元镇痛效应广泛性的中枢机制[J].生理学报.1995,47(6):605-609.
    233.徐卫东,刘乡,朱兵,等.电针穴位镇痛作用的广泛性与中缝大核的关系[J].针刺研究.1994,19(3):17-19.
    234.Liu x, Zhu B, Zhang SX. Relationship between electroacupuncture analgesia and descending pain inhibitory mechanism of nucleus raphe magnus[J]. Pain. 1986,24(3):383-396.
    235. ZHU Bing, RONG Pei-Jing, LI Yu-Qing, et al. Acupoints-stimulated effective regularity and its mechanisms[J]. World Journal of Acupuncture-Moxibustion (WJAM).2009,1(19):6-10.
    236.朱丽霞,徐维,刘乡,等.针刺镇痛中大脑皮层和脑干的下行抑制及脊髓水平的作用机理[J].针刺研究.1991,3-4:145-147.
    237.张吉,张宁.针刺镇痛机制的探讨[J].中国针灸.2007,27(1):72-74.
    238.方宗仁,于琴,李翠红.对完整鼠和脊髓鼠的电针镇痛原理分析[J].生理科学.1986,6(5):331.
    239.韩济生,张敏,任民峰.横断大鼠脊髓对电针镇痛和吗啡镇痛的影响[J].科学通报.1986.3:228-231.
    240.刘乃江,庄茂娟,于英心.脊髓鼠的电针镇痛效应[J].济宁医学院学报.1997,20(1):17-19.
    241. Xu WD, Liu X, Zhu B, et al. The extensiveness and specificity of effect of electroacupuncture at different acupoint on nociceptive response of convergent neurons in trigeminal nucleus caudalis[J]. World J Acup-Mox.1995,5(2):48-56.
    242. He XL, Zhu B, Xu WD. The analgesic extensiveness and specificity of EA different points on spinal dorsal horn neurous[J]. Abstracts—7th World Congress on Pain:International Association for the Study of Pain.1993,416:1110.
    243.刘荣桓,唐敬师,侯宗濂,等.穴位作用节段性特征的电生理学研究[D].针灸论文摘要选编.北京:中国针灸学会.1987:303-304.
    244.李翠贤,马骋.脊髓EAAs及NMDA受体在神经病理性疼痛及针刺镇痛中的作用研究进展[J].辽宁中医药大学学报.2008,10(5).
    245.徐维.大脑皮层在针刺镇痛中的下行调节机理[J].针刺研究.1989,14(12):5-7.
    246.唐敬师, 袁斌. 一个新的痛觉调制通路的发现[J].西安交通大学学报(医学版).2002,23(4):329-332.
    247. Sunfiya E, Kawakita K. Inhibitory effects of acupuncture manipulation and focal electrical stimulation of the nucleus submedius on a viscerosomatic reflex in anesthetized rats[J]. Jpn J Physiol.1997,47(1):121-300.
    248.杜俊辉,何莲芳.导水管周围灰质微量注射阿片拮抗剂阻断甲醛致痛时脊髓背角P物质的变化[J].生理学报.1994,46(4):390.
    249.赵邦云,黎海蒂,李希成,等.中脑导水管周围灰质和海马在ACTH镇痛中的相互关系[J].神经科学.1996,3(1):28.
    250.张长城,李希成.中脑导水管周围灰质在针刺镇痛中的作用[J].生理科学进展.1983,14(2):25.
    251.王滨明,李玉荣,张素叶,等.伤害性刺激对大鼠丘脑腹后外侧核痛兴奋神经元和痛抑制神经元放电的影响及电针对其调整作用[J].针刺研究.1991,16(1):19.
    252.韩济生,谢翠微.强啡肽在大鼠脊髓内的强烈镇痛作用[J].中国科学医辑.1983,(11):1014.
    253.阮怀珍,李希成,蔡文琴.52羟色胺和生长抑素对P物质及慢痛引起的脊髓背角神经元电活动的影响[J].针刺研究.1996,21(3):27.
    254.于龙川,韩济生.家兔下丘脑弓状核参与伏核到中脑导水管周围灰质的下行镇痛通路[J].生理学报.1988,40(2):123.
    255.刘乡.大脑皮层和皮层下核团对中缝大核的调控及其在针刺镇痛中的作刚[J].针刺研究.1996,21(1):4,11.
    256. Gao K, Kim YH, Mason P. SEROTONERGIC pontomedullary neurons are not activated by antinociceptive stimulation in the periaqueductal gray[J]. J Neurosci. 1997,17(9):3285-92.
    257. Gao K, Chen DO, Genzen JR, et al. Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesia[J]. J. Neurosci. 1998,18 (5):1860-8.
    258. Budai D, Harasawa I, Fields HL. Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors[J]. J Neurophysiol.1998,80(5):2244-54.
    259.刘颖,谢益宽.内源性痛觉调制系统的双向调节[J].生理科学进展.2002,33(4):346-349.
    260. Terayama R, Guan Y, Dubner R, et al. Activity-induced plasticity in brain stem painimodulatory circuitry after inflammation[J]. Neuroreport. 2000,11 (9):1915-9.
    261. Ness TJ, Gebhart GF. Visceral pain:areview of experimental studies[J]. Pain. 1990,41(2):167-234.
    262. Giamberardino MA, Vecchiet L. Visceral pain, referred hyperalgesia and outcome: new concepts[J]. Eur J Anaesthesiol.1995,10(Suppl):61-66.
    263. Cervero F. Visceral pain-central sensitisation. Gut.2000,47(Suppl 4):iv56-57.
    264. W M Li, A Suzuki, KM Cui. Responses of blood p ressure and renal sympathetic nerve activity to colorectal distension in anesthetized rats[J]. Journal of Physiological Sciences.2006,56(2):153-156.
    265. W M Li, A Suzuki. Reflex inhibition of heart rate and efferent cardiac sympathetic outflow induced by colorectal distension in anesthetized rats[J]. Journal of Physiological Sciences.2006,56(2):187-190.
    266.韩济生.神经科学[M].北京:北京大学医学出版社.2009:697.
    267. Giamberardino MA, Vecchiet L. Pathophysiology of visceral pain[J]. Curr Rev Pain. 1996,1:23-33.
    268. Sengupta JN, Gebhart GF. Mechanosensitive afferent fibers in the gastrointestinal and lower urinary tracts. In:Gebhart GF. ed. Visceral pain. Progress in pain research and management. Seattlle:IASP press [J].1995,5:75-98.
    269. Gebhart GF, Randich A. Vagal modulation of nociception[J]. Am Pain Soc J. 1992,1:26-32
    270. Janig W, Morrison JF. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception[J]. Prog Brain Res.1986,67:87-114.
    271.吕岩,李继硕,秦秉志,等.骶髓后连合核接受盆内脏伤害性信息传入的形态学证明[J].神经解剖学杂志.1996,12:201-208.
    272. Sugiura Y, Terui N, Hosoya Y. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers[J]. J Neurophysiol.1989,62 (4):834-840.
    273. Cottrell DF, Iggo A. The responses of duodenal tension receptors in sheep to pentagastrin, cholecystokinin and some other drugs[J]. J Physiol. 1984,354:477-495.
    274. El Ouazzani T, Mei N. Electrophysiologic properties and role of the vagal thermorecep tors of lower esophagus and stomach of cat[J]. Gastroenterology. 1982,83(5):995-1001.
    275. Palecek J, Paleckova V, Willis WD. The roles of pathways in the spinal cord lateral and dorsal funiculi in signaling nociceptive somatic and visceral stimuli in rats[J]. Pain.2002,96(3):297-307.
    276. Al-Chaer ED, Lawand NB, Westlund KN, et al. Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway[J]. J Neurophysiol.1996,76(4):2675-90.
    277. Al-Chaer ED, Feng Y, Willis WD. A role for the dorsal column in nociceptive visceral input into the thalamus of primates[J]. J Neurophysiol. 1998,79 (6):3143-50.
    278. Al-Chaer ED, Westlund KN, Willis WD. Nucleus gracilis:an integrator for visceral and somatic information[J]. J Neurophysiol.1997,78(1):521-7.
    279. Ness TJ. Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord[J]. Pain.2000,87(1):83-8.
    280. Kim YS, Kwon SJ. High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer [J]. Neurosurgery.2000,46(1):85-90; discussion 90-2.
    281. Berkley KJ, Hubscher CH. Are there separate central nervous system pathways for touch and pain[J]. Nat Med.1995,1 (8):766-73.
    282.张建梁,张宏启.内脏痛的脊髓通路研究进展[J].国外医学·生理、病理科学与临床分册.2005,25(3):211-214.
    283. Cottrell DF. Mechanoreceptors of the rabbitduodenum[J]. Q J Exp Physiol. 1984,69(4):677-684.
    284.李在琉.中枢神经系统与胃肠运动功能[M].//周吕,柯美云.神经胃肠病学与动力-——基础与临床.北京:科学出版社.2005:143-170.
    285. Becker R, Gatscher S, Sure U, et al. Punctate midline myelotomy for intractable visceral pain caused by hepatobiliary or pancreatic cancer[J]. J Pain Symp tom Manage.2004,27(1):79-84.
    286. Gebhart GF, Ness TJ. Central mechanisms of visceral pain[J]. Can J Physiol Pharmacol.1991,69(5):627-34.
    287. Lu GW, LiQJ, Meng Z, et al. Can we be aware of both visceral and somatic sensation via a single neuronal pathway[J]. Chin Sci Bull.2002,47(23):1940-1945.
    288. Honda CN. Visceral and somatic afferent convergence onto neurons near the central in the sacral spinal cord of the cat[J]. J Neurophysiol. 1985,53 (4):1059-78.
    289.Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals[J]. Pain.1996,67(2-3):231-240.
    290. Holzi R, Moltner A, Neixig CW. Somatovisceral interactions in visceral perception:abdominal masking of colonic stimuli[J]. Integr Physiol Behav Sci, 1999,34(4):269-284.
    291. Shu J, Li KY, HuangDK. The central effect of electro-acupuncture analgesia on visceral pain of rats:a study using the [3H]2-deoxyglucose method[J]. Acupuncture& electro2therapeutics research.1994, Jun2Sep:19 (223):107-117.
    292. Jian-Hua Liu, J iangshan Li, J ie Yan. Expression of. c-fos in the nucleus of the solitary tract following electroacupuncture at facial acupoints and gastric distension in rats[J]. Neuroscience letters.2004,366(2):215-219.
    293.黄仲荪,金淑然,周保和,等.延髓网状结构在针刺镇内脏痛中的作用[M].//针刺针麻研究.张香桐,季仲朴,黄家驷主编.科学出版社.1986:148-154.
    294.中国研究院针灸所生理一室.针刺抑制内脏痛原理的研究Ⅰ延脑整合作用的观察[M].//针刺针麻研究.张香桐,季仲朴.黄家驷主编.科学出版社.1986:155-161.
    295.中国研究院针灸所生理一室,针刺抑制内脏痛原理的研究Ⅱ吗啡拮抗剂对针刺抑制内脏痛反应的影响[M].//针刺针麻研究.张香桐,季仲朴,黄家驷主编.科学出版社.1986:155-161.
    296.龚珊,殷伟平,印其章.下丘脑室旁核加压素能神经元参与电针刺激对实验性内脏痛的抑制[J].生理学报.1992,44(5):434-441.
    297.Guoxi T. The action of the visceronociceptive neurons in the posterior group of thalamic nuclei:possible mechanism of acupuncture analgesia on visceral pain [J]. Kitasato Arch Exp Med.1991,64(1):43-55.
    298. SunM, Li Y, Zhang J, Bian J. Effects of noxious stimuli on the discharges of pain2excitation neurons and pain inhibition neurons in the nucleus ventralis posterolalis of thalamus in the rat and a modulating action of electroacupuncture on its electric activities[J]. Zhen ci yan jiu. 1991,16(1):19-22.
    299.阎丽萍,马骋,项晓人,等.电针抑制内脏痛诱发的大鼠丘脑背内侧痛放电[J].中国疼痛医学杂志.2004,10(3):177-180.
    300.陈培熹,陈助华,翁纪伟,等.大脑皮层与针刺抑制内脏痛的关系[M].//张香桐,季仲朴,黄家驷主编.针灸针麻研究.科学出版社.1986:162-168.
    301.张金梅,郭疗南,陈培熹.电针“内关”穴对刺激内脏大神经C纤维诱发的皮层电位的影响[J].针刺研究.1989,169-176.
    302.朱长庚.神经解剖学[M].北京:人民卫生出版社.2002:329-342.
    303.朱丽霞,徐维,刘乡,等.针刺镇痛中大脑皮质和脑干的下行抑制及脊髓水平的作用机制[J].针刺研究.1991,61(324):145-150.
    304.高秀.针刺镇痛机制的研究[J].国外医学中医中药分册.1999,21(3):21-26.
    305.韩济生.能否通过外周电刺激引起中枢神经肽的释放[J].北京大学学报(医学版).2002,34(5):408-413.
    306.袁和.电针刺激加速大鼠中枢脑啡肽的合成[J].生理学报.1985,37(3):265-273.
    307.高明,何莲芳.福尔马林致痛提高大鼠中枢阿片受体密度及电针刺的加强作用[J].生理学报.1996,48(2):125-131.
    308.周丽,吴根诚,曹子定.大鼠外侧网状旁巨细胞核中的内阿片肽在针刺镇痛中的作用[J].泰山医学院学报.1994,15(1):29-35.
    309.周丽.电针镇痛时大鼠外侧网状旁巨细胞核中内阿片肽的变化[J].生理学报.1993,45(1):36-43.
    310.黄晓平,杜俊辉,何莲芳.中脑导水管周围灰质内注射甲啡肤抗血清及ICI174,864对针刺镇痛及脊髓背角P物质的影响[J].针刺研究.1994,19(3):26-28.
    311.陈唯,黄显奋,莫浣英.家兔中脑导水管周围灰质中阿片肽及去甲肾上腺素对皮肤痛与内脏痛的影响[J].上海医科大学学报.1992,19(4):241-244.
    312.Masahiro Iwa, Carmen Strickland, YukiomiNakade. Electroacupuncture reduces rectal distension2induced blood pressure changes in conscious dogs[J]. Digestive diseases and sciences.2005,50(7):162-167.
    313.郭惠夫,王晓民,田今华,等.2Hz和100Hz电针加速脑内三种阿片肽基因表达[J].生理学报.1997,49(2):121-127.
    314.Cui X. Expression and localization of immediate early genes and prepro-enkephalin gene in central nervous systemfollowing electroacupuncture stimulation[J]. Sheng Li Ke Xue Jin Zhan.1995,26(3):230-232.
    315. Zhu CB, Li XY, Zhu YH, et al. Preproenkephalin mRNA enhanced,by combination of droperidol with electroacupuncture[J]. Zhongguo Yao Li Xue Bao. 1995,16(3):201-204.
    316.Li XY,Zhu CB,Zhu YH, et al. Expressions of preproenkephalin mRNA during electroacupuncture analgesia enhanced by fenfluramine[J].Zhongguo Yao Li Xue Bao.1995,16(5):431-434.
    317.郑珉.电针显著增加大鼠纹状体和垂体中脑啡肽原mRNA含量[J].中国科学B辑2化学.1987,17(4):398-402.
    318.纪如荣.电针可促进前脑啡肽原mRNA在大鼠脊髓和延髓的表达:原位杂交研究[J].生理学报.1993,45(4):395-399.
    319. Cheng HYM, Pitcher GM, Laviolette SR, et al. DREAM is a critical transcriptional repressor for pain modulation[J]. Cell.2002,108(1):31-43.
    320.张瑞新.慢痛时调控大鼠行为反应和脊髓中强啡肽mRNA表达的发育、年龄和遗传因素[J].山西医科大学学报(J Shanxi Med Univ).2000,增刊:25-30.
    321. Arvidsson U, Riedl M, Chakrabarti S, et al. The kappa-opioid receptor is primarily postsynaptic:combined immunohistochemical localization of the receptor and endogenous opioids[J]. Proc Natl Acad Sci USA. 1995,92(11):5062-6.
    322. Matthes HW,MaldonadoR, Simonin F, et al. Loss of morphine—induces analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opiold—receptor gene[J]. Nature.1996,383:819.
    323. Herman BH, Goldstein A. Antinociception and paralysis induced by intrathecal dynorphin A[J]. J Pharmacol Exp Ther.1985,232(1):27-32.
    324. Spampinato S, Candeletti S. Characterization of dynorphin A induced antinociception at spinal level[J]. Eur J Pharmocal.1985,110:21-30.
    325. Xue JC, Yu YX, Han J S. Comparative study of the analgesic and paralytic effect s induced by int rathecal dynorphin A in rat s[J]. Int JNeurosci.1995,82:83-93.
    326.韩济生.能否通过外周电刺激引起中枢神经肽的释放[J].北京大学学报(医学版).2002,34(5):408-413.
    327.王华,章汉平,刘又香,等.针刺对经穴,在经非穴,非穴深层组织氧分压影响的观察[J].上海针灸杂志.1997,16(1):3-5.
    328.贲卉,李亮,高听妍,等.穴位和非穴位一氧化氮含量及导电量的比较[J].针刺研究.2009,34(6):383-386.
    329.严洁,常小荣,臧敬跃,等.针刺足阳明经不同部位腧穴对人体胃窦容积变化的动态观察[J].针刺研究.1995,20(1):60-65.
    330.陈婷,余小夏,魏宁,等.针刺不同经脉穴位对健康人胃电平均幅值的影响[J].成都中医药大学学报.2009,32(2):5-7.
    331.赵艳玲,常小荣,严洁,等.针刺足阳明经穴对大鼠胃肌电穴位特异性及胃电传出途径的实验研究[J].中医药学刊.2005,23(10):1788-1790.
    332.王景杰,黄裕新,王键,等.C-fos在电针调控大鼠胃运动中的表达及其意义[J].针刺研究.2001,26(4):274-279.
    333.张建梁,陈淑萍,刘俊岭,等.电刺激猫心下神经对心包经及肺经穴位肌电影响的比较研究[J].中国中医药科技.1999,6(4):201-203.
    334.严洁,常小荣,刘建华,等.电针足阳明经穴对家兔胃黏膜损伤防御性保护作用的研究[J].中国针灸.2001,21(6):350-352.
    335.严洁,阳仁达,易受乡,等.从针刺不同经穴对家兔胃黏膜保护作用探讨多经司控同一脏腑的规律[J].中国针灸.2004,24(8):579-582.
    336.Kendall.针刺的科学基础(第1部分)[J].国外医学中医中药分册.1991,13(1):40-42.
    337.陈良为.小鼠拟经络线皮肤内神经-肥大细胞联接的发现-光镜与电镜免疫组织化学研究[J].神经解剖学杂志.1987,3(2):253-258.
    338.徐向党,崔怀瑞,楼新法,等.手三里穴和桡血管神经关系[J].针灸临床杂志.2004,20(7):47-48.
    339.丛兴忠,陈尔瑜,党瑞山,等.前臂骨间膜前面桡侧的动脉分布及其与穴位的关系[J].解剖学杂志.2004,27(1):82-84.
    340.刘芳,陈尔瑜.小腿骨间膜前面的血管分布及其与穴位的关系[J].上海中医药杂志.2000,34(12):40-41.
    341.穆祥,段惠琴,陈武,等.腧穴实质与微血管相关的生理学研究[J].中国中医基础医学杂志.2001,7(12):47-52.
    342.余安胜,赵英侠,严振国.三阴交穴巨微结构形态观察[J].针灸临床杂志.1998,14(6):5-7.
    343.楼新法,蒋松鹤,徐向党.穴位高密集区的解剖学研究[J].针灸临床杂志.2003,19(6):5-6.
    344. Langevin H M, Yandow J A. Relationship of acupuncture points and meridians to connective tissue planes[J]. Anat Record.2002,269(6):257-265.
    345.木村通郎.从针刺附着组织的超微结构探讨针刺伤害性刺激的机理[J].国外医学中医中药分册.1998,20(6):46.
    346.刘忠国.从一个特殊病例看经络的实质[J].上海针灸杂志.1998,17(6):21-22.
    347.费伦,承焕生,蔡德亨,等.经络物质基础及其功能性特征的实验探索和研究展望[J].科学通报.1998,43(6):658-673.
    348.程珂,沈雪勇,丁光宏,等.激光针灸镇痛效应与穴区肥大细胞功能的关系[J].中国针灸.2009,29(6):478-83.
    349.林俊,黄红,丁光宏,等.穴区肥大细胞功能与针刺缓解急性佐剂性关节炎大鼠疼痛效应的关系[J].针刺研究.2007,32(1):16-19.
    350.余晓佳,丁光宏,姚伟,等.穴位处胶原纤维在针刺大鼠“足三里”镇痛过程中的作用[J].中国针灸.2008,28(3):207-13.
    351.Yu X, Ding GH, Huang H, et, al. Role of collagen fibers in acupuncture analgesia therapy on rats[J]. Connect Tissue Res.2009,50(2):110-20.
    352. Huang GY, Zheng CH, Yu WC, et,al. Involvement of connexin 43 in acupuncture analgesia[J]. Chin Med J (Engl).2009,122(1):54-60.
    353. Yu WC, Huang GY, Zhang MM, et al. The role of connexin 43 gene in acupuncture analgesia[J] Zhongguo Zhen Jiu.2007,27(3):195-8.
    354.高俊虹,王玉敏,崔晶晶,等.穴位不同组织结构决定和影响经穴-内脏效应特异性的科学基础[J].中国针灸.2010,30(4):293-295.
    355. Besson JM, Chaouch A. Peripheral and spinal mechanisns of nociception[J]. Physiol Rev.1987,67(1):67-186.
    356. Schmidt R, Schmelz M,Forster C, et al. Novel classes of responsive and unresponsive C nociceptors in human skin[J]. J Neurosci.1995,15(1):333-341.
    357. Kaufman MP, Iwamoto GA, Longhurst JC, et al. Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle[J]. Cire Res. 1982,50(1):133-139.
    358. Ohsawa H, Okada K, Nishijo K, et al. Neural mechanism, of depressor responses of arterial pressure elicited by acupuncture-like stimulation to a hindlimb in anesthetized rats[J]. J Auton Nerv Syst.1995,51(1):27-35.
    359.原林,焦培峰,唐雷,等.中医经络理论的物质基础——结缔组织、筋膜和自体监控系统[J].中医基础科学.2005,7(3):44-47.
    360.严振国,余安胜,赵英侠.神门穴位显微结构的研究[J].针灸临床杂志.1996,13(1):29-30.
    361.陈尔瑜,沈雪勇,党瑞山.胆经颈以下穴位与结缔组织结构和钙元素富集的关系[J].上海针灸杂志.1998,17(2):36-37.
    362.党瑞山,陈尔瑜,沈雪勇,等.手太阴肺经穴位与结缔组织结构的关系[J].上海针灸杂志.1997,16(4):28-29.
    363. Taylor DC, Pierau FK, Schmid H. The use of fluorescent tracers in the peripheral sensory nervous system[J]. J Neurosci Methods.1983,8(3):211-24.
    364. Liu QingYing, Zhu Changgeng. Thedivergent projections of peripheral processes of substance pcontaining sp inal ganglinonic neurons [J]. Acta Anatomicasinica. 1988, (3):336.
    365. Pierau FK, Taylor DC, A bel W, et al. Dichotomizing peripheral fibres revealed by intracellular recording from rat sensory neurons[J]. N eurosciL ett. 1982,31 (2):123-128.
    366.李继硕.初级传入中枢联系的形态学基础[M].上海:上海科技教育出版社.1997:12.
    367. Kuo DC, Yang GC, Yamasaki DS, Krauthamer GM. A wide field electron microscopic analysis of the fiber constituents of the major splanchnic nerve in cat[J]. J Comp Neurol.1982,210(1):49-58.
    368. Hancock MB, Foreman RD, Willis WD. Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat[J]. Exp Neurol.1975,47(2):240-248.
    369. Foreman RD, Hancock MB, Willis WD. Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs [J]. Pain. 1981,11(2):149-162.
    370. Milne RJ, Foreman RD, Giesler GJ Jr, et al. Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons[J]. Pain. 1981,11(2):163-183.
    371.Cervero F, ConnellLA. D istribution of somatic and visceral primary afferent fibres w ith in the thoracic sp inal cord of the cat[J]. J Comp N eurol. 1984,230(1):88-98.
    372.Mc-Mahon SB, Morrison JFB. Factors that determine the excitability of parasympathemic reflexes to the cat[J]. Physio 1.1982,322:35.
    373. Mc-Mahon SB, Morrison JFB. Two groups of spinal interneurones that respond to stimulat ion of the abdominal viscera of the cat[J]. J Physio 1.1982,322:21.
    374. Miline RJ, Foreman RD, Giesler JR, et al. Convergence of cutaneous and plevic visceral nocicep t ive inputs onto spino thalamic neurons [J]. Pain.1981,11 163.
    375. Kanui TI. Spinal cord neurons in the rat excited by testicular compress ion [J]. J Physio 1.1984,346:51.
    376.吕国蔚,李菁锦.三种新发现的脊髓背角双投射神经元的特征与意义[J].中国神经科学杂志.2002,18(2):527-533.
    377.oreman RD, Blair RW, Weber RN. Viscerosomatic convergence onto T2~T4 spinoreticular, spinoreticular spinothalamic, and spinothalamic tract neurons in the cat[J]. Exp Neurol.1984,85(3):579.
    378. Gebhart GF, Ness TJ. Central mechanisms of visceral pain[J]. Can J Physiol Pharmacol.1991,69(5):627.
    379. Ness TJ, Gebhart GF. Interactions between visceral and cutaneous nociception in the rat. I. Noxious cutaneous stimuli inhibit visceral nocicep tive neurons and reflexes [J]. J Neurophysiol.1991,66(1):20.
    380. WillisWD J r. The pain system. The neural basis of nociceptive transmission in the mammalian nervous system[J]. Pain Headache.1985,8:1.
    381. Ness TJ, Gebhart GF. Visceral pain:a review of experimental studies [J]. Pain. 1990,41 (2):167.
    382. Guilbaud G, Peschanski M, Gautron M, et al. Responses of neurons of the nucleus raphe magnus to noxious stimuli[J]. Neurosci Lett.1980,17(1-2):149-154.
    383. Lumb BM, Spillane K. Visceral'inputs to brainstem neurones in the rat[J]. J Physiol.1984,346:46p.
    384. Al-Chaer ED, Westlund KN, Willis WD. Nucleus gracilis:an integrator for visceral and somatic information[J]. J Neurophysiol.1997,78(1):521-527.
    385. Chandler MJ, Zhang J, Foreman RD. Cardiopulmonary sympathetic input excites primate cuneothalamic neurons:comparison with spinothalamic tract neurons [J]. J. Neurophysiol.1997,80(2):628-637.
    386. Chandler MJ, Zhang J, Foreman RD. Cardiopulmonary sympathetic afferent input excites cuneate-thalamic neuros in monkeys[J]. Soc Neurosci.1996,22:863.
    387. Villanueva L, Le Bars D. The activation of bulbo-spinal controls by peripheral nociceptive inputs:diffuse noxious inhibitory controls[J]. Biol Res. 1995,28(1):113-125.
    388. Gokin AP, Kostyuk PG, Preobrazhensky NN. Neuronal mechanisms of interactions of high-threshold visceral and somatic afferent influences in spinal cord and medulla[J]. J Physiol (Paris).1977,73(3):319-333.
    389. Pavlasek J, Gokin AP, Duda P. Visceral pain:responses of the reticular formation neurons to gallbladder distension[J]. J Physiol (Paris).1977,73(3):335-346.
    390. Perrin J, Crousillat J. Responses of single units in the inferior olive nucleus to stimulation of the splanchnic afferents in the cat[J]. J Auton Nerv Syst. 1980,2(1):15-22.
    391. Horn AC, Vahle-Hinz C, Bruggemann J, et al. Responses of neurons in the lateral thalamus of the cat to stimulation of urinary bladder, colon, esophagus, and skin[J]. Brain Res.1999,851(1-2):164-74.
    392. Zhang HQ, Al-Chaer ED, Willis WD. Effect of tactile inputs on thalamic responses to noxious colorectal distension in rat[J]. J Neurophysiol. 2002,88 (3):1185-1196.
    393. Zhang HQ, Rong PJ, Zhang SP, et al. Noxious visceral inputs enhance cutaneous tactile response in rat thalamus[J]. Neurosci Lett.2003,336(2):109-112.
    394. Bruggemann J, Shi T, Apkarian AV. Viscerosomatic interactions in the thalamic ventral posterolateral nucleus (VPL) of the squirrel monkey[J]. Brain Res. 1998,787(2):269-276.
    395. Me Mahon SB. Neuronal and behavioural consequences of chemical inflammation of rat urinary bladder [J]. Agents Actions.1988,2.5(3-4):231-233.
    396. Giamberardino MA, Dalal A, Valente R, et al. Changes in activity of spinal cells w ith muscular input in rats with referred hyperalgesia from ureteral calculosis[J]. N eurosci. Lett,1996,203(2):89-92.
    397.荣培晶,朱兵.心经经脉与心脏相关联系的形态学研究[J].针刺研究.2005,30(2):97.
    398.荣培晶,朱兵.心经经脉、心因性牵涉痛与心脏相关联系的机制[J].中国科学(C辑).2002,32(1).
    399.喻晓春,宋利明,马慧敏,等.电针“足三里”及“阳陵泉”对腹腔神经节节后纤维放电影响的比较[J].针刺研究.1996,21(1):49-51.
    400.周涛,郭义,郭永明,等.针刺大鼠足三里穴对诱发脊髓背角WDR神经元信号特征的研究[J].新中医.2009,11:62
    401.谢益宽,李惠清,肖文华,等.经络和循经感传的神经生物学性质的研究[J].中国科学B辑.1995,25(7):721-731.
    402.郑政,喻媚,谢益宽,等.骨骼肌运动神经元募集活动的区域性与针刺感传的关系[J].科学通报.1998,43(7):285-290.
    403. Zhou Huihui,Xie Yikuan. Excitatory connections between spinal motoneurons in the adult rat[J]. Chin.Med. Sci. J.2000,15(1):35-39。
    404.马超,郑政,谢益宽,等.背骨长肌反射性肌电活动的循经感传特性[J].科学通报。2000,45(18):1982-1988。
    405.刘克,王薇,李爱辉,等.大鼠足厥阴肝经的形态学与辣椒素对生殖股神经放电频率的影响[J].解剖与临床。2006,11(4):232-235.
    406.YooS, Teh E, Blinder R, et al. Modulation of cerebellar activities by acupuncture stimulation:evidence from fMR I study[J]. Neuroimage.2004,22:932-940.
    407. Fang JL, Krings.T, Weidemann J, et al. Functional MR I in healthy subjects during acupuncture:different effects of needle rotation in real and false acupoints [J]. Neuroradiology.2004,46(5):359-362.
    408. Kong J, Gollub RL, Webb JM, et al. Test2retest study of fMRI signal change evoked by electroacupuncture stimulation[J]. Neuroimge,2007,34(3):1171-1181.
    409.许建阳,王发强,王宏,等.针刺合谷与太冲fMR Ⅰ脑功能成像的比较研究[J].中国针灸.2004,24(4):263-265.
    410.付平,贾建平,王葳,等.电针内关和神门穴对脑功能成像不同影响的观察[J].中国针灸.2005,25(1):61.
    411. Yan B,Li K, Xu J, et al. Acupoint2specific fMR I patterns in human brain[J]. Neurosci Lett.2005,383(3):236-240.
    412. Houdeau E, Rousseau A, Meusnier C, et al. Sympathetic innervation of the upper and lower regions of the uterus and cervix in the rat have different origins and routes[J]. J Comp Neurol.1998,28,399(3):403-12.
    413. Steinman JL, Carlton SM, Willis WD. The segmental distribution of afferent fibers from the vaginal cervix and hypogastric nerve in rats[J]. Brain Res. 1992,575(1):25-31.
    414. Berkley KJ, Robbins A, Sato Y. Afferent fibers supplying the uterus in the rat [J]. J Neurophysiol.1988,59(1):142-63.
    415. Berkley KJ, Robbins A, Sato Y. Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat[J]. J Neurophysiol.1993,69(2):533-44.
    416. Berkley KJ, Benoist JM, Gautron M, et al. Responses of neurons in the caudal intralaminar thalamic complex of the rat to stimulation of the uterus, vagina, cervix, colon and skin[J]. Brain Res.1995,695(1):92-5.
    417. Nance DM, Burns J, Klein CM, et al. Afferent fibers in the reproductive system and pelvic viscera of female rats:anterograde tracing and immunocytochemical studies[J]. Brain Res Bull.1988,21(4):701-9.
    418. Kawatani M, Takeshige C, de Groat WC. Central distribution of afferent pathways from the uterus of the cat[J]. J Comp Neurol.1990,302(2):294-304.
    419. Kimura F, Nishihara M, Hiruma H, et al. Naloxone increases the frequency of the electrical activity of luteinizing hormone-releasing hormone pulse generator in long-term ovariectomized rats[J]. Neuroendocrindogy.1991,53:97-102.
    420. Sato Y, Hotta H, Nakayama H, et al. Sympathetic and parasympathetic regulation of the uterine blood flow and contraction in the rat[J]. J Auton Nerv Syst. 1996,59(3):151-8.
    421.杨安峰,杨平,等.大鼠的解剖和组织[M].北京:科学出版社.1985:178-179,176-177.
    422.靳瑞.经络穴位解说[M]-1版.广州:广东科技出版社.1992.
    423.VISSING SF,SCHERRER U, VICTOR RG. Stimulation of skin sympathetic nerve discharge by central command:Differential control of sympathetic outflow to skin and skeletal muscle during static exercise[J]. Circulation Research. 1991,69:228-238.
    424. PRYOR SL, LENVIS SF, HALLER RG, et al. Impairment of sympathetic activation during static exercise in patients wTith muscle phosphorylase defiency (AlcArdle's Disease)[J]. Jourtnal of Clinical Investigation. 1990,85:1444-1449.
    425. Takahashi Y, Nakajima Y. Dermatomes in the limbs as determined by antidromic stimulation of sensory C-fibers in spinal nerves[J]. Pain.1996,67(1):197.
    426.刘乡.以痛制痛-针刺镇痛的基本神经机制[J].科学通报.2001,46(7):609-616.
    427.荣培晶,张建梁,张世平,等.内脏痛与体表相关性的实验研究[J].中国生理病理杂志.2004,20(3):363-366.
    428.马婷婷,李瑛,田小平,等.特定穴相对特异性的现代研究现状与思考[J].江苏中医药.2009,41(7):6-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700