粉煤密相气力输送的流型与管线内压力信号关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤密相气力输送广泛应用于干煤粉加压气流床气化技术中,但低气速容易引起管路中粉煤不稳定流动,甚至堵塞管道,会严重影响气化炉运行的效率和安全性。粉煤密相气力输送属于非线性复杂系统,目前还没有比较完善的理论模型进行预测和操作优化。气力输送的管线压力信号包含丰富的粉煤流动信息,能够展示管中粉煤流型,反映输送稳定程度。利用各种信号处理方法分析压力信号,客观的识别出管中流型,对粉煤气力输送的机理研究以及预测、控制粉煤稳定流动都具有非常重要的意义。本文的主要研究工作如下:
     1.以管线压力的波动幅度表征粉煤流动稳定程度,展示不同补气方式对粉煤输送稳定性的影响。结果表明调节气和流化气有利于粉煤稳定流动,而加压气会降低粉煤流动的稳定性;粉煤输送稳定性与流型密切相关。气栓流,沙丘流和栓塞流是不稳定流型,而柱塞流,环状流和分层流是稳定流型。实验表明影响粉煤流动不稳定的主要因素是给料罐压力的波动,给料罐内粉煤流化状态不良以及管中气速较低。在给料罐压力相对稳定和通气良好的条件下,通过无量纲参数Fr建立粉煤流动稳定性判据,揭示管中气速与流动稳定性的关系。在实验过程中,还发现三类堵塞现象,并给出这三类堵塞形成的机理,提出简化模型预测粉煤流动的临界堵塞速度。
     2.通过实验手段研究不同载气(C02,N2)对粉煤密相气力输送特性(相图、压降模型、压力波动特性和流型)的影响。实验表明给料罐压力较高时,CO2和N2载气的输送特性差异不明显;而给料罐压力较低时,CO2和N2载气的输送特性差异显著。这是因为不同载气(CO2,N2)在粉煤中渗透气性与输送压力(给料罐压力)有关。引入渗透性系数表征不同载气与粉煤相互作用的影响,导出预测不同载气输送粉煤的经济气速和管线压降的公式。管线压力波动特性表明CO2载气输送粉煤的稳定性低于N2载气输送粉煤的稳定性,但是差异不显著。ECT检测结果也表明CO2载气的粉煤流型与N2载气的粉煤流型相类似。
     3.在粉煤密相气力输送的实验中,借助电容层析成像(ECT)系统检测管径20mm与50mm的水平管流型以及管径20mm的竖直上升管流型。结果发现水平管流型有气栓流,柱塞流,栓塞流,沙丘流和分层流;竖直上升管流型有气栓流,柱塞流,栓塞流,环状流。管径越大,水平管的分层流动特征越明显。通过两个无量纲参数雷诺数和阿基米德数的关系建立预测流型及其相互过渡的经验公式。
     4.利用各种信号处理方法(标准差、平均循环频率、功率谱密度函数、小波和混沌)提取压力信号的特征值,建立压力信号的特征值与流型之间关联。结果表明标准差和功率谱函数这两种方法简单,能够较好的展示流型的波动特性;而小波和混沌分析,方法复杂,但分别揭示了不同尺度的粉煤流动特性以及粉煤流动的混沌特性。
Dense-phase pneumatic conveying of pulverized coal has been applied widely in dry coal feeding entrained-flow pressured gasification. However, lower gas velocity easily causes unsteady flow and even leads to blockage of pipe, which influences the efficiency and operation safety of gasifier. The dense-phase conveying is a complicated nonlinear system which is hard to be predicted and optimized without an accurate theoretical model. Pressure signals contain abundant information on flow, reflecting flow patterns and flow stability of pulverized coal. The pressure signals were analyzed using various signal processing methods to objectively identify flow patterns and obtain conveying mechanism for basic research of the conveying and industrial application. The main research contents are as followings:
     1. The different modes of aeration had an impact on flow stability which was represented through fluctuation amplitude of pressure signals. The results indicated that supplemental gas and fluidizing gas could make the flow steady, while pressurizing gas may cause instability of the flow. The flow patterns were closely related with flow stability. Gas grap flow, dune flow and slug flow were unsteady, but plug flow, annular flow and stratified flow were steady. The experiments indicated that the main influence on flow instability originated from pressure fluctuations of the feeding vessel, bad fluidization condition of pulverized coal and lower gas velocity in the pipeline. Under the condition of the steady pressure and good aeration, the criterion of flow stability was established through non-dimensional parameter Fr, which reflected the relationship between flow stability and gas velocity. The three types of blockage were found in the experiments and a simple model was proposed to predict the critical gas velocity.
     2. Experiments were carried out to research the conveying characteristics (phase diagrams, pressure drop models, pressure fluctuations and flow patterns) of pulverized coal using CO2and N2as carrier gas. The experimental results indicated that the conveying characteristics were basically the same for CO2and N2at larger pressure of the feeding vessel, while there were significant differences in the conveying characteristics between CO2and N2at lower pressure of the feeding vessel. This is because the permeability of CO2and N2in pulverized coal is related to the pressure of the feeding vessel. The permeability coefficient was introduced to establish the unified formulas for CO2and N2, predicting economic gas velocity and pressure drop. The pressure fluctuations indicated that the flow stability for CO2was lower than that for N2, but their difference was not obvious. The ECT results also revealed that the flow patterns were similar for CO2and N2.
     3. Electric Capacity Tomography (ECT) was used to help us to observe flow patterns in horizontal pipes of20mm and50mm diameter and a vertical pipe of20mm diameter. There are gas grap flow, plug flow, slug flow, dune flow and stratified flow in the horizontal pipe, while flow patterns in the vertical pipe are gas grap flow, plug flow, slug flow and annular flow. The characteristics of stratified flow are more obvious at larger pipe. The empirical formulas were established to predict flow patterns and their transitions through the relationship between the Ar and the Re.
     4. Characteristic values of pressure signals were extracted using different signal processing methods (Standard Deviation, Averaged Cycle Frequency, Power Spectrum Density, Wavelet and Chaos Analysis) for correlating the fluctuations to the flow patterns. The result indicated that Standard Deviation (SD) and Power Spectrum Density (PSD) as simple methods presented fluctuation characteristics of the flow pattens. Wavelet and Chaos Analysis were complicated, but they respectively revealed flow characteristics in different scales and chaotic characteristics of pulverized coal flow.
引文
[1]肖为国,郭晓镭,代正华,龚欣,郭云舟,郑利娇.工业级管道中粉煤浓相流动特性.化工学报.2007,58(11):2759-2763
    [2]林江.气力输送系统流动特性的研究.博士学位论文.杭州:浙江大学,2004
    [3]陈利东,沈颐身,苍大强.浓相气力输送的流型及稳定性判定.化工冶金1998,19(1):44-49
    [4]Furness R. Future flow measurement has digital influence. Control Engineering.1996, (11):20
    [5]白博峰,郭烈锦,陈学俊.空气-水两相流压差波动研究.中国电机工程学报.2002,22(3):22-26
    [6]周云龙,孙斌,陈飞.气液两相流型智能识别理论及方法.北京:科学出版社,2007
    [7]程克勤.低速密相气力输送综述.硫磷设计与粉体工程.2001(2):22-27
    [8]H.T. BI, J.G Grace. Flow regime diagrams for gas-solid fluidized and upward transport. International Journal of Multiphase flow.1995,21:1229-1236
    [9]E. Rabinovich, H. Kalman. Flow regime diagram for vertical pneumatic conveying and fluidized bed systems. Powder Technology.2011,207:119-133
    [10]B. Mi. Low-velocity pneumatic conveying of bulk solid. Ph.D dissertation. University of Wollongong,1994
    [11]S. V. Dhodapkar, G. E. Klinzing. Pressure fluctuations in pneumatic conveying systems. Powder Technology.1993,74:179-195
    [12]陈利东,沈颐身,仓大强,常久柱.粉体高浓度输送的相图及稳定性.东北大学学报.1998,19:73-77
    [13]梁财,赵长遂,陈晓平,蒲文灏,鹿鹏,范春雷.高压浓相变水分煤粉输送特性及香农信息熵分析.中国电机工程学报.2007,27(26):40-49
    [14]K. Ostrowski, S.P. Luke, M.A. Bennett, R.A. Williams. Real time visualisation and analysis of dense phase powder conveying. Powder Technology.1999,102(1):1-13
    [15]Jaworski A J, Dyakowski T. Investigations of flow instabilities within the dense pneumatic conveying system. Powder Technology.2002,125:279-291.
    [16]S.Madhusudana Rao, Kewu Zhu, Chi-Hwa Wang, Sankaran Sundaresan. Electrical capacitance tomography measurements on the pneumatic conveying of solids. Industrial & Engineering Chemistry Research.2001,40:4216-4226
    [17]Kewu Zhu, S Madhusudana Rao, Chi-Hwa Wang, Sankaran Sundaresan. Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids. Chemical Engineering Science.2003,58:4225-4245
    [18]S. Fokeer. Characterisation of the cross sectional particle concentration distribution in horizontal dilute flow conveying—a review. Chemical Engineering and Processing. 2004,43(6):677-691
    [19]Molerus O. Overview:pneumatic transport of solids. Powder Technology.1996, 88(3):309-321
    [20]R. Pan. Material properties and flow modes in pneumatic conveying. Powder Technology.1999,104:157-163
    [21]B.J. Azzopardi. Flow patterns:dose gas/solids flow pattern corresponding to churn flow in gas/liquid flow. Industrial & Engineering Chemistry Research.2008,47:7934-7939.
    [22]S. B. Kuang, A. B. Yu, Z. S. Zou. Computational study of flow regimes in vertical pneumatic conveying. Industrial & Engineering Chemistry Research.2009,48: 6846-6858
    [23]S. B. Kuang, K. W. Chu. A. B. Yu. Z. S. Zou. Y. Q. Feng. Computational investigation of horizontal slug flow in pneumatic conveying. Industrial & Engineering Chemistry Research.2008,47:470-480
    [24]Yan Zhang, Eldin Wee Chuan Lim, Chi-Hwa Wang. Pneumatic transport of granular materials in an inclined conveying pipe:comparison of computational fluid dynamics-discrete element method (CFD-DEM), electrical capacitance tomography (ECT), and particle image velocimetry (PIV) results. Industrial & Engineering Chemistry Research.2007,46,6066-6083
    [25]F. Y. Fraige, P. A. Langston. Horizontal pneumatic conveying:a 3d distinct element model. Granular Matter.2006,8:67-80
    [26]Eldin Wee Chuan Lim, Chi-Hwa Wang, Ai-Bing Yu. Discrete element simulation for pneumatic conveying of granular material. AIChE J.2006,52:496-509,
    [27]M.G. Jones, K.C. Williams. Predicting the mode of flow in pneumatic conveying systems-A review. Particuology.2008, (6):289-300.
    [28]J. B. Pahk, G. E. Klinzing. Assessing Flow Regimes from Pressure Fluctuations in Pneumatic Conveying of Polymer Pellets. Particulate Science and Technology.2008,26: 247-256
    [29]S.F. Wang, R. Mosdorf, M. shoji. Nonlinear analysis on fluctuation feature of two-phase flow through a T-junction. International Journal of Heat and Mass Transfer. 2003,46(9):1519-1528
    [30]Jinqiang Ren, Qiming Mao, Jinghai Li, Weigang Lin. Wavelet analysis of dynamic behavior in fluidized beds. Chemical Engineering Science.2001,56(3):981-988
    [31]Xuesong Lu, Hongzhong Li. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed. Chemical Engineering Journal.1999,75(2):113-119
    [32]Bakshi B. R., Zhong H., Jiang P., Fan L.S. Analysis of flow in gas-liquid bubble columns using multi-resolution methods.Transactions of the Institution of Chemical Engineers,1995,73 (6):608-614
    [33]Wen Jianping, Jia Xiaoqiang, Zhou Huai, Liu Baotan, Li Rui.Wavelet transform of velocity-time data for the analysis of turbulent structures in a trayed bubble column. Chinese Journal of Chemical Engineering.2004,12(5):622-627
    [34]H. Li, Y. Tomita. Identification of flow pattern in horizontal pneumatic conveying by wavelet analysis. Proceedings of the 2nd International Conference on Material Handle. 1997:584-588
    [35]H. Li. Multi-resolution analysis of pressure fluctuation in a horizontal swirling flow pneumatic conveying using wavelets. Advanced Powder Technology.2000, 11(4):423-438
    [36]H. Li, Y. Tomita. Characterization of pressure fluctuation in swirling gas-solid two-phase flow in a horizontal pipe. Advanced Powder Technology.2001,12(2):169-185
    [37]Farge M. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics.1992,24:395-458
    [38]Amol A. Kulkarni, Jyeshtharaj B. Joshi, V. Ravi Kumar, Bhaskar D. Kulkarni. Application of multi-resolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA. Chemical Engineering Science,2001,56(17):5037-5048
    [39]Amol A. Kulkarni, Jyeshtharaj B. Joshi, V. Ravi Kumar, Bhaskar D. Kulkarni. Wavelet transform of velocity-time data for the analysis of turbulent structures in a bubble column. Chemical Engineering Science,2001,56(18):5305-5315
    [40]A. A. Kulkarni, J.B. Joshi, V. Ravi Kumar, B.D. Kulkarni. Identification of the principal time scales in bubble column by wavelet analysis. Chemical Engineering Science.2001, 56(20):5739-5747
    [41]Masahiro Takei, Mitsuaki. Ochi, Kiyoshi Horii, Hui Li, Yoshifuru Saito. Discrete wavelets autocorrelation of axial turbulence velocity in spiral single phase flow. Powder Technology.2000,112(3):289-298
    [42]Hui Li. Application of wavelet multi-resolution analysis to pressure fluctuations of gas-solid two-phase flow in a horizontal pipe. Powder Technology.2002,125(1):61-73
    [43]陈珙,黄志尧,王保良,李海青.小波变换辨识流型的一种新法研究.仪器仪表学报.1999,(2):117-120
    [44]赵艳艳,刘海峰.龚欣.于遵宏.水平管粉煤密相气力输送压差信号的小波分析.华东理工大学学报.2003,(1):30-32
    [45]Francisco J. Cabrejos, George E. Klinzing. Characterization of dilute gas-solids flows using the rescaled range analysis. Powder Technology.1995,84(2):139-156
    [46]Jama, G. A., G. E. Klinzing, F. Rizk. Analysis of unstable behavior of pneumatic conveying systems. Particulate Science and Technology.1999,17(1-2):43-68
    [47]孙斌.周云龙,王强.气液两相间歇流压差波动信号的Wigner谱分析.仪器仪大学报.2005,26(z1):88-89
    [48]黄海,黄轶伦,张卫东.气固流化床压力脉动信号的Wigner谱分析.化工学报.1999,50(4):477-482
    [49]C. Stuart Daw, William F. Lawkins, Darryl J. Downing, Clapp N.E. Jr. Chaotic characteristics of a complex gas-solids flow. Physical Review. A.1990,41 (2):1179-1181
    [50]顾丽莉,石炎福,余华瑞.气液两相流中压力波动信号的混沌分析.化学反应工程与工艺.1999,15(4):428-434
    [51]F. J. Cabrejos. Experimental investigation on the fully developed pipe flow of dilute gas-solids suspensions. Ph.D dissertation. University of Pittsburgh,1994
    [52]赵艳艳,李留仁,刘海峰,于遵宏.水平管中气固两相流的混沌特征分析.华东理工大学学报.2004,30(5):510-513
    [53]Hao Ding, Zhiyao Huang, Zhihuan Song, Yong Yan. Hilbert-Huang transform based signal analysis for the characterization of gas-liquid two-phase flow. Flow Measurement and Instrumentation.2007,18(1):37-46
    [54]Sun Bin, Zhao, Yu xiao. Data mining method on HHT and application research in flow regime. Sixth World Congress on Intelligent Control and Automation.2006:5990-5994
    [55]Mendel J. M. Tutorial on higher order statistics in signal processing and system theory: theoretical results and some applications. Proceedings of the IEEE.1991,79(3):278-305
    [56]赵明阳,黄志尧,王保良,李海青.高阶统计量在气固流化床中的应用研究.浙江大学学报.2002,36(6):680-684
    [57]吴新杰,许超.基于独立成分分析和小波变换处理两相流信号.辽宁工程技术大学学报.2007:795-797
    [58]刘洪林.ICA及其在气液两相流辨识中的应用.吉林大学学报.2009:31-36
    [59]孙斌等.基于支持向量机的气液两相流流型识别新方法.应用基础与工程科学学报,2007,26(5):209-216
    [60]周云龙,孙斌.基于神经网络和D-S证据理论的气液两相流流型识别方法.化工学报.2006,57(3):607-613
    [61]C. Liang, C.S. Zhao, X.P. Chen, W.H. Pu, P. Lu, C.L. Fan. Flow characteristics and Shannon entropy analysis of dense-phase pneumatic conveying of pulverized coal with variable moisture content at high pressure. Chemical Engineeing & Technology 2007,30(7):926-931
    [62]T. Xie. S.M. Ghiaasiaan, S. Karrila. Artificial neural network approach for flow regime classification in gas-liquid-fiber flows based on frequency domain analysis of pressure signals. Chemical Engineering Science.2004,59(11):2241-2251
    [63]赵艳艳,杨巍,陈峰,龚欣,于遵宏.密相气力输送参数的人工神经网络预测.华东理工化工学报.2002,28(1):5-7
    [64]赵艳艳,陈峰,龚欣,于遵宏.径向基网络在密相气力输送中的应用.计算机与应用化学.2002,19(5):540-542
    [65]Li, J., Pandiella, S. S., Webb, C., McGlinchey, D., Cowell, A., Xiang, J., Knight, L. Pugh, J. An Experimental Technique for the Analysis of Slug Flows in Pneumatic Pipelines Using Pressure Measurements. Particulate Science and Technology. 2002,20(4):283-303
    [66]曹朱伟.以CO2为输送载气的粉煤密相气力输送研究及相关压力信号的分析.硕士论文.上海:华东理工大学,2008
    [67]马胜,郭晓镭,龚欣,黄万杰,陆海峰,刘剀.粉煤密相气力输送流型.化工学报.2010,61(6):1415-1422
    [68]Pahk. Experimental study of pressure fluctuation in pneumatic conveying by various methods of analysis. Ph.D dissertation. University of Pittsburgh,2006
    [69]S.Satija, J.B. Yong, L.S. Fan. Pressure fluctuations and chocking criterion for pneumatic conveying of fine particles. Powder Technology.1985,43(3):257-271
    [70]赵长隧,梁财,陈晓.气流床气化炉粉煤浓相气力输送综述.电力建设.2009,30(2):1-10
    [71]熊焱军,郭晓镭,龚欣,黄万杰,赵锦超,陆海峰.水平管粉煤密相气力输送堵塞临界状态.化工学报.2009,60(6):1421-1426
    [72]梁财,陈晓平,蒲文灏,范春雷,鹿鹏,赵长遂.高压浓相煤粉气力输送差压信号多分辨分析.东南大学学报.2006,36(6):967-971
    [73]杨道业,周宾,许传龙,王式民.厚管壁电容层析成像传感器特性研究.仪表技术与传感器.2008,(5):82-86
    [74]R.L. Carr. Evaluating flow properties of solids. Chemistry Engineering.1965, 72:163-167.
    [75]Gregory A. Jama, George E. Klinzing, Farid Rizk. An investigation of the prevailing flow patterns and pressure fluctuation near the pressure minimum and unstable conveying zone of pneumatic transport systems. Powder Technology. 2000,112(1-2),112:87-93
    [76]S.S. Mallick, P.W. Wypych. Minimum transport boundaries for pneumatic conveying of powders. Powder Technology.2009,194(3):181-186
    [77]Wypych PW, Yi JL. Minimum transport boundary for horizontal dense-phase pneumatic conveying of granular materials. Powder Technology.2003,129(1-3):111-121.
    [78]L.S. Leung. Vertical pneumatic conveying:A flow regime diagram and a review of choking versus non-choking systems. Powder Technology.1980.25(2):185-190
    [79]Shigeru Matsumoto, Michio Hara, Shozanuro Saito, Siro Maeda. Minimum transport velocity for horizontal pneumatic conveying. Journal of chemical engineering of Japan. 1974,7:425-430
    [80]D. Geldart, S. J. Ling. Saltation velocities in high pressure conveying of fine coal. Powder Technology.1992,69(2):157-162
    [81]Evgeny Rabinovich, Haim Kalman. Pickup, critical and wind threshold velocities of particles. Powder Technology.2007,176(1):9-17
    [82]Wen-Ching Yang. "Choking" Revisited. Industrial & Engineering Chemistry Research. 2004.43:5496-5506
    [83]Jie Li, Yung Y. Liu. Particle-wave duality and coherent instability control in dense gas-solid flows. Chemical Engineering Science.2008.63(3):732-750
    [84]封金花.水平管高浓度与气固两相流流动特征研究.硕士学位论文.上海:华东理工大学,2004
    [85]H.P. Zhu. Z.Y.Zhou, R.Y.Yang. A.B.Yu. Discrete particle simulation of particulate systems:A review of major applications and findings. Chemical Engineering Science. 2008,63(23):5728-5770
    [86]Haifeng Lu. Xiaolei Guo, Xin Gong, Xingliang Cong, Kai Liu, Haifeng Qi. Experimental study on aerated discharge of pulverized coal. Chemical Engineering Science.2012,71:438-448
    [87]黄万杰.煤粉料仓下料的影响因素及喷嘴压降研究.博士学位论文.上海:华东理工大学,2010
    [88]梁财,陈晓平,蒲文灏,鹿鹏,范春雷,赵长遂.高压浓相粉煤气力输送特性研究.中国电机工程学报.2007,27(14):31-35
    [89]沈湘林,熊源泉.煤粉加压密相输送实验研究.中国电机工程学报.2005,25(24):103-107
    [90]刘彬,贺春辉,颜金培,王建豪,倪红亮,沈湘林.二氧化碳作输送介质的煤粉高压密相输送实验研究.中,国电机工程学报.2010,30:21-26
    [91]Zhenghua Dai, Xin Gong, Xiaolei Guo, Haifeng Liu, Fuchen Wang, Zunhong Yu. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology. Fuel.2008,87(10-11):2304-2313
    [92]X.L. Guo, Z.H. Dai, X. Gong, X.L. Chen, H.F. Liu, F.C. Wang, Z.H. Yu. Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant. Fuel Processing Technology.2007,88(5):451-459
    [93]龚欣,郭晓镭,代正华,封金花,陈金峰,郑耀辉,陈锋,熊浪,于遵宏.高固气比状态下的粉煤气力输送.化工学报.2006,57(3):640-644
    [94]N. J. Mainwaring, A. R. Reed. Permeability and air retention characteristics of bulk solid materials in relation to modes of dense phase pneumatic conveying. Bulk Solids Handling.1987,7:415-425
    [95]D Mills. Pneumatic conveying design guide. London:Butterworth,1990
    [96]H.Y. Xie. The role of interparticle forces in the fluidization of fine panicles. Powder Technology.1997,94(2):99-108
    [97]Frederick A.Zenz. Two-phase fluid-solid flow. Industrial & Engineering Chemistry. 1949,41(12):2801-2806
    [98]沈颐身,洪江,周建刚.粉体高浓度输送相图.化工冶金.1996,17(4):353-356
    [99]D. Geldart and S. J. Ling. Saltation velocities in high pressure conveying of fine coal. Powder Technology.1992,69(2):157-162
    [100]马胜.粉煤密相气力输送流型及压降特性实验研究.硕士学位论文.上海:华东理工大学,2010
    [101]郭晓镭,龚欣,代正华,工辅臣,于遵宏.竖直上升管中密相气力输送压降特性.化工学报.2007,58(3):602-607
    [102]Xingliang Cong, Xiaolei Guo, Xin Gong, Haifeng Lu, Kai Liu, Haifeng Qi. Investigations of pulverized coal pneumatic conveying using CO2 and air. Powder Technology.2012,219:135-142
    [103]程克勤.粉粒状物料性能与其气力输送特性.硫磷设计与粉体工程,2004,(6):13-24
    [104]Cong, X.L, Guo, X.L., Gong, X., Lu, H.F., Dong, W.B. Experimental research of flow patterns and pressure signals in horizontal dense phase pneumatic conveying of pulverized coal. Powder Technology.2011,208:600-609
    [105]Xiaolei Guo, Zhenghua Dai, Xin Gong, and Zunhong Yu. Application of a capacitance solid mass flow meter in a dense phase pneumatic conveying system of pulverized coal. AIP Conference Proceedings.2006,914:320-327
    [106]G. Xu, K. Nomura, S. Gao, K. Kato. More fundamentals of dilute suspension collapse and choking for vertical conveying systems. Particle Technology and Fluidization.2001, 47(10):2177-2196
    [107]S. B. Kuang, A. B. Yu. Micromechanic modeling and analysis of the flow regimes in horizontal pneumatic conveying. AIChE J.2011,57(10):2708-2725
    [108]I.A. Costa, M.C. Ferreira, J.T. Freire. Analysis of regime transitions and flow instabilities in vertical conveying of coarse particles using different solids feeding systems. The Canadian Journal of Chemical Engineering.2004,82(1):48-59
    [109]K.Konrad. Dense-Phase pneumatic conveying:A review. Powder Technology.1986, 49(1):1-35
    [110]Bi HT, Grace JR. Zhu JX. Types of choking in vertical pneumatic systems. International Journal of Multiphase Flow.1993,19(6):1077-1092
    [111]Yuji Tomita, Vijay Kumar Agarwal, Hiroyuki Asou, Katsuya Funatsu. Low-velocity pneumatic conveying in horizontal pipe for coarse particles and fine powders. Particuology.2008,6(5):316-321
    [112]Y. Tsuji, Y. Morikawa. Flow pattern and pressure fluctuation in air-solid two-phase flow in a pipe at low air velocities. International Journal of Multiphase Flow.1982, 8(4):329-341
    [113]S. Matsumoto, H. Harakawa. Statistical analysis of the transition of the flow pattern in vertical pneumatic conveying. International Journal of Multiphase Flow.1987,13: 123-129
    [114]刘燕,张少峰,李金红,王延吉.压力波动信号在气(汽)液两相流流型识别中的应用.河北工业大学学报.2008,37(1):1-7
    [115]黄海,黄轶伦.气固流化床压力脉动信号的Hilbert-Huang谱分析.化工学报.2004,55(9):1441-1447
    [116]K.C. Williams, M. G. Jones, A.A. Cenna. Characterization of the gas pulse frequency, amplitude and velocity in non-steady dense phase pneumatic conveying of powders. Particuology.2008,6(5):301-306
    [117]赵贵兵.气固两相流波动动力学非线性机理研究.博士后学位论文.杭州:浙江大学,2001
    [118]张爱华,曹长青.在线识别两相流流型的压差波动特性的研究进展.青海大学学报.2003,21(1):37-41
    [119]F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner. Characterization of fluidization regimes by time-series analysis of pressure fluctuations. International Journal of Multiphase Flow.2000,26(4):663-715
    [120]周浩生,陆继东,钱诗智,林良,刘德昌.复杂气固两相系统的微观结构.实验力学,1999(02):190-196
    [121]Nguyen V.T., Euh D.J., Song C. An application of the wavelet analysis technique for the objective discrimination of two-phase flow patterns. International Journal of Multiphase Flow.2010,36(9):755-768
    [122]周云龙,孙斌,李洪伟.多相流参数检测理论及其应用.北京:科学出版社,2010
    [123]S.Mallat. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989,11(7):674-693
    [124]J. Ruud van Ommena, Srdjan Sasic, John van der Schaaf, Stefan Gheorghiu, Filip Johnsson, Marc-Olivier Coppens. Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review. International Journal of Multiphase Flow.2011, 37(5):403-428
    [125]白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析.工程热物理学报.2001,22(3):359-362
    [126]赵贵兵,石炎福,段文锋,余华瑞.从混沌时间序列同时计算关联维和Kolmohorov熵.计算物理.1999(16):309-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700