弱鞅和三类相依序列的概率不等式及极限定理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相依序列极限理论在应用概率、统计、保险与金融数学、复杂性系统、可靠性理论、生存分析等领域都有着广泛的应用.本文主要致力于研究弱鞅和三类相依序列的概率不等式,如Bernstein型不等式,Hajek-Renyi型不等式,Chow型极大值不等式,Doob型极大值不等式,等等,利用这些概率不等式,研究若干相依序列的完全收敛性、几乎处处收敛性以及强收敛速度等方面的极限性质.
     本文的第二章研究了(?)混合序列的矩不等式,利用此不等式,我们得到了(?)混合序列的Kolmogorov型收敛定理、三级数定理、强大数定律和强收敛速度,同时还给出了(?)混合序列概率不等式的一些新结果,例如Hajek-Renyi型不等式等,由此证明了相应的上确界的可积性.利用(?)混合序列的Bernstein型不等式,研究了(?)混合序列的完全收敛性和逆矩,其逆矩的渐近逼近推广并改进了文献Kaluszka和Okolewski中的定理3、胡舒合等中的定理2.1和定理2.3以及Wu等中的定理1(条件sup1≤i≤nEZi/Bn≤C1可以去掉).另外,我们指出文献Sun和Ling中关于Bahadur表示的一个证明错误,同时还给出了(?)混合样本分位数的Bahadur表示,我们获得的界要优于Ling中的界.
     第三章研究了有界和无界NOD序列的指数型不等式及强收敛性质. NOD序列是一类包含独立序列和NA序列作为其特例的较为广泛的相依序列,我们在适当的矩条件下,建立起无界NOD序列的指数型不等式如下:其中是一个正实数序列,且满足由此结果,我们可进一步研究NOD序列的强收敛性质.我们的结果推广并改进了文献Kim和Kim,Nooghabi和Azarnoosh以及Xing等中有关NA序列的相应结果.
     LNQD序列的概率不等式和强收敛速度是我们第四章研究的重点内容LNQD序列是也是一类包含独立序列和NA序列作为其特例的较为广泛的相依序列,但不同于NOD序列.利用LNQD序列的基本性质,我们给出了若干指数型不等式,如Bernstein型不等式等,由此可进一步研究其完全收敛性和几乎处处收敛性.利用LNQD序列的矩不等式,我们得到了LNQD序列的大偏差定理和Hajek-Renyi型不等式,并由此给出LNQD序列的强收敛速度和上确界的可积性.这些都是LNQD序列的新结果.
     本文在最后一章主要研究弱(下)鞅及其凸函数的极值不等式和极限定理.弱鞅概念是在20世纪八十年代被提出来的,包含鞅作为其特例,并且均值为零的独立序列、PA序列和强正相依序列的部分和序列也是弱鞅.在本章我们做出了如下五方面的贡献:
     ·研究了弱(下)鞅及其凸函数的Chow型极大值不等式和Doob型极大值不等式,并且获得了一些概率不等式的新结果;
     ·建立了弱(下)鞅及其凸函数在0<p<1,p=1以及p>1场合下的Doob型不等式,推广了文献Christofides和Wang中的相应结果;
     ·指出文献Harremoes中定理4的一个证明错误,并给出完整证明,同时我们还给出了弱鞅极小值不等式的一个新结果,由此证明了其中{Sn,n≥1}为一非负弱鞅,S1=1,γ(x)=x-1-log x,x>0上述结果推广了文献Harremoes中有关鞅的相应结果;
     ·给出了弱(下)鞅及其凸函数的一些新的强大数定律和强收敛速度,推广并改进了文献Christofides,Chow和Prakasa Rao中的相应结果;
     ·给出弱下鞅一致可积的一个等价条件.
The limit theory of dependent suquences has wide applications in applied probability, statistics, insurance and financial mathematics, complex systems, reliability theory, sur-vival analysis and other fields. This thesis focuses mainly on probability inequalities for demimartingale and three dependent sequences, such as Bernstein-type inequality, Hajek-Renyi-type inequality, Chow-type maximal inequality, Doob-type maximal inequality, and so forth. The limit theorems for demimartingale and three dependent sequences, such as complete convergence, almost sure convergence, strong growth rate, and so on, are also considered.
     In Chapter 2, we study the moment inequality forφmixing suquence. By the moment inequality, we obtain the Kolmogorov-type convergence theorem, three series theorem, strong law of large numbers and strong growth rate forφmixing suquence. We also give some new results of probability inequalities forφmixing suquence, such as Hajek-Renyi-type inequality, and so on. As a consequence, the integrability of supremum forφmixing suquence can be proved. By the Bernstein-type inequality, we investigate the complete convergence and asymptotic approximation of inverse moment forφmixing suquence. The asymptotic approximation of inverse moment that we obtain generalizes and improves the results of Theorem 3 in Kaluszka and Okolewski, Theorems 2.1 and 2.3 in Hu et al. and Theorem 1 in Wu et al.(the condition sup1≤i≤n EZi/Bn≤C1 can be removed). In addition, we point out that there ia a mistake in the proof of the main results in Sun and Ling, and give the Bahadur representation for sample quantiles underφmixing sequence. We get better bound than that in Ling.
     In Chapter 3, we investigate the exponential inequalities and strong convergence properties for bounded and unbounded NOD sequence. NOD sequence is a very broad class of dependent sequences, which contains independent sequence and NA sequence as special cases. The main purpose of this chapter is to establish the following exponential inequality for unbounded NOD sequence under suitable moment conditions: where is a sequence of positive numbers satisfying Furthermore, we study the strong convergence properties for NOD sequence, which gener-alize and improve the corresponding results for NA sequence in Kim and Kim, Nooghabi and Azarnoosh and Xing et al.
     The probability inequalities and strong growth rate for LNQD sequence is the main target of Chapter 4. LNQD sequence is also a very broad class of dependent sequences, which contains independent sequence and NA sequence as special cases, but different from NOD sequence. By the Basic properties of LNQD sequence, we get some exponential inequalities, such as Bernstein-type inequality, and so forth, which can be applied to study the complete convergence and almost sure convergence. We also obtain the large deviations and Hajek-Renyi-type inequality from the moment inequality of LNQD suequence, which can be applied to prove the strong growth rate and the integrability of supremum. The results listed above are new results for LNQD suquence.
     In the lase chapter of this thesis, we study the maximal inequalities and limit the-orem for demimartingale and its convex function. The concept of demimartingale was introduced in 1980s, which contains martingale as a special case. The partial sums of sequences of mean zero independent random variables, mean zero associated random vari-ables and mean zero strongly positive dependent random variables are all demimartingale. We make the following five contributions in this chapter:
     ●We study the Chow-type maximal inequality and Doob-type maximal inequality for demi(sub)martingale and its convex function. Some new results of probability inequalities are also obtained;
     ●We establish the Doob-type inequality for demi(sub)martingale and its convex function under the case of 01, which generalizes the corresponding results of Christofides and Wang;
     ●We point out that there is a mistake in the proof Theorem 4 in Harremoes, and give a complete proof. A new minimal inequality for demimartinge is also obtained, which can be applied to prove the folowing inequality: where {Sn,n≥1} is a nonnegative demimartingale, S1=1,γ(x)=x-1-logx,x>0. The result above generalizes the corresponding one of Harremoes;
     ●We give some new kinds of strong law of large numbers and strong growth rate for demi(sub)martingale and its convex function, which generalize and improve the corre-sponding ones of Christofides, Chow and Prakasa Rao;
     ●An equivalent condition of uniform integrability for demisubmartingales is pre-sented.
引文
[1]Gnedenko B.V., Kolmogirov A.M. Limit Distributions for Sums of Independent Ran-dom Variables [M]. Reading Mass:Addison-Wesley,1954.
    [2]陆传荣,林正炎.混合相依变量的极限理论[M].北京:科学出版社,1997.
    [3]吴群英.混合序列的概率极限理论[M].北京:科学出版社,2006.
    [4]Uspensky J.V. Introduction to Mathematical Probability [M]. New York:McGraw-Hil, 1937.
    [5]Hoeffding W. Probability inequalities for sums of bounded random variables [J]. Jour-nal of the American Statistical Association,1963,58:13-30.
    [6]Dudley R.M. A Course on Empirical Processes, Springer Lecture Notes in Mathematics [M]. New York:Springer-Verlag,1984.
    [7]Pollard D. Convergence of Stochastic Processes [M]. New York:Springer-Verlag,1984.
    [8]Shorack G.R., Wellner J.A. Empirical Processes with Applications to Statistics [M]. New York:Wiley,1986.
    [9]Boentc G., Fraiman R. Consistency of nonparametric estimate of a density function for dependent variable [J]. Journal of Multivariate Analysis,1988,25:90-99.
    [10]Yang S.C. Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples [J]. Statistics and Probability Letters,2003,62:101-110.
    [11]Han K.H. Exponential inequality and almost sure convergence for the negatively as-sociated sequence [J]. Honam Mathematical J.,2007,29:367-375.
    [12]Kim T.S., Kim H.C. On the exponential inequality for negative dependent sequence [J]. Communications of the Korean Mathematical Society,2007,22(2):315-321.
    [13]Jabbari H., Jabbari M., Azarnoosh H.A. An exponential inequality for negatively as-sociated random variables [J]. Electronic Journal of Statistics,2009,3:165-175.
    [14]Nooghabi H.J., Azarnoosh H.A. Exponential inequality for negatively associated ran-dom variables [J]. Statistical Papers,2009,50 (2):419-428.
    [15]Xing G.D., Yang S.C., Liu A.L., Wang X.P. A remark on the exponential inequality for negatively associated random variables [J]. Journal of the Korean Statistical Society, 2009,38:53-57.
    [16]Soo H.S. An exponential inequality for negatively associated random variables [J]. Journal of Inequalities and Applications, Volume 2009, Article ID 649427,7 pages, doi:10. 1155/2009/649427.
    [17]Azuma K. Weighted sums of certain dependent random variables [J]. Tohoku Math. J.,1967,19:357-367.
    [18]李国亮.鞅差序列的Bernstein型不等式及其应用[J].数学杂志,2006,26(1):103-108.
    [19]Ioannides D.A., Roussas G.G. Exponential inequality for associated random variables [J]. Statistics and Probability Letters,1999,42:423-431.
    [20]Oliveira P.E. An exponential inequality for associated variables [J]. Statistics and Probability Letters,2005,73:189-197.
    [21]Xing G.D., Yang S.C., Liu A.L. Exponential inequalities for positively associated ran- dom variables and applications [J]. Journal of Inequalities and Applications, Volume 2008, Article ID 385362,11 pages, doi:10.1155/2008/385362.
    [22]Christofides T.C., Hadjikyriakou M. Exponential inequalities for N-demimartingales and negatively associated random variables [J]. Statistics and Probability Letters,2009, 79:2060-2065.
    [23]Bahadur R.R. A note on quantiles in large samples [J]. Ann. Math. Statist.,1966, 37:577-580.
    [24]Sen P.K. On Bahadur representation of sample quantile for sequences of (?)-mixing random variables [J]. J. Multivariate Anal,1972,2:77-95.
    [25]Babu G.J., Singh, K. On deviations between empirical and quantile processes for mix-ing random variables [J]. J. Multivariate Anal.,1978,8:532-549.
    [26]Yoshihara K. The Bahadur representation of sample quantile for sequences of strongly mixing random variables [J]. Statist. Probab. Lett.,1995,24:299-304.
    [27]Cai Z.W., Roussas G.G. Smooth estimate of quantiles under association [J]. Statist. Probab. Lett.,1997,36:275-287.
    [28]Wu W.B. On the Bahadur representation of sample quantiles for dependent sequences [J]. Ann. Statist.,2005,33:1934-1963.
    [29]Cheng Y.B., De Gooijer J.G. Bahadur representation for the nonparametric M-estimator under a-mixing dependence [J]. Statistics,2009,43:443-462.
    [30]Sun S.X. The Bahadur representation for sample quantiles under weak dependence [J]. Statist. Probab. Lett.,2006,76:1238-1244.
    [31]Ling N.X. The Bahadur representation for sample quantiles under negatively associ-ated sequence [J]. Statist. Probab. Lett.,2008,78:2660-2663.
    [32]Stout W.F. Almost Sure Convergence [M]. New York:Academic Process,1974.
    [33]Doob. Stochastic Processes [M], New York:Wiley,1953.
    [34]Chow Y.S. A martingale inequality and the law of large numbers [J]. Proceedings of the American Mathematical Society,1960,11(1):107-111.
    [35]Newman C.M., Wright A.L. Associated random variables and martingale inequalities [J]. Z. Wahrscheinlichkeitstheorie verw. Gebiete,1982,59(3):361-371.
    [36]Christofides T.C. Maximal inequalities for demimartingale and a strong law of large numbers [J]. Statistics and Probability Letters,2000,50(4):357-363.
    [37]Wang J.F. Maximal inequalities for associated random variables and demimartingales [J]. Statistics and Probability Letters,2004,66(3):347-354.
    [38]Prakasa Rao B.L.S. On some inequalities for N-demimartingales [J]. J. Indian Soc. Agricultural Statist.,2004,57:208-216.
    [39]杨善朝.混合序列加权和的强收敛性[J].系统科学与数学,1995,15(3):254-265.
    [40]Dobrushin R.L. The central limit theorem for non-stationary Markov chain[J]. The-orey Probab. Appl.,1956,1:72-88.
    [41]Sen P.K. A note on weak convergence of empirical processes for sequences of φ mixing random variables [J]. Ann. Math. Statist.,1971,43:2131-2133.
    [42]Sen P.K. Weak convergence of multidimensional empirical processes for stationary φ mixing processes [J]. Ann. Probab.,1974,2:147-154.
    [43]Herrndorf N. The invariance principle for φ mixing sequences. Z. Wahrsch. Verw. Gebiete.,1983,63:97-108.
    [44]Peligrad M. An invariance principle for φ mixing sequences [J]. Ann. Probab.,1985, 13:1304-1313.
    [45]Peligrad M. On Ibragimov-Iosifescu conjecture for φ mixing sequences [J]. Stochastic Processes and Their Applications,1990,35:293-308.
    [46]Utev S.A. On the central limit theorem for φ mixing arrays of random variables [J]. Theory of Probability and Its Applications,1990,35:131-139.
    [47]Chen D.Q. A uniform central theorem for non-uniform φ mixing random fields [J]. Ann. Probab.,1991,19:636-649.
    [48]Shao Q.M. Almost sure invariance principles for mixing sequences of random variables [J]. Stochastic Processes and Their Applications,1993,48:319-334.
    [49]Hu S.H., Wang X.J. Large deviations for some dependent sequences [J]. Acta Mathe-matica Scientia,2008,28:295-300.
    [50]杨善朝.混合序列矩不等式和非参数估计[J].数学学报,1997,40(2),271-279.
    [51]Hu S.H., Chen G.J., Wang X.J. On extending the Brunk-Prokhorov strong law of large numbers for martingale differences [J]. Statistics and Probability Letters,2008,78 (18):3187-3194.
    [52]Fazekas I., Klesov O. A general approach to the strong law of large numbers [J]. The-ory Probab. Appl.,2001,45 (3):436-449.
    [53]Hajek J., Renyi A. A generalization of an inequality of Kolmogorov [J]. Acta Math. Acad. Sci. Hungar.,1955,6:281-284.
    [54]Gan S.X. The Hajeck-Renyi inequality for Banach space valued martingales and the p smoothness of Banach spaces [J]. Statist. Probab. Lett.,1997,32:245-248.
    [55]Liu J.J., Gan S.X., Chen P.Y. The Hajeck-Renyi inequality for the NA random vari-ables and its application [J]. Statist. Probab. Lett.,1999,43:99-105.
    [56]Fazekas I. On a general approach to the strong laws of large numbers, http://www.inf. unideb.hu/valseg/dolgozok/fazekasi/preprintek.html.
    [57]Prakasa Rao B. L. S. Hajek-Renyi type inequality for associated sequences [J]. Statist. Probab. Lett.,2002,57:139-143.
    [58]胡舒合,胡晓鹏,张林松.二阶矩限制下的Hajek-Renyi型不等式及其应用[J].应用数学学报,2005,28(2):227-235.
    [59]Tomacs T., Libor Z. A Hajek-Renyi type inequality and its applications [J]. Annales Mathematicae et Informaticae,2006,33:141-149.
    [60]Soo H.S. A note on the Hajek-Renyi inequality for associated random variables [J]. Statist. Probab. Lett.,2008,78:885-889.
    [61]Hu S.H., Wang X.J., Yang W.Z., Zhao T. The Hajek-Renyi-type inequality for asso-ciated random variables [J]. Statist. Probab. Lett.,2009,79 (7):884-888.
    [62]Hsu P.L., Robbins H. Complete convergence and the law of large numbers [J]. Proc. Nati. Acad. Sci. U.S.A.,1947,33 (2):25-31.
    [63]Soo H.S. Strong laws for weighted sums of i.i.d. random variables (Ⅱ) [J]. Bull..Ko-rean. Math. Soc.,2002,39(4):607-615.
    [64]Mendenhall W., Lehman E.H. An approximation to the negative moments of the pos-itive binomial useful in life-testing [J]. Technometrics,1960,2:227-242.
    [65]Wooff D.A. Bounds on reciprocal moments with applications and developments in Stein estimation and post-stratification [J]. J. R. Stat. Soc. Ser. B,1985,47:362-371,
    [66]Pittenger A.O. Sharp mean-variance bounds for Jensen-type inequalities [J]. Statist. Probab. Lett.,1990,10:91-94.
    [67]Ramsay C.M. A note on random survivorship group benefits [J]. ASTIN Bull.,1993, 23:149-156.
    [68]Gupta R.C., Akman O. Statistical inference based on the length-biased data for the inverse Gaussian distribution [J]. Statistics,1998,31:325-337.
    [69]Marciniak E., Wesolowski J. Asymptotic Eulerian expansions for binomial and nega-tive binomial reciprocals [J]. Proc. Amer. Math. Soc,1999,127:3329-3338.
    [70]Fujioka T. Asymptotic approximations of the inverse moment of the non-central chi-squared variable [J]. J. Japan Statist. Soc,2001,31:99-109.
    [71]Garcia N.L., Palacios J.L. On inverse moments of nonnegative random variables [J]. Statist. Probab. Lett.,2001,53:235-239.
    [72]Jurlewicz A., Weron K. Relaxation of dynamically correlated clusters [J]. J. Non-Cryst. Solids,2002,305:112-121.
    [73]Kaluszka M., Okolewski A. On Fatou-type lemma for monotone moments of weakly convergent random variables [J]. Statist. Probab. Lett.,2004,66:45-50.
    [74]胡舒合,陈桂景,王学军,陈恩兵.关于弱收敛非负随机变量序列的逆矩[J].应 用数学学报,2007,30(2):361-367.
    [75]Wu T.J., Shi X.P., Miao B.Q. Asymptotic approximation of inverse moments of non-negative random variables [J]. Statist. Probab. Lett.,2009,79:1366-1371.
    [76]吉米多维奇.数学分析习题集题解[M].第四卷,费定晖,周学圣编演.济南:山东科学技术出版社,2002:14.
    [77]Serfling R.J. Approximation Theorems of Mathematical Statistics [M]. New York: John Wiley & Sons,1980:3.
    [78]Joag-Dev K., Proschan F. Negative association of random variables with applications [J]. Ann. Statist.,1983,11 (1):286-295.
    [79]Bozorgnia A., Patterson R.F., Taylor R.L. Limit theorems for dependent random vari-ables [C]. Proceedings of the first world congress on World congress of nonlinear analysts '92 (Ⅱ). Berlin:Walter de Grutyer,1996:1639-1650.
    [80]Kim H.C. The Hajek-Renyi inequality for weighted sums of negatively orthant de-pendent random variables [J]. Int. J. Contemp. Math. Sci.,2006,1(6):297-303.
    [81]Lehmann E.L. Some concepts of dependence [J]. The Annals of Mathematical Statis-tics,1966,37:1137-1153.
    [82]Newman C.M. Asymptotic independence and limit theorems for positively and neg-atively dependent random variables [J]. In:Tong, Y.L(Ed.) Statistics and Probability, 1984,5:127-140 (Inst. Math. Statist. Hayward, C.A.).
    [83]Wang J.F., Zhang L.X. A Berry-Esseen theorem for weakly negatively dependent ran-dom variables and its applications [J]. Acta Math. Hungar.,2006,110(4):293-308.
    [84]Ko Mi-Hwa, Choi Yong-Kab, Choi Yue-Soon. Exponential probability inequality for linearly negative quadrant dependent random variables [J]. Commun. Korean Math. Soc., 2007,22:137-143.
    [85]Ko Mi-Hwa, Ryu Dae-Hee, Kim Tae-Sung. Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables [J]. Taiwanese Journal of Mathe-matics,2007,11(2):511-522.
    [86]Longnecker M.. Serfling R.J. General moment and probability inequalities for the maximum partial sum [J]. Acta Math. Acad. Sci. Hungar.,1977,30:129-133.
    [87]Esary J., Proschan F., Walkup D. Association of random variables with applications [J]. Ann. Math. Statist,1967,38 (5):1466-1474.
    [88]郑耀辉.随机变量集的一种正相依结构[J].厦门大学学报(自然科学版),1997,36(4):493-498.
    [89]郑耀辉.一类强正相依随机变量列部分和次序统计量的矩不等式与收敛定理[J].应用数学学报,2001,24(2):168-176.
    [90]Harremoes P. Some new maximal inequalities [J]. Statistics and Probability Letters, 2008,78:2776-2780.
    [91]Pakes A.G. Remarks on the maxima of a martingale sequence with application to the simple critical branching process [J]. J. Appl. Probab.,1987,24:768-772.
    [92]Iksanov A., Marynych A. A note on non-regular martingales [J]. Statistics and Prob-ability Letters,2008,78:3014-3017.
    [93]Prakasa Rao B.L.S. On some maximal inequalities for demisubmartingales and N- demisupermartingales [J]. Journal of Inequalities in Pure and Applied Mathematics,2007, 8 (4), Article 112,17pp.
    [94]Shiryaev A.N. Probability [M]. New York:Springer-Verlag,1996.
    [95]Krishna B.A., Soumendra N.L. Measure Theory and Probability Theory [M]. New York:Springer,2006.
    [96]Amini M., Bozorgnia A. Negatively dependent bounded random variable probability inequalities and the strong law of large numbers [J]. Journal of Applied Mathematics and Stochastic Analysis,2000,13 (3),261-267.
    [97]Taylor R.L., Patterson R.F., Bozorgnia A. Weak law of large numbers for arrays of rowwise negatively dependent random variables [J]. Journal of Applied Mathematics and Stochastic Analysis,2001,14(3),227-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700