关节镜下治疗膝关节骨性关节炎功能评估及临床疗效预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨关节镜下髌外侧支持带松解、清理术及术后康复对膝关节骨性关节炎的治疗作用;探讨膝关节骨性关节炎股四头肌和腘绳肌肌肉功能特点;探讨关节镜下髌外侧支持带松解、清理术和术后康复对股四头肌各肌束及腘绳肌肌肉功能的影响;基于BP神经网络建立膝关节骨性关节炎关节镜治疗临床疗效的预测模型。
     方法:
     膝骨性关节炎患者共50例,随机分为A、B两组,A组为“单纯关节镜下清理术”,B组为“关节镜下清理术+髌外侧减压术”,A组采用关节镜下骨性关节炎清理术,术中刨削明显增生、变性的滑膜及滑膜皱襞,根据半月板损伤、磨损情况,分别行半月板部分切除、大部分切除和全切除;搔刮表面毛糙、软化或者大部剥脱的软骨、刨削修整病损的软骨面;取出关节内游离体和剥脱的软骨。B组在A组手术的基础上行髌外侧支持带松解,使髌骨外侧倾斜可达30°以上,髌骨向内侧移动范围明显增加。两组术后按照相同的康复治疗计划进行康复训练,早期消肿、止痛、促进组织愈合;术后2天至2周保护修复区域,关节活动度训练;术后3周至3个月获得全范围关节活动度,强化肌力训练;晚期使肌力、关节活动度、本体感觉达到运动功能水平。两组患者均于术前、术后3个月和术后6个月接受膝关节功能评估、等速肌力测试和表面肌电测试。
     应用Matlab6.5神经网络工具箱建立BP神经网络模型,以膝关节OA患者术前病史、症状、体征、辅助检查及术中所见的关节内改变等变量作为输入端,以术后疗效情况作为输出端。50例接受关节镜治疗并进行随访的膝关节骨性关节炎患者分为两组,35例进行神经网络的训练,15例进行神经网络的测试。结果:
     1临床结果:
     A组术后3个月Lysholm量表评分、疼痛评分与术前相比明显改善,有统计学意义;术后6个月Lysholm量表评分、疼痛评分与术后3个月比较差异无统计学意义。B组术后3个月Lysholm量表评分、疼痛评分优于术前,差异有统计学意义;术后6个月Lysholm量表评分、疼痛评分优于术后3个月,差异有统计学意义。术后三个月B组膝关节Lysholm量表评分较A组下降,具有显著性差异。术后六个月B组患者膝关节Lysholm量表评分较A组患者增高,有显著性差异。两组患者术后3个月总疗效A组好于B组,差异具有统计学意义。两组患者术后6个月总疗效B组好于A组,差异具有统计学意义。
     2等速肌力测试结果:
     等速肌力测试的结果显示,膝关节OA患者健侧股四头肌在60°/s、120°/s时峰力矩较患侧高,有显著性差异,在180°/s无显著性差异。健侧股四头肌在60°/s、120°/s、180°/s相对峰力矩高于患侧,有显著差异。健侧股四头肌在60°/s、120°/s、180°/s时单次最佳做功高于患侧,有显著性差异。健侧股四头肌在60°/s、120°/s时平均功率高于患侧,有显著性差异。双侧腘绳肌峰力矩、最佳单次做功、平均功率均无显著性差异。健、患侧H/Q比值无显著性差异。股四头肌峰力矩和平均功率与骨性关节炎的疼痛指数呈中度正相关和Lysholom量表呈中度负相关。
     A组术后三个月股四头肌峰力矩较术前60°/s、120°/s提高,有显著差异,术后六个月较术后三个月无明显差异;B组术后三个月较术前无明显差异,术后六个月较术后三个月三个角速度都有明显差异;术后六个月B组在60°/s、120°/s、180°/s明显大于A组,有显著性差异。A组术后三个月股四头肌平均功率较术前60°/s、120°/s、180°/s提高,有显著差异,术后六个月较术后三个月无明显差异;B组术后三个月较术前无明显差异,术后六个月较术后三个月在60°/s、120°/s提高,有显著差异。术后六个月B组股四头肌平均功率在60°/s大于A组,有显著性差异。A组术后三个月股四头肌最佳单次做功较术前60°/s、120°/s、180°/s提高,有显著差异,术后六个月较术后三个月无明显差异;B组术后三个月较术前无明显差异,术后六个月在60°/s高于术后三个月,有显著性差异。术后六个月B组在60°/s、120°/s高于A组,有显著差异。A、B组腘绳肌峰力矩、单次最佳做功和平均功率术前、术后三个月、术后六个月均无显著差异。A、B两组组H/Q比值术后三个月较术前无显著差异,术后六个月较术后三个月无显著差异。
     3表面肌电分析结果
     膝关节OA患者健、患侧的表面肌电研究显示患侧VL在90~100°、100~110°、120~130°时小于健侧;RF在110~120°、120~130°时小于健侧;VMO在110~120°、140~150°和150~160°时小于健侧;BF在150~160°时大于健侧,均有统计学意义。健侧VMO/VL比值在60°/s、180°/s高于患侧,有统计学意义;在120°/s健、患侧无显著性差异。健侧VMO比VL早激活约5.5ms左右,而患侧VMO与VL早激活1.4ms左右,两者有显著性差异。
     A、B两组最大等长收缩时表面肌电平均振幅在术前、术后三个月和术后六个月都没有显著变化。在等速运动状态下表面肌电经标准化处理后术后三个月A组VL在60°/s时较B组高,有显著差异;RF在60°/s、120°/s较B组高,有显著差异;A、B两组VMO、ST、BF相比均无明显差异。术后六个月两组无明显差异。A组术前、术后三个月、术后六个月VMO/VL比值无明显变化;B组术后三个月VMO/VL比值较术前60°/s、120°/s、180°/s提高,有显著性差异,术后六个月较术后三个月无明显差别。术后三个月、术后六个月VMO、VL激发时间B组VMO较VL首先激活较A组有显著差异。
     4基于BP神经网络建立膝关节骨性关节炎关节镜治疗临床疗效的预测模型。50例样本随机分为两部分,35例为训练样本,15例为测试样本。用训练好的网络对测试集的15例样本进行预测,实际值和预测值间的差别无统计学意义表明网络有较好的预测效果,网络训练没有发生过度拟合现象,具有较好的泛化性能。
     结论:
     ①关节镜下清理+髌外侧减压术对于入选的膝关节骨性关节炎患者具有良好的临床治疗效果,为OA患者康复训练、肌力恢复与膝关节功能改善提供了有利的条件;
     ②关节镜下清理+髌外侧减压术后患者的肌力恢复经历了代偿期和功能恢复期;
     ③等速肌力测试结果表明:膝关节OA患者关节镜清理术后经康复治疗伸、屈肌峰力矩、单次最佳做功及平均功率明显提高,尤其以股四头肌提高最为显著,术前H/Q比值基本处于正常范围,术后H/Q值比术前降低,应考虑加强屈膝肌力的训练,使屈伸肌力量比进一步协调;
     ④表面肌电测试结果表明VMO/VL比值和VMO、VL激发时间髌外侧支持带减压患者较未减压的患者有明显变化,说明髌外侧支持带减压后经康复训练明显改善VMO和VL的协调性,进而改善髌骨运动轨迹和髌股关节的力学分布情况;
     ⑤术后康复治疗对提高股四头肌和腘绳肌肌力和膝关节功能恢复具有重要的临床意义;
     ⑥BP神经网络具有强大的模拟与预测功能,可以从复杂的信息中提取系统的输出与输入间的相互关系,本研究利用BP神经网络方法建立了膝关节OA患者关节镜治疗临床疗效的预测模型,为膝关节OA关节镜治疗的预后判断提供了一种有效方法。
Objective: To study the mechanism of knee osteoarthritis treated with arthroscopic debridement and release of lateral patellar retinaculum; Study the musculus quadriceps fexoris and hamstring functional characteristics of knee osteoarthritis;To study the effect of arthroscopic debridement and release of lateral patellar retinaculum on the musculus quadriceps fexoris and hamstring functional; Based on the BP neural network to establish the model of curative effect estimation of arthroscopic debridement for knee osteoarthritis.
     Methods: 50 patients with knee osteoarthritis were randomly divided into groups A (29 cases) and B (21 cases) to underwent arthroscopic debridement and arthroscopic debridement combined with lateral patellar decompression respectively. All the operations were performed by a same surgeon. Postoperative rehabilitation therapies were carried out by one group of therapist. The Lysholm, PRI, PPI scores , isokinetic muscle strength test and surface electromyogram test were evaluated before the operation . The examinations were repeated in 3 and 6 months respectively after surgery.
     Based on the BP neural network to establish the model of curative effect estimation of arthroscopic debridement for knee osteoarthritis. Input end is preoperative case history , complaints, physical sign, auxiliary examination and the changes in the knee joint during operation of the knee OA patients. Output end is the postoperative curative effect. 50 cases of knee OA patient treated with arthroscopic debridement were divided into two groups, 35 cases were used to train the artificial neural network, 15 cases were to test the network. Results:
     1 Clinical results:
     In group A , the scores of Lysholm and PPI determined at postoperative 3 months were significantly higher than those before the operative, but not changed markedly at month 6. Whereas, in group B, the scores kept being increased after the surgery. At month 3, the scores in group A were higher than those in group B, however, at months 6, the Lysholm scores in group B were higher than those in group A. At month 3, the curatively effective rate of group A was higher than that of group B, however, at month 6, the rate of group B was higher than that of group A.
     2 Isokinetic muscle strength test results
     The peak torque of the unaffected side were higher than affected side at angular speed of 120°/s and 180°/s, but there was no difference at angular speed of 180°/s. The hamstring’s peak torque was no significant difference between the two sides. The quadriceps’s relative peak torque of the unaffected side was higher than that of affected at angular speed of 60°/s、120°/s、180°/s, however the hamstring’s relative peak torque was no significant difference between the two sides. The quadriceps’s average power of the unaffected side was higher than that of the affected side at angular speed of 60°/s、120°/s.The hamstring’s average power was no significant difference between the two sides. The quadriceps’s total work of unaffected side was higher than that of the affected side at angular speed of 60°/s、120°/s、180°/s. The H/Q rate of the affected side was higher than that of the affected side.
     In group A the peak torque of postoperative month 3 was higher than that of preoperative at angular speed of 60°/s、120°/s, but there was no difference between month 3 and month 6. In group B there was no difference between preoperative and postoperative month 3, but month 6 was higher than that of month 3. At postoperative month 6, the peak torque of group B was higher than that of group A at all three angular speed. In group A the average power of postoperative month 3 was higher than that of preoperative at all three angular speed, but there was no difference between between month 3 and month 6. In group B there was no difference between preoperative and postoperative month 3, but month 6 was higher than that of month 3. In group A the total work of postoperative month 3 was higher than that of preoperative at all three angular speed, but there was no difference between between month 3 and month 6. In group B there was no difference between preoperative and postoperative month 3, but month 6 was higher than that of month at angular speed of 60°/s and 120°/s. There was no difference between group A and group B on the hamstring’s peak torque,total work and average power, as well as the month 3 and month 6.There was no difference between group A and group B on H/Q rate preoperative, as well as month 3 and month 6.
     3 Surface electromyogram test results
     The average sEMG of the unaffected side VL was higher than that of the affected side at range of 90-100°,100-110°and 120-130°. The average sEMG of the unaffected side RF was higher than that of affected side at range of 110~120°、120~130°, and the unaffected side VMO is higher than affected side at range of 110~120°、140~150°、150-160°.The unaffected side BF is higher than affected side at range of 150-160°.The VMO/VL rate of unaffected side was higher than that of affected side at angular speed of 60°/s and 180°/s. There was no significant difference at angular speed 120°/s. VMO of unaffected side was activated more early 6 second than that of affected side.
     The MVC average sEMG of group A and group B didn’t changed significantly preoperative, month 3 and month 6. Normalized the sEMG of isokinetic eccentric exercise, the VL average sEMG of group A was higher than that of group B at angular speed of 60°/s, as RF at angular speed of 60°/s and 120°/s. There was no difference on VMO,ST and BF. The VMO/VL rate of group A changed no significantly on preoperative, postoperative month 3 and month 6. The preoperative VMO/VL rate of group B was higher than month 3 at angular speed of 60°/s、120°/s、180°/s.And there was no significant difference between month 3 and month 6. In group B VMO was activated more early than VL on month 3 and month 6.
     4 Based on the BP neural network to establish the model of curative effect estimation of arthroscopic debridement for knee osteoarthritis. 86 cases of knee OA patient treated with arthroscopic debridement were divided into two groups, 66 cases were used to train the artificial neural network, 20 cases were to test the network. There was no difference between the real value and predictive value. The network had a good predictive function. There was no excessive curve fitting during network training.
     Conclusion:
     ①The patients of OA treated with arthroscopic debridement and release of lateral patellar retinaculum had a good curative effect, which provide a good condition to the rehabilitation.
     ②The patients of OA treated with arthroscopic debridement and release of lateral patellar retinaculum experience a quadriceps compensation period and recovery period.
     ③The extensional and flexional muscle peak torque,total work and average power of the patients of OA increased significantly after rehabilitation, specially quadriceps.The H/Q rate was in normal range preoperative, but decreased after operation.
     ④The VMO/VL rate and VMO and VL activation time changed remarkably after operation in group B, which showed that release of lateral patellar retinaculum can improve the coordination of VMO and VL.
     ⑤Rehabilitation after operation play an important role in increasing the muscle strength and the knee joint function.
     ⑥BP network had a strong simulated and predictive ability, which can extract the relation between input and output from the distortion and defect information. This study establish the curative effective estimation model of knee OA patients treated with arthroscopic debridment, which provide a effective method to judge the prognosis of knee OA treated with arthroscopic debridment.
引文
[1]Fulkerson J P, GosslingHR. Anatomy of the knee joint lateralretinac 2 ulum [J].Clin Orthop,1980,153:183~188.
    [2]Blauth M, Tillmann B. Stressing on the human femoro-patellar joint:. Components of averticaland horizon taltensile bracing system [J].Anat Embryol,1983,168:117~123.
    [3]Miller P R, Klein R M, Teitge RA. Medial dislocation of the patella [J]. Skeletal Radiol, 1991, 20(6):429~431.
    [4]Knight J L. Chondromalacia patellae: Review of anatomy, biomechanics and histology with mention of new technique documenting lateral tracking[J].OrthopRev,1978,8:129~134.
    [5]丁春水,萱芸等.髌外侧支持带的解剖观测及临床意义[J].中国临床解剖杂志,2004,2:171~173.
    [6]Grelsamer RP, Weinstein CH. Applied biomechanics of the patella [J]. Clin Orthop RelRes,2001,389:9-141.
    [7]Huberti HH, Hayes WC. Patellofemoral contact pressure [J]. Bone Joint Surg,1984,66A:715-7241.
    [8]亓建宏、陈世益等.髌骨倾斜导致髌股关节接触压力与面积改变[J].中国运动医学杂志, 1997;16(2)183~186
    [9]余存泰,徐中和等.应力导致关节软骨退变机制的实验研究[J].实用骨科杂志2004; 10 (5) 411~414.
    [10]Jackson RW.Arthroscopic surgery and a new classification system. Am J Knee Surg, 2004,11:52-4.
    [11]Edelson R, Burks RT, Bloebaum RD. Short-term effects of knee washout for osteoarthritis[J]. Am J Sports Med, 1995,23: 345-9.
    [12] Jackson RW, Kunkel SS, Taylor GT. Lateral retinacalar release for patellofemoral pain in the older patient [J]. Arthroscopy,1991, 7:283
    [13]Joseph AB, Andrew GC.Lateral release for patellofemoral arthritis . Arthroscopy,2002,4:399
    [14] Calpur OU, Tan L, Gurbu ZH, et al. Arthroscopic mediopatellar plicaetomy and lateral relinacular release in mechanical patellofemoral disorders [J]. Knee Surg Sports Traumatology Arthroscopy, 2002.10(3):177
    [15]Young MA, Cook JL, Purdam CR, et al. Eccentric decline squat protocol offers superior results at 12 months compared with traditional eccentric protocol for patellar tendinopathy in volleyball players[J].Br J Sports Med, 2005, 39(2):102-105.
    [16]Gunal I, Arac S, Sahinoglu K, et al. The innervation of vastus medialis obliquus[J]. Bone Joint Surg Br,1992, 74(4):624.
    [17]Thiranagama R. Nerve Supply of the human vastus medialis muscle. J Anat, 1990, 170:193-8.
    [18]Lawrence JH, DeLuca CJ. Myoelectric signal versus force relationship in different human muscle[J]. Appl Physiol,1983;54:1653-9.
    [19]Woods JJ, Bigland-Ritchie B. Linear and non-linear furface emg/force relationship in human muscles [J]. Am J Physical Med,1982,6:287-99.
    [20]Cerny K. Vastus medialis oblique/vastus lateralis muscle activity retios for selected exercise in persons with and without patellofemoral pain syndrome[J]. Phys Ther,1995,75(8):672-83.
    [21]Owings TM, Grabiner MD. Motor control of the vastus medialis oblique and vastus lateralis muscles is disrupted during eccentric contractions in subjects with patellofemoral pain[J]. Am J Sports Med,2002,30(4):483-7.
    [22]Neptune RR, Wright IC, van den Bogert AJ. The influence of orthotic devices and vastus medialis strength and timing on patellofemoral loads during running. [J] Clin Biomech(Bristol,Avon),2000,15(8):611-8.
    [23]Mohr KJ, Kvitne RS,Pink MM, et al. Electromyography of the quadriceps in patellofemoral pain with patellar subluxation [J]. Clin Orthop Relat Res, 2003,415:261-71.
    [24]Slemenda G, Brandt KD, Heilman DK, et al. [J] Ann Intem Med, 1997,127(2):97-104.
    [25]Hall KD. Differential strength decline in patient with OA of the knee [J]. Arthritis Care Res, 1993,6(2):89-98.
    [26] Messier SP, Loeser RF, Hoover JL, et al. Osteoarthritis of the knee:effects on gait, strength and flexibility. [J] Arch Phys Med Rehabil, 1992, 73:29-34.
    [27]吴毅,杨晓冰,李云霞,等.膝关节骨性关节炎等速肌力测试的研究[J].中国康复医学杂志,1995,10(4):145-148.
    [28]Hsich LF, Didenko B, RPT, et al. Isokinetic and isometric testing of knee musculature in patients with rheumatoid arthritis with mild knee involvement[J]. Arch Phys Med Rehabil, 1987,68:294-297.
    [29]Kannus P, Jarrinon M. Thigh muscle function after partial tear of the medial ligament compartment of the knee [J]. Med Sci Sports Exer, 1991,23:4-9.
    [30]Fisher NM, Pendergast DR, Gresham GE, et al. Muscle rehabilitation:its effects on muscular and functional performance of patients with knee osteoarthritis [J]. Arch Phys Med Rehabil, 1991,72:367-374.
    [31]倪国新。关节制动对韧带的影响[J].国外医学物理医学与康复学分册,1997,1:6-9.
    [32] Hall KD. Differential strength decline in patient with OA of the knee. [J] Arthritis Care Res, 1993,6(2):89-98.
    [33]Radosevich PM, Lacy DB, Brown LL, et al. Effects of low and high intensity exercise on plasma and cerebrospinal fluid ir-bete-endorphin, ACTH, cortisol, horepinephrine and glucose in the conscious dog [J]. Brain Research, 1989,498:89-98.
    [34]Akeson WH, Garfin S, Amiel D, et al. Para-articular connective tissue in Osteoarthritis[J]. Seminars in Arthritis and Rheumatism,1989,4:Supp12,41-50.
    [35]Chamberlain MA, Care G, Harfield B. Physiotherapy in osteoarthritis of the knee. A controlled trial of hospital vs home exercises [J]. Int Rehabil Med, 1982,4:101-106.
    [36]孙启良.股四头肌等长练习治疗膝关节骨性关节炎[J].中国康复医学杂志,1989,4(2):22-23.
    [37]孙启良.股四头肌等张练习治疗膝关节骨性关节炎[J].中国康复医学杂志,1993,8(1):14-16.
    [38]Chamberlain MA, Care G, Harfield B. Physiotherapy in osteoarthritis of the knee. A controlled trial of hospital vs home exercises [J]. Int Rehabil Med, 1982,4:101-106.
    [39]罔西哲夫.股四头肌肌力增强的方法论[J].国外医学物理医学与康复医学分册,1992,12(3):127-128.
    [40]Marks R, Quinney HA, Wessel J. Proprioceptive sensibility in women with normal and Osteoarthritis knee joints [J]. Clin Rheuatol, 1993,12(3):170-175.
    [41] Fisher NM, Pendergast DR, Gresham GE, et al. Muscle rehabilitation:its effects on muscular and functional performance of patients with knee osteoarthritis[J]. Arch Phys Med Rehabil, 1991,72:367-374.
    [42]Thomas L. Sczepanski. Effect of Contraction Type, Angular Velocity, and Arc of Motion on VMO:VL EMG Tatio. [J] JOSPT( Journal of Orthepedic Sports Physical Therapy),1991, 14(6): 256~262.
    [43]曲绵域.实用运动医学(修订本)(M).人民体育出版社.北京,1982,475.
    [44]杨静宜,王瑞元,熊开宇,等.股四头肌等速向心收缩肌电图测定与分析[J].北京体育大学学报,1995,12(4):28~34.
    [45] Chi CL, Street WN, Wolberg WH. Application of artificial neural network-based survival analysis on two breast cancer datasets [J]. AMIA Annu Symp Proc,2007 ,11:130-134.
    [46] Bassi P, Sacco E, De Marco V,et al. Prognostic accuracy of an artificial neural network in patients undergoing radical cystectomy for bladder cancer: a comparison with logistic regression analysis[J].BJU Int, 2007 ,99(5):1007-1012.
    [47] Scott JA, Aziz K, Yasuda T, et al. Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks[J]. Coron Artery Dis, 2004,15(7):427-434.
    [48]王阿明,刘慧,张迎春等.小波神经网络模型在肺癌中的应用研究[J].徐州医学院学报. 2007,27(2):78~81.
    [49]查青林,何羿婷,闫小萍等.基于神经网络分析方法探索类风湿关节炎证病信息对疗效的预测作用[J],中西医结合学报,2007,1(5)32~38.
    [50]易静,杜昌廷,王润华等.弹性BP神经网络在结核病发病率预报中的应用[J].现代预防医学;2007,19(34)3699~3701.
    [51]王玮,许伟,郑亚军等.基于BP神经网络的围产儿出生缺陷患病率预测[J].中华流行病学杂志,2007,5(28),507~509.
    [52]Ogilvie-Harris D.J,Fitsialos DP. Arthroscopic management of thedegenerative knee[ J].Arthroscopy, 1991, 7( 2): 151-157.
    [53]Hanvin SE Arthroscopic debridement for osteoarthritis of the kneepredictors of patient satisfaction[ J]. Arthroscopy,1999,15( 2): 142-146.
    [54]Baumgaermer MR, Cannon WD Jr ,Vittori JM,Schmidt ES,Maurer RC. Arthroscopic debridement of the arthritic knee[J].Clin Orthop Relat Res,1990,(253): 197-202.
    [55]Aaron RK, Skolnick AH, Reinert SE,et al. Arthroscopic debridement for osteoarthritis of the knee. [J] Bone Joint Surg Am. 2006 ,88(5):936-943.
    [56]Spahn G, Mückley T, Kahl E,et al. Factors affecting the outcome of arthroscopyin medial-compartment osteoarthritis of the knee[J]. Arthroscopy, 2006 , 22 (11): 1233-1240.
    [57]Dervin GF, Stiell IG, Rody K. Effect of arthroscopic débridement for osteoarthritis of the knee on health-related quality of life [J].Bone Joint Surg Am, 2003 ,85-A(1):10-19.
    [58]Friedmen MJ, Berasi CC,Fox JM, et al. Preliminary results with abrasion arthroplsty In the osteoarthritis knee [J]. Clin Orthop, 1994,182:200-206.
    [1]American Pain Society. Guidelines for the Management of Pain in Osteoarthritis, Rheumatoid Arthritis and Juvenile Chronic Arthritis. Glenview, I11: American Pain Society, 2002; 113:195.
    [2]Vane J, Botting J. Selective COX-2 inhibitor spharmacology, Clinical effects and therapeutic potential..Kluwer Academic Publishers and William Havery Press,1997,1-18.
    [3]Ferrai JG, Wallace JL, Mcknighe W, et al. Induction of cyclooxygenase -1and 2 in threats stomach during end toxemia: role in resistance to damage [J]. Gastvoenterol,1997,113:195.
    [4]Altman RD, IAP Study Group. Buprofen, acetaminophen and placebo in osteoarthritis of the knee: a six-day double-blind study Abstract [J]. Arthritis Rheum,1999,42(suppl 9): 404.
    [5]陈俊辉,陈韧,孙瑛,等.非甾体抗炎药的胃肠副作用4417例临床分析.中华风湿病学杂志,2001,5(3):194-196.
    [6]孙忠实,朱珠.新一代非甾体类镇痛消炎药-罗非昔布.世界药品信息,2001,2:681.
    [7] Lanza FL, and the Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. Aguidelin for the treatment and prevention of NSAID-induced ulcers. Am Gastroenterol,1998,93:2037-2046.
    [8]Bellamy T, Felson Reva C, Lawrence Paul A, et al. Osteoarthritis: New Insights. Ann Intern Med, 2000,133(8):635-646.
    [9]Duc PA, Yudoh K, Masuko K, et al. Development and characteristics of pannus-like soft tissue in osteoarthritic articular surface in rat osteoarthritis model.[J] Clin Exp Rheumatol. 2008,26(4):589-595.
    [10]Sakao K, Takahashi KA, Mazda O, et al. Enhanced expression of interleukin-6,matrix metalloproteinase-13, and receptor activator of NF-kappaB ligand in cells derived from osteoarthritic subchondral bone [J]. Orthop Sci. 2008,13(3):202-210.
    [11]Sadowski T, Steinmeyer J. Effects of non-steroidalantiinflammatory drugs and dexamethasone on the activity and expression of matrix metalloproteinase-1, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 by bovine articular chondrocytes[J]. Osteoarthritis Cartilage. 2001,9(5):407-415.
    [12]Rosa SC, Judas F, Lopes MC, et al. Nitric oxide synthase isoforms and NF-kappaB activity in normal and osteoarthritic human chondrocytes: Regulation by inducible nitric oxide[J]. Nitric Oxide. 2008,13(3):202-210.
    [13]Vaillancourt F, Morquette B, Shi Q, et al. Differential regulation of cyclooxygenase-2 and inducible nitric oxide synthase by 4-hydroxynonenal in human osteoarthritic chondrocytes through ATF-2/CREB-1 transactivation and concomitant inhibition of NF-kappaB signaling cascade [J]. Cell Biochem. 2007,100(5):1217-1231.
    [14]McAlindon TE, LaValley MP, Gulin JP, et al. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis [J]. AMA. 2000, 283(11):1469-1475.
    [15]Tiku ML,Shah R,Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation.Possible role in cartilage aging and the pathogenesis of osteoarthritis [J]. Biol Chem, 2000,30;275(26):69-76.
    [16]Scherak O,Kolarz G,Schodl G,et al. High dosage vitamin E therapy in patients with actived arthrosis. Z Rheumatol, 1990, 49(6):369-373.
    [17]Pavelka K,Gatterova J, Olejarova M, et al. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blindstudy. [J]Arch Intern Med, 2002,162 (18): 2113-2123.
    [18]Reginster JY, Bruyere O, Neuprez A. Current role of glucosamine in the treatment of osteoarthritis. [J] Rheumatology (Oxford), 2007, 46(5):731-5.
    [19]Reginster JY. The efficacy of glucosamine sulfate in osteoarthritis: financial and nonfinancial conflict of interest. [J] Arthritis Rheum, 200l, 56(7):2105-10.
    [20]Uitterlinden EJ, Koevoet JL, Verkoelen CF, et al. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants [J]. BMC Musculoskelet Disord, 2008, 9(1):120.
    [21]Tang T, Muneta T, Ju YJ, et al. Serum keratan sulfate transiently increases in the early stage of osteoarthritis during strenuous running of rats: protective effect of intraarticular hyaluronan injection[J]. Arthritis Res Ther, 2008, 10(1):R13.
    [22]Helfet AJ. Letter: Considerations in the arrest of osteoarthritis of the hip and knee. S Afr Med [J]. 1993, 47(41):1929.
    [23]Holzmann J, Brandl N, Zemann A, et al. Assorted effects of TGFbeta and chondroitinsulfate on p38 and ERK1/2 activation levels in human articular chondrocytes stimulated with LPS. [J] Osteoarthritis Cartilage, 2006, 14(6): 519-5 25 .
    [24]Ronca F, Palmieri L, Panicucci P, et al. Anti-inflammatory activity of chondroitin sulfate. [J]Osteoarthritis Cartilage, 1998,6(A)14-21.
    [25]Bucsi L, Poor G. Efficacy and tolerability of oral chondroitin sulfate as a symptomatic slow-acting during for osteoarthritis in the treatment of knee osteoarthritis. [J]Osteoarthritis Cartilage, 1998,6(A):31-36.
    [26]Abramison SB, Amin A. Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. [J] Rheumatol, 2002,41:972-980.
    [27]Attur MG,Dave M,Cipolletta C, et al. Reversal of autocrine and paracrine effect of interleukin-1(IL-1) in human arthritis by typeⅡIL-1 decoy recptor. Potential for pharmacological intervention [J]. Biol Chem, 2000,275:40370-40315.
    [28]RuzickováS, Senolt L, GatterováJ, et al. The Lack of Correlation between the Increased Frequency of Allele IL-1RN*2 of Interleukin-1 Receptor Antagonist Gene in Czech Patients with Knee Osteoarthritis and the Markers of Cartilage Degradation. [J] Folia Biol (Praha), 2008,54(4):115-120.
    [29]Boileau C, Tat SK, Pelletier JP .Diacerein inhibits the synthesis of resorptive enzymes and reduces osteoclastic differentiation/survival in osteoarthritic subchondral bone: a possible mechanism for a protective effect against subchondral bone remodeling [J]. Arthritis Res Ther,2008,10(3):R71.
    [30]Honda K, Ohno S, Tanimoto K.The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes [J]. Eur J Cell Biol. 2000,79(9):601-609.
    [31]Bellometti S, Richelmi P, Tassoni T. Production of matrix metalloproteinases and their inhibitors in osteoarthritic patients undergoing mud bath therapy. [J] Int J Clin Pharmacol Res,2005,25(2):77-94.
    [32]Yang KG, Raijmakers NJ, Van Arkel ER, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. [J] Osteoarthritis Cartilage,2008,16(4):498-505.
    [33]Brenner SS, Klotz U, Alscher DM, et al. Osteoarthritis of the knee--clinical assessments and inflammatory markers[J].OsteoarthritisCartilage, 2004, 12(6): 469-75.
    [34]Pujol JP, Chadjichristos C, Legendre F, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism [J]. Connect Tissue Res, 2008,49(3):293-297.
    [35]Chowdhury TT, Arghandawi S, Brand J, et al. Dynamic compression counteracts IL-1beta induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs [J]. Arthritis Res Ther, 2008, 10 (2): 35-39.
    [36]Gordon A, Kiss-Toth E, Stockley I, et al. Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty [J]. Arthritis Rheum,2008,58(10):3157-3165.
    [37]Vuolteenaho K, Moilanen T, H?m?l?inen M, et al.Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage. Role of endogenous IL-1 inhibitors. [J] Scand J Rheumatol,2003,32(1):19-24.
    [38]Kobayashi M, Squires GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. [J] Arthritis Rheum, 2005,52(1):128-135.
    [39]Cortial D, Gouttenoire J, Rousseau CF, et al. Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis[J]. Osteoarthritis Cartilage, 2006,14(7):631-640.
    [40]Murata M, Trahan C, Hirahashi J, et al.Intracellular interleukin-1 receptor antagonist in osteoarthritis chondrocytes [J]. Clin Orthop Relat Res, 2003,(409):285-295.
    [41]Hyc A, Osiecka-Iwan A, Jó?wiak J, et al. The morphology and selected biological properties of articular cartilage [J]. Ortop Traumatol Rehabil, 2001 ,3(2):151-162.
    [42]Cooper WO,Fava RA, Gates CA,et al. Acceleration of onset of collagen-induced arthritis by intraarticular injection of tumor necrosis factor or transforming growth factor-beta [J]. Clin Exp Immunol, 1992,89(2):244-250.
    [43]Botha-Scheepers S, Watt I, Slagboom, et al. Innate production of tumour necrosis factor alpha and interleukin 10 is associated with radiological progression of knee osteoarthritis[J]. Ann Rheum Dis, 2008,67(8):1165-1169.
    [44]Grimsholm O, Rantap??-Dahlqvist S, Dalén T,et al. BDNF in RA: Downregulated in plasma following anti-TNF treatment but no correlation with inflammatory parameters [J]. Clin Rheumatol, 2008,27(10):1289-1297.
    [45]Radons J, Falk W, Schubert TE. Interleukin-10 does not affect IL-1-induced interleukin-6 and metalloproteinase production in human chondrosarcoma cells, SW1353 [J]. Int J Mol Med, 2006,17(2):377-383.
    [46]Pola E, Papaleo P, Pola R, Gaetani E, et al. Interleukin-6 gene polymorphism and risk of osteoarthritis of the hip: a case-control study [J]. Osteoarthritis Cartilage, 2005,13(11):1025-1028.
    [47]Klimiuk PA, Sierakowski S, Latosiewicz R, et al. Interleukin-6, soluble interleukin-2 receptor and soluble interleukin-6 receptor in the sera of patients with different histological patterns of rheumatoid synovitis [J]. Clin Exp Rheumatol, 2003 ,21(1):63-69.
    [48]Wang CT, Lin YT, Chiang BL, et al. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. [J] Osteoarthritis Cartilage, 2006, 14(12):1237-1247.
    [49]Fermor B, Christensen SE, Youn I, Oxygen, nitric oxide and articular cartilage. [J] Eur Cell Mater, 2007,13:56-65.
    [50]Pelletier JP, Caron J, Evans CH, et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy [J].Arthritis Rheum,1997,40:1012-1019.
    [51]Wei X, Messner K. Age- and injury-dependent eoncentration of transforming growth factor-beta 1 and proteoglycan fragment in rabbit knee joint fluid [J]. Osteoarthritis Cartilage, 1998,6:50-65.
    [52]Blaney Davidson EN, Vitters EL, Van der Kraan PM, et al. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation[J]. Ann Rheum Dis. 2006 ,65(11):1414-1421.
    [53]Ishiguro N,Oguchi T. Differential stimulation of three forms of hyaluronan synthase by TGF-beta, IL-1beta, and TNF-alpha[J]. Connect Tissue Res, 2004,45(4-5):197-205.
    [54]Zhai G, Rivadeneira F, Houwing-Duistermaat JJ, Insulin-like growth factor I gene promoter polymorphism, collagen type II alpha1 (COL2A1) gene, and the prevalence of radiographic osteoarthritis: the Rotterdam Study[J]. Ann Rheum Dis,2004,63(5):544-548.
    [55]Olney RC, Tsuchiya K, Wilson DM,et al. Chondrocytes from osteoarthritic cartilage have increased expression of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and -5, but not IGF-II or IGFBP-4. J Clin Endocrinol Metab, 1996,81(3):1096-1103.
    [56]Evans CH. Novel biological approaches to the intra-articular treatment of osteoarthritis [J]. Bio Drugs, 2005;19(6):355-362.
    [57]Pelletier JP, Dibatista JA, Routhley P, et al. In vivo suppression of early experiment osteoarthritis by interleukin-1 receptor antagonist using gene therapy[J]. Arthritis Rheum,1997,40:1012-1019.
    [58]Arai Y, Kubo T, Fushiki S, et al. Gene delivery to human chondrocytes by an adeno associated virus vector[J]. Rheumatol, 2000,27(4):979-982.
    [59]Tomita T, Iwamoto M, Jikko A, et al. In vivo direct gene transfer into articular cartilage by intraarticular injection mediated by HVJ(Sendai virus) and liposomes[J]. Arthritis Rheum,1997,40:901-906.
    [60]Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology[J]. Biorheology, 2002;39(1-2):237-246.
    [61]Pelinkovic D, Horas U, Engelhard M, et al. Gene therapy for cartilage repair [J]. Orthop Ihre Grenzgeb,2002,140(2):153-159.
    [62]Iannone F,Lapadula G. The pathophysiology of osteoarthritis. [J] Aging Clin Exp Res,2003,15:364-372.
    [63]Towel CA, Hung HH, Bonassar LJ, et al. Detection of inteleukin-1 in the cartilage of patient swith osteoarthritis: a posibleautocrine/paracrine role in pathogenesis[J]. Osteoarthritis Cartilage, 1997, 5:293-300.
    [64]Evans CH, Gouze JN, Gouze E, et al. Osteoarthritis gene therapy[J]. Gene Ther, 2004, 11:379-389.
    [65]Evans CH, Robbins PD. Potential treatment of osteoarthritis gene therapy [J]. Rheum Dis Clin North Am,1999, 25:333-339.
    [66]Burks RT. Arthroscopy and degenerative arthritis of the knee a review of the literature[J]. Arthroscopy, 1990, 6:43-47.
    [67]Zhang YF, Wang LD, Wang FS. Diagnosis and treatment of knee osteoarthritis under arthroscope [J], China Journal of Endoscopy, 2000,65:46-47.
    [68] Doherty M, Richards N, Hornby J, Powell R. Relationship between synovial fluid C3 degradation products and local joint inflammation in rheumatoid arthritis, osteoarthritis and crystal associated arthropathy.Ann Rheum Dis,1998,47:190-197.
    [69]Livesley PJ. Articular debridement versus washout for degeneration of the medial femoral condyle[J]. Bone Joint Surg Br, 1996,78(5):854.
    [70]Edelson R, Burks RT, Bloebaum RD. Short-term effects of knee washout for osteoarthritis[J]. Am J Sports Med, 1995,23(3):345-349.
    [71] Jackson R, Burks R, Bloebaum RD. Results of partial arthroscopic meniscectomy in patients over 40years of age.J Bone Joint Surg Br,1992,64:481-485.
    [72]Gibson J, White M, Chapman V, Strachan R. Arthroscopic lavage and debridement for osteoarthritis of the knee.J Bone Joint Surg Br,1992,74:534-537.
    [73]Puddu G, Cipolla M, Cerullo G, Scala A. Arthroscopic treatment of the flexed arthritic knee in active middle-aged patients. Knee Surg Sports Traumatol Arthrosc,1994,2:73-75.
    [74]Merchant E, Galindo E. Arhtroscopic-guided surgery versus nonoperative treatment for limited degenerative osteoarthritis of the femorotibial joint in patients over 50 years of age: a prospective study. Arthroscopy,1993,9:663-667.
    [75]Wouters E,Bassett FI,Hardaker W, Garrett WJ. An algorithm for arthroscopy in the over 50 year age group.Am J Sports Med.1992,20:141-145.
    [76]Yang S, Nisonson B. Arthroscopic surgery of the knee in the geriatric patient. Clin Orthop, 1995,20:50-58.
    [77]Bonamo J, Kessler K, Noah J. Arthroscopic meniscetomy in patients over the age of 40. Am J Sports Med. 1998,23:422-428.
    [78]Bert J, Maschka K. The arthroscopic treatment of unicompartmental gonarthrosis: a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone. Arthroscopy,1998,5:25-32.
    [79]Steadman J, Rodlkey W, Singleton S, Briggs K. Microfracture technique for full-thickness chondral defects:technique and clinical results. Op Tech Orthop,1997,7:300-304.
    [80]Ogilvie-Harris D.J,Fitsialos DP. Arthroscopic management of thedegenerative knee[ J].Arthroscopy, 1991, 7( 2): 151-157.
    [81]Hanvin SE Arthroscopic debridement for osteoarthritis of the kneepredictors of patient satisfaction[ J]. Arthroscopy,1999, 15( 2): 142-146.
    [82]Baumgaermer MR, Cannon WD Jr ,Vittori JM, et al. Arthroscopic debridement of the arthritic knee[J].Clin Orthop Relat Res.1990,(253): 197- 202.
    [83]Aaron RK, Skolnick AH, Reinert SE, et al. Arthroscopic debridement for osteoarthritis of the knee[J]. Bone Joint Surg Am, 2006,88(5):936-943.
    [84]Spahn G, Mückley T, Kahl E, et al. Factors affecting the outcome of arthroscopy in medial-compartment osteoarthritis of the knee [J]. Arthroscopy ,2006 ,22(11):1233-40.
    [85]Dervin GF, Stiell IG, Rody K. Effect of arthroscopic débridement for osteoarthritis of the knee on health-related quality of life [J]. Bone Joint Surg Am, 2003,85-A(1):10-19.
    [86]Friedmen MJ, Berasi CC, Fox JM, et al. Preliminary results with abrasion arthroplsty In the osteoarthritis knee [J]. Clin Orthop, 1994,182:200-206.
    [87]Tunks E. Tender points infibromyalgia [J].Pain,1988,(34):11~19.
    [88]Magnusson T. Self_assessment of pain and discomfort in patients with temporomandibular disorders: a comparison of fice different scales with spect to their precision and sensitivity as well as their capacity to register memory of pain and discomfort [J]. Journal of Oral Rehab, 1995,(22):549~556.
    [89]Sharma L, Hurwitz DE, Thonar EJ.Knee adduction moment,serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis [J]. Arthritis Rheum, 1998, 41(7):1233-1240.
    [90]Baliunas AJ, Hurwitz DE, Ryals AB. Increased knee joint loads during walking are present in subjects with knee osteoarthritis [J]. Osteoarthritis Cartilage, 2002,10(7):573-579.
    [91]Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoarthritis: anapplication of principal component analysis [J].GaitPosture,2007,25(1):86-93.
    [92] Lewek MD, Rudolph KS, Snyder-Mackler L.Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis [J]. Osteoarthritis Cartilage, 2004, 12(9):745-751.
    [93]Berth A, Urbach D, Becker R. Gait anlysis in patients with osteoarthritis of theknee before and after total knee replacement[J].Zentralbl Chir,2002,127(10):868-872.
    [94]Matsuno H, Kadowaki KM, Tsuji H. Generation II Kneebracin for severe medial compartment osteoarthritis of the knee[J].Phy Med Rehabil,1997,78(7):745-749.
    [95]刘堂友.物理治疗膝关节骨关节炎98例[J].中国康复,2000,15 (1):29.
    [96]迟丹妮.运动疗法与中频电透药治疗膝关节骨关节炎[J].中国临床康复,2004,8(2):4038.
    [97]顾晓美,徐小梅,樊华,等.等速肌力训练配合氙光低周波治疗膝骨性关节炎的近期效果[J].中国临床康复,2004,820(29)6280.
    [98]Fisher NM, Pendergast DR, Gresham GE, et al. Muscle rehabilitation its effects on muscular and dunctional performance of patients with knee osteoarthritis. [J].Arch Phys Med Rehabil, 2001,72:637.
    [99]倪国新.肌力训练在膝骨关节炎治疗中的应用[J].中国康复医学杂志,1999,14(6):280-282.
    [100]Tohyama H, Yasuda K, Kaneda K. Treatment of osteoarthritis of the knee with heel wedges[J].Int Orthop,1991,15:131-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700