新型SCR催化剂的制备、成型及其脱硝中试应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的发展和人民生活水平的提高,日益恶化的环境已经引起了全世界的关注。氮氧化物(NOx)和二恶英作为两个主要的污染物,对人类和环境有着巨大的危害。选择性催化氧化/还原技术(SCR)是最有效的减排控制技术。当前,低温高效SCR的研发已经成为了国际研究的热点。
     在本研究小组成功研究出具有自主产权的低温SCR催化剂基础上,本论文主要研究此类催化剂的同时脱硝脱氯苯性能以及该催化剂的成型、中试应用。主要研究内容包括:
     (1)用溶胶凝胶法制得Mn-Ce/Ti-CNTs催化剂,其涂覆在铝片上之后显示了很好的同时脱除CB和NOx的性能。在250度时,CB和NOx脱除效率可以达到95%以上。
     (2)对实验室制备出来的SCR催化剂进行了板状以及蜂窝状的成型实验。当有机黏土、水泥和硅酸钠之间比例为最佳时,板状催化剂具有较高的强度、较好的抗水性以及优良的NOx脱除效果。各种添加剂以一定的比例与我们的催化剂混合,挤出成型,制得具有较高机械强度以及较好SCR性能的蜂窝状催化剂。
     (3)对实验室制备出来的SCR催化剂进行脱硝中试及应用。结果显示:当烟气速率远远超过6m/s的时候,催化剂的脱硝效率可以达到74%,而当烟气的速率降低至4-6m/s时,脱硝效率则可以达到85%。同时,我们还成功的制备出了较为满意的新型的板状催化剂,该板式催化剂的脱硝测试过程正在进行中。
With the development of national economy and the improvement of living standards, the deteriorating environment has attracted world wide attention. Nitrogen oxides and dioxins are the two most important pollutants. They have a great deal of harm to humans and the environment. Selective catalytic oxidation/reduction technology is the most effective kind of processing to reduce their emissions. Now, the research and development of high efficiency catalyst for low temperature SCR has been a top priority.
     The research team has successfully developed a low temperature SCR catalyst with independent property rights. For the studied catalysts, the CB and NOx removal efficiencies have been studied. The forming.testing and application of the catalyst also have been studied.
     (1) We coat Mn-Ce/Ti-CNTs catalyst prepared by sol-gel on the aluminum plates. They have displayed the outstanding performance of simultaneous removal of CB and NOX. The CB and NOX removal efficiencies are 95% or more at 250℃.
     (2) For the SCR catalyst prepared by sol-gel in the laboratory, the plate, honeycomb molding experiments have been conducted. When the ratio among binder, cement and sodium silicate added to the catalyst is the best, the catalyst has high mechanical strength, anti-water conditions and excellent de-NOx efficiency. Various additives are mixed to our catalyst by a certain proportion, then, we obtain the honeycomb catalyst having high mechanical strength and good SCR performance by extrusion molding.
     (3) For the SCR catalyst prepared by sol-gel in the laboratory, the denitrification testing and pilot application have been conducted. When the velocity of flue gas is far more than 6m/s, NOx removal efficiencies are 74%. When the velocity of flue gas is 4-6m/s, NOx removal efficiencies are 85%. We also successfully prepared a new kind of the plate catalysts. For this kind of plate catalysts, the testing of NOx removal efficiencies are under way.
引文
[1]G Mckay, Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration:review. Chem. Eng. J.,2002,86:343.
    [2]王顺珍,陈震阳。二噁英的毒性与危害.中国公共卫生,1995,11(7):54-57
    [3]孙成均。二嗯英类化合物的污染、毒性及分析方法.现代预防医学,2000,27(1):37-41
    [4]蒋可,二恶英毒性及污染,中国环保产业,1999,10:21.
    [5]H. Fiedler, National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere,2007,67:S96-S108
    [6]H. Fiedler, Sources of PCDD/PCDF and impact on the environment. Chemosphere 1996, 32:55-64
    [7]United States Environmental Protection Agency(USEPA), Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)and Related Compounds. EPA/600/Bp-92/001 c Estimation Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb, Office of Research and Development,Washington.DC,1994a.
    [8]刘晓文.日本二恶英类污染防治[J].环境研究与监测,2006,2:19.
    [9]田洪海,环境中的二恶英[J].岛津分析通讯.1999.(1):7-13金浩.
    [10]Dong Yang, Junhua Li, Mingfen Wen, Chongli Song. Selective catalytic reduction of NOx With methane over indium supported on tungstated zirconia[J]. Catalysis Communication, 2007,8:2243-2247.
    [11]Ha Heon Phil, Maddigapu Pratap Reddy, Pullur Anil Kumar. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOX at low temperatures [J]. Applied Catalysis B, Environmental 2008,78:301-308.
    [12]邓雅莉.中国燃煤电厂SCR技术的应用现状和发展[J].工业安全和环保,2008,34:14~15.
    [13]周涛,刘少光,唐明早,等.选择性催化还原脱硝催化剂研究进展[J].硅酸盐学报.2009,2:317~323.
    [14]Motonobu Kobayashi, Ryoji Kuma, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Applied Catalysis B, Environmental,2005,60:173-179.
    [15]R.Willi, M. Maciejewski, et al. Selective Reduction of NO by NH3 over Chromic on Titanium catalyst Investigation and Modeling of the Kinetic Behavior[J]. Journal of catalyst,1997, 166:356-367
    [16]李锋,金保升.以纳米TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[D],东南大学博士论文.2006,8.
    [17]Guido Busca, Luca Lietti, Giallguido Rmais and Francesco Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:a review[J], Applied catalysis B:Environmenat.1998.18:1-36
    [18]B.R. Stanmore, The formation of dioxins in combustion systems. Comb. Flame,2004,136: 398-427
    [19]A. Kishimoto, T. Oka, K. Yoshida, J. Nakanishi, Cost effectiveness of reducing dioxin emissions from municipal solid waste incinerators in Japan. Environ. Sci. Technol.2001,35: 2861-2866
    [20]R. McDowall, C. Boyle, B. Graham,2004. Auckland, New Zealand.
    [21]K. E. Kummling, D. J. Gray, Power J. P., S. E. Woodland. In:6th International HCH and Pesticides Forum.20-22 March 2001, Poznan, Poland.
    [22]A. S. C. Chen, A. R. Gavaskar, B. C. Alleman, A. Massa, D. Timberlake, E. H. Drescher. J. Hazard. Mater.56 (1997) 287.
    [23]S. Taniguchi, A. Murakami, M. Hosomi, A. Miyamura, R. Uchida. Chemosphere 34 (1997) 1631.
    [24]S. Taniguchi, A. Miyamura, A. Ebihara, M. Hosomi, A. Murakami. Chemosphere 37 (1998) 2315.
    [25]K. Hatakeda, Y. Ikushima, O. Sato, T. Aizawa, N. Saito. Chem. Eng. Sci.54 (1999) 3079.
    [26]S. Lee, K. C. Park, T. Mahiko, K. Sekizawa, Y. Izumizaki, H. Tomiyasu. J. Supercrit. Fluids 39 (2006)54.
    [27]X. Liu, G. Yu. Chemosphere 6 (2006) 228.
    [28]K. Miyoshi, T. Nishio, A. Yasuhara, M. Morita, T. Shiba. Chemosphere 55 (2004) 1439.
    [29]M. Wirtz, J. Klucik, M. J. Rivera. J. Am. Chem. Soc.122 (2000) 1047.
    [30]A. Matsunaga, A. Yasuhara. Environ. Sci. Technol.37 (2003) 3435.
    [31]H. Yang, Y. Cho, H. Eun, E. Kim. Chem. Eng. Sci.68 (2007).
    [32]Y. Nomura, S. Nakai, M. Hosomi. Environ. Sci. Technol.39 (2005) 3799.
    [33]M. Ishida, R. Shiji, P. Nie. N. Nakamura, S. Sakai. Chemosphere 37 (1998) 2299.
    [34]J. Stach, V. Pekarek, R. EndrSt, J. Hetflejg. Chemosphere 39 (1999) 2391.
    [35]J. Stach, V. Pekarek, R. Grabic, M. Lojkasek, X. Pacakova. Chemosphere 41 (2000) 1881.
    [36]L. Lundin, S. Marklund. Environ. Sci. Technol.39 (2005) 3871.
    [37]Y. Misaka, K. Yamanaka, K. Takeuchi, K. Sawabe, K. Shobatake. Chemosphere 64 (2006) 619.
    [38]E. A. Betterton, N. Hollan, R. G. Arnold, S. Gogosha. K. McKim, Z. Liu. Environ. Sci. Technol.34 (2000) 1229.
    [39]C. Hu, B. Yue, T. Yamase. Appl. Catal. A:Gen.194-195 (2000) 99.
    [40]H. Hung, M. R. Hoffmann. Environ. Sci. Technol.32 (1998) 3011.
    [41]J. Lin, Y. Ma. J. Hazard. Mater.66 (1999) 291.
    [42]B. Chang, C. Su, S. Yuan. Chemosphere 36 (1998) 2721.
    [43]T. Mills, B. Arnold, S. Sivakumaran, G. Northcott, I. Vogeler, B. Robinson, C. Norling, D. Leonil. J. Environ. Manage.79 (2006) 232.
    [44]R. Q. Long, R. T. Yang, J. Padin, A. Takahashi, T. Takahashi. Ind. Eng. Chem. Res.38 (1999) 2726.
    [45]K. Everaert, J. Baeyens. Waste Manag.24 (2004) 37.
    [46]K. Everaert, J. Baeyens, C. Creemers. J. Chem. Technol. Biotechnol.78 (2003) 213.
    [47]H. J. Fell, M. Tuczek. Chemosphere 37 (1998) 2327.
    [48]A. Brasseur, A. Gambin, A. Laudet, J. Marien, J.P. Pirard. Chemosphere 56 (2004) 745.
    [49]R. Q. Long, R.T. Yang. J. Am. Chem. Soc.123 (2001) 2058.
    [50]A. Bassetti, M. Bodini, M. Denega, R. Miglio, L. Pistone, W. Tirler. Organohalogen Compd. 40(1999)445.
    [51]S.C.Kim, S.H. Jeon, I.R. Jung, K.H. Kim, M.H. Kwon, J.H. Kim, J.H. Yi, S.J. Kim, J.C. You, D.H. Jung, Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators, Chemoshpere,2001,43:773-776
    [52]E. Guerriero, A. Guarnieri, S. Mosca, G. Rossetti, M. Rotatori, PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant, J. Hazard. Mater.2009,172:1498-1504
    [53]G. Ghiselli, W. F. Jardim, M.I. Litter, H. D. Mansilla. J. Photochem. Photobiol. A:Chem.167 (2004) 59.
    [54]H. Fallmann, T. Krutzler, R. Bauer, S. Malato, J. Blanco. Catal. Today 54 (1999) 309.
    [55]N. Daneshvar, D. Salari, A. R. Khataee. J. Photochem. Photobiol. A:Chem.157 (2003) 111.
    [56]P. Ciesla, P. Kocot, P. Mytych, Z. Stasicka. J. Mol. Catal. A Chem.224 (2004) 17.
    [57]B. Neppolian, H. Jung, H. Choi, J. H. Lee, J. W. Kang. Water Res.36 (2002) 4699.
    [58]A. Duran Moreno, B. A. Frontana-Uribe, Z. R. M. Ramirez. Water Sci. Technol.50 (2004) 83.
    [59]K. J. Friesen, M. M. Foga, M. D. Loewen. Environ. Sci. Technol.30 (1996) 2504.
    [60]A. D. Konstantinov, A. M. Johnston, B. J. Cox, J. R. Petrulis, M. T. Orzechowski. Environ. Sci. Technol.34 (2000) 143.
    [61]W. Choi, S. J. Hong, Y. S. Chang, Y. Cho. Environ. Sci. Technol.34 (2000) 4810.
    [62]J. Choi, W. Choi, B. J. Mhin. Environ. Sci. Technol.38 (2004) 2082.
    [63]T. Sako. T. Sugeta. Materia 39 (2000) 314.
    [64]H. Ballerstedt, A. Kraus, U. Lechner. Environ. Sci. Technol.31 (1997) 1749.
    [65]R-M. Wittich. Appl. Microbiol. Biotechnol.49 (1998) 489.
    [66]H. Katsumata, K. Matsuba, S. Kaneco, T. Suzuki, K. Ohta, Y. Yobiko. Chemosphere 63 (2006) 592.
    [67]G. M. Klecka, D. T. Gibson. Biotechnol. Biochem.180 (1979) 639.
    [68]R-M. Wittich. In:Wittich RM (ed) Biodegradation of dioxins and furans. Springer, Berlin, (1998)1-28.
    [69]R-M. Wittich. Appl. Microbiol. Biotechnol.49 (1998) 489.
    [70]Y. S. Chang. J. Mol. Microbiol. Biotechnol.15 (2008) 152.
    [71]J. A. Field. R. Sierra-Alvarez. Chemosphere 71 (2008) 1005.
    [72]A. Hiraishi. Microbes Environ.23 (2008) 1.
    [73]Proceedings of the 11th international symposium on dioxin. vol.1991,3:S48
    [74]Proceedings of the 11th international symposium on dioxin, vol.1991,3:86
    [75]W. L. Gore and associates.1999, Remedia Catalytic Filter System.
    [76]Remedia Catalytic Filter System, W.L. Gore and associates,1999
    [77]M. Plinke, R. Sassa, W. Mortimer, G. Brinckman, US Patent No.5,620,669 (1997)
    [78]R. Weber, M. Plinke, Z. Xu, M. Wilken, Destruction efficiency of catalytic filters for polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation-insight into destruction and adsorption behavior of semivolatile compound, App. Catal. B: Environ.2001,31:195-207
    [79]Parizek, T., Bebar, L., Stehlik, P., Persistent pollutants emission abatement in waste-to-energy systems. Clean Technologies and Environmental Policy Journal,2008,10 (2):147-153
    [80]L.C. Wang, W.J. Lee, P.J. Tsay, W.S. Lee, G.P. Chang-Chien, Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants, Chemosphere, 2003,50:1123
    [81]M.B. Chang, K.H. Chi, G.P. Chang-Chien, Evaluation of PCDD/F congener distributions in MW1 flue gas treated with SCR catalysts, Chemosphere,2004,55:1457-1467
    [82]M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa, O. Okada, Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin, Appl. Catal. B:Environ.2003,41:43-52
    [83]S. H. Zhang, J. W. The, H. M. Chein, L. Y. Hsu, K. H. Chi, M. B. Zhang, PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon. Environ. Sci. Technol.,2008,42:5727-5733
    [84]M. Goemans, P. Clarysse, J. Joanne's, P. De Clercq, S. Lenaerts, K. Matthys, K. Boels, Catalytic NOx reduction with simultaneous dioxin and furan oxidation Chemosphere, 2003,50:489-497
    [85]H.Boseh, F.Janssen.Formation and control of nitrogen oxides [J], Catal.Today 1988, 2:369-379.
    [86]贾双燕,路涛,李晓芸,等.选择性催化还原烟气脱硝技术及其在我国的应用研究[J].电力环境保护,2004,(1):19~21.
    [87]Moo Been Chang, Chin Fong Cheng. Low temperature SNCR process for NOX control [J]. The Science of the Total Environment,1997,198:73-78.
    [88]朱江涛,王晓晖,田正斌,等SNCR脱硝技术在大型煤粉炉中应用探讨[J].能源研究与信息,2006,22(1):18~21.
    [89]王钟,王颖.火电厂烟气脱硝技术探讨[J].吉林电力,2005,(6):1~5.
    [90]庞成勇,李玉平.用活性炭吸附法脱除氮氧化物的研究[J].能源环境保护,2006.20(6):38~41.
    [91]王敏,沈忠群.电子束法大气污染物治理技术研究[J].上海环境科学,1998,17(11):36~37.
    [92]Isabella Nova, Luca Lietti, Enrico Tronconi and Pio Forzatti, Dynmaics of SCR reaction over TiO2-supported vanadia-tungsta commercial catalyst[J], catalysis tody,2000,60:73-82
    [93]Ana Bhamaonde, Alessnadra Beretta, Pedro Avila and Enrico Tronconi An experimental and theoretical investigation of the behavior of a monolithic Ti-V-W-sepiolite catyalst in the reduction o NOx with NH3[J], Ind. Eng. Chem.Res.,196,35(8):2516-2521
    [94]J. Unsworth, O. Maaskant, P. Andersson, S. Marklund, Organohalogen Compd.,1999,40: 435-440
    [95]P Papaefthimiou, T Ioannides, X E Verykios, Combustion of non-halogenated volatileorganic compounds over group Ⅷ metal catalysts. Appl. Catal. B:Environ.,1997,13:175-184.
    [96]L Becker, H Forster, Oxidative decomposition of chlorobenzene catalyzed bypalladium-containing zeolite Y. J. Catal.,1997,170:200-203
    [97]R W van den Brink, R Louw, P Mulder, Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/y-Al2O3 catalyst. Appl. Catal. B:Environ., 1998,16:219-226
    [98]E M Cordi,J L Falconer,Oxidation of volatile organic compounds on A12O3, Pd/Al2O3. and PdO/Al2O3 catalysts. J. Catal.,1996,162:104-117
    [99]K Okumura, T Kobayashi, H Tanaka, M Niwa, Toluene combustion over palladiumsupported on various metal oxide supports. Appl. Catal. B:Environ.,2003,44:325-331
    [100]R W van den Brink, P Mulder, R Louw, Catalytic combustion of chlorobenzene onPt/y-Al2O3 in the presence of aliphatic hydrocarbons. Catal. Today,1999,54:101-106
    [101]S Scire, S Minico, C Crisafulli, Pt catalysts supported on H-type zeolites for the catalyticcombustion of chlorobenzene. Appl. Catal. B:Environ.,2003,45:117-125
    [102]M Okumura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada, Multi-componentnoble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B:Environ.,2003,41:43-52
    [103]R. Burch, D. J. Crittle, and M. J. Hayes, C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts, Catal. Today,1999,47:229
    [104]Au-Yeung,J., K. Chen, A. T.Bell, and I. Iglesia, J. Catal.1999,188:132
    [105]Burch, R., and Loader, P. K.., Investigation of Pt/Al2O3 and pd/Al2O3 catalysts for combustion of methane at low concentration, Catal., B,1994,5:149-164
    [106]Vincent de Jong, Mariusz K. Cieplik,Walter A. Reints, Francisco Fernandez-Reino, and Robert Louw, Journal of Catalysis,2002,211:355-365
    [107]S. Scire, S. Minico, C. Crisafulli, Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene, Appl. Catal. B,2003,45:117-125.
    [108]M. Taralunga, J. Mijoin, P. Magnoux, Catalytic destruction of chlorinated POPs-Catalytic oxidation of chlorobenzene over PtHFAU catalysts, Applied Catalysis B: Environmental.2005.60:163-171
    [109]M. Taralunga, J. Mijoin, P. Magnoux, Catalytic destruction of 1,2-dichlorobenzene over zeolites, Catalysis Communications,2006,7:115-121
    [110]J.-M. Giraudon, T.B. Nguyen, G. Leclercq, S. Siffert, J.-F. Lamonier, A. Aboukais, A. Vantomme, B.-L. Su. Catalysis Today 137 (2008) 379-384
    [111]J.-M. Giraudon, A. Elhachimi, G. Leclercq, Applied Catalysis B:Environmental 84 (2008) 251-261
    [112]Takayuki Komatsu, Ryo Ooshima, J. Japan Petroleum Institute,52(6) (2009) 332-340
    [113]K. Poplawski, J. Lichtenberger, F. J. Keil. K. Schnitzlein, M. D. Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over ABO(3)-type perovskites, Catal. Today,2000,62: 329
    [114]K. Everaert, J. Baeyens, Catalytic combustion of volatile organic compounds, J. Hazard. Mater. B,2004,109:113
    [115]E. Finocchio, G. Busca, M. Notaro, A review of catalytic processes for the destruction of PCDD and PCDF from waste gases, Appl. Catal. B 2006.62:12-20
    [116]G. Busca, M Baldi, C. Pistarino, J. M. Gallardo. Amores, V. Sanchez Escribano, E, Finocchio, G. Romezzano, F. Bregani, G. P. Toledo, Catal. Today,1999,54:525-533
    [117]L Jin, M A Abraham, Low-temperature catalytic oxidation of 1,4-dichlorobenzene. Ind. Eng. Chem. Res.,1991,30:89-95
    [118]S. Krishnamoorthy, J.A. Rivas, M.D. Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides, J. Catal.2000,193:264-272.
    [119]J. Lichtenberger and M. D. Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts, Journal of Catalysis,2004,223:296-308
    [120]G. Busca, L. Liett.G. Ramis. F. Berti. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J],Appl. Catal. B 1998,18:1-36
    [121]Y. Liu, M. F. Luo, Z. B Wei, Q. Xin, P. L. Ying, C. Li, Appl. Catal. B:Environ.29 (2001) 61.
    [122]X. Y. Wang, Q. Kang, D. Li, Appl. Catal. B:Environ.86 (2009) 166.
    [123]V. H. Vu, J. Belkouch, A. Ould-Dris, B. Taouk, J. Hazard. Mater.169 (2009) 758.
    [124]D. Q. Yu, Y. Liu, Z. B. Wu, Catal. Comm.11 (2010) 788.
    [125]M. Wu, X. Y. Wang, Q. G. Dai, D. Li. Catal. Comm.11 (2010) 1022.
    [126]K. Poplawski, J. Lichtenberger, F. J. Keil, K. Schnitzlein, M. D. Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskitesCatal. Today,2000,62: 329-336
    [127]G.Qi, R.T Yang.R. Chang. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[j], Appl. Catal. B 2004, 51:93-106
    [128]G. Qi,R.T. Yang. Performance and kinectics study for low-temperature SCR of NO with NHi over MnOx-CeO2 catalyst[j],J. Catal.2003.217:434-441
    [129]黄竹青.关于大型燃煤电站锅炉选择性催化还原脱硝技术的探讨[J],能源与环境2005,27:36-39.
    [130]S.T. Choo, S.D. Yim, I.-S. Nam.S.-W. Ham, J-B. Lee. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TIO2:catalyst for NO reduction by NH3[J]Appl. Catal.B 2003,4:237-252.
    [131]L. Chmiclarz, P. Ku'strowski, A. Rafalska-Lasocha. Appl. Catal. B:Environ.35(2002)195.
    [132]滕加伟,宋庆英,于岚.低温脱除NOX催化剂的开发[J].工业催化,2003,11(12).
    [133]G. Y. Xie, Z. Y. Liu, Z. P. Zhu. J. Catal.224 (2004) 36.
    [134]G. S. Qi, R. T. Yang. J. Catal.217 (2003) 434.
    [135]G. Carja, Y. Kameshima, K. Okada, C.D. Madhusoodana, Appl. Catal. B 73 (2007) 60.
    [136]X. L. Tang, J. M. Hao, H. H. Yi, J. H. Li, Catal. Today 126 (2007) 406.
    [137]Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Catal. Comm.9 (2008) 2217.
    [138]L. F. Wang, T. P. Tran, D. V. Vom, M. Sakurai, H. Kameyama, Appl. Catal. A:General 350 (2008) 150.
    [139]Zhaoqiong Liu, Paul J. Millington, Jillian E. Bailie. A comparative study of the role of the support on the behaviour of iron based ammonia SCR catalysts [J]. Microporous and Mesoporous Materials,2007,104:159-170.
    [140]张润铎,全燮,郑钟植,等.蜂窝状筛网催化剂上NH3催化还原NO[J].中国环境科学.2002,23(1):20~23.
    [141]杨婷婷,沈伯雄.纳米负载SCR催化剂制备与性能研究[D].南开大学硕士论文,2009.
    [142]H. Bosch, F. J. J. G. Janssen, Catal. Today 2 (1988) 369-379.
    [143]H. Bosch, F. J. I. G. Janssen, J. N. Armor, Appl. Catal. B 1 (1992) 221-256.
    [144]W. S. Kijlstra, D. S. Brands, E. K. Poels, A. Bliek, J. Catal.171 (1997) 208-218.
    [145]G. Qi, R. T. Yang, Appl. Catal. B 44 (2003) 217-225.
    [146]M. Richter, A. Trunschke, U. Bentrup, K.-W. Brzezinka, E. Schreier, M. Schneider, M. M. Pohl, R. Fricke, J. Catal.206 (2002) 98-113.
    [147]G. Qi, R. T. Yang, R. Chang, Catal. Lett.87 (2003) 67-71.
    [148]G. Marban, A. B. Fuertes, Appl. Catal. B 34 (2001) 55-71.
    [149]J. H. Huang, Z. Q. Tong, Y. Huang, J. F. Zhang, Appl. Catal. B 78 (2008) 309-314.
    [150]G. Qi, R. T. Yang, R. Chang, Appl. Catal. B 51 (2004) 93-106.
    [151]R. Q. Long, R. T. Yang, Appl. Catal. B 27 (2000) 87-95.
    [152]G. Carja, Y. Kameshima, K. Okada, C. D. Madhusoodana, Appl. Catal. B 73 (2007) 60-64.
    [153]X. L. Tang, J. M. Hao, H. H. Yi, J. H. Li, Catal. Today 126 (2007) 406-411.
    [154]Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Catal. Commun.9 (2008) 2217-2220.
    [155]N. M. Rodriguez, M. S. Kim, R. T. K. Baker, J. Phys. Chem.98 (1994) 13108-13111.
    [156]J. M. Planeix, N. Coustel. B. Coq, J. Am. Chem. Soc.116 (1994) 7935-7936.
    [157]S. Santucci, S. Picozzi. F. D. Gregorio. L. Lozzi, J. Chem. Phys.119 (2003) 10904-10910.
    [158]B. Huang, R. Huang, D. J. Jin, D. Q. Ye, Catal. Today 126 (2007) 279-283.
    [159]N. Q. Zhao, C. He, J. J. Li, Z. Y. Jiang, Y. D. Li. Mater. Res. Bull.41 (2006) 2204.
    [160]X. Y. Tao, X. B. Zhang. Y. Li, J. P. Cheng, Y. H. Mi. Chinese Patent, No.1453208
    [161]F. Bertinchaps, C. Gregoire, E. M. Gaigneaux, Appl. Catal. B 66 (2006) 1-9.
    [162]A. Jitianu. T. Cacciaguerra, R. Benoit. S. Delpeux, F. Beguin. S. Bonnamy. Carbon 42 (2004) 1147-1151.
    [163]F. Kapteijn, L. Singoredjo, A. Andreini, J. A. Moulijn. Appl. Catal. B:Environ.3(1994) 173.
    [164]J. Trawczynski, B. Bielak. W. Mista, Appl. Catal. B 55(2005) 277-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700