基于褐煤的生物质型煤成型机理及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤,是世界上丰富而广泛存在的化石资源,但它却受到自身高水分、高灰分、低热值、低灰熔点、热稳定性差和容易风化自燃等特点的影响,限制了其使用范围和利用途径。而传统粗放的褐煤利用(发电)方式最终会威胁到它的有限的资源属性,也会恶化环境。因此,褐煤在利用前必须对其进行提质,同时混合生物质可直接减少依靠燃烧化石燃料而产生的二氧化碳、硫氧化物和氮氧化物的排放量,最终实现褐煤和生物质的高效洁净利用。本论文针对褐煤和生物质利用的研究现状,采用机械热压脱水方法对我国褐煤和生物质混合成型工艺展开了研究,探讨了生物质和褐煤在机械和加热的共同作用下物料颗粒间的成型粘结机理,并对加工的生物质型煤的热解特性进行了初步研究。
     首先,进行了生物质型煤热压工艺条件的研究和成型工艺的优化。以小龙潭褐煤、先锋褐煤与生物质(水稻秸杆、小麦秸杆、云杉锯末)为试验物料,选择成型压力、成型温度、保压时间、生物质配比、颗粒粒径等因素,以生物质型煤机械强度(抗压强度、抗破碎强度、跌落强度)为指标对生物质型煤成型工艺展开研究,探讨了成型工艺条件与生物质型煤强度的关系。在选择的因素水平中,影响生物质型煤机械强度主次因素依次为:成型压力>生物质配比>成型温度>保压时间,且成型压力和生物质配比的交互作用对抗压强度和抗冲击强度影响显著,成型温度和保压时间的交互作用对于抗压强度的影响不显著。
     其次,对生物质型煤的成型粘结机理进行了研究。通过显微结构观察分析,生物质不同长度的纤维相互连接,互相缠绕交联,形成网络,褐煤颗粒包裹于纤维网络中;在热压作用下生物质出现了玻璃化转变,和水以及褐煤的部分熔融物质一起形成了颗粒间的液体桥,在生物质型煤出模后该液体桥转变为固体桥,增加了生物质型煤的抗压强度。另外热压的作用也会增加生物质型煤的塑性,减弱生物质型煤出模后的松弛性(弹性),避免型煤产品开裂,有助于提高生物质型煤的跌落强度。而将生物质采用稀碱液处理后作为型煤的粘结剂可以提高型煤的机械强度和防水性能。从电势和颗粒特性分析知,褐煤和生物质表面Zeta电位均为负值,而且它们亲水性均较高,热压作用虽然可以增加其接触角,但从防水性试验来看热压效果不显著;另外,热压作用可降低褐煤孔容、比表面积和孔隙率。生物质型煤具有较好的机械强度是多种机制共同作用的结果,综合生物质型煤颗粒间的结合力,颗粒间桥接为主要机制,而机械结合力和物理化学结合力(化学键、静电力、范德华力等)起到的作用比较小。
     再次,对生物质型煤成型工艺条件进行了小试研究,得到了跌落强度试验指标与各组分之间的回归方程,并求出了优化成型条件:稻壳配比为27-31%,保压时间为20~21min,温度为146-153℃。而小龙潭褐煤/小麦秸秆混合燃料最佳的成型条件为:秸秆粒度为0.16-0.38mm,温度为140℃,压力为15MPa,保压时间为20min。
     最后,对生物质型煤的热解特性展开了初步研究。试验物料的热解过程可以分为四个阶段,其中第三阶段为物料发生热解的主要阶段,物料失重最多,达40 %-50 %。褐煤和水稻秸杆混合后,热重曲线分阶段出现褐煤和秸杆的热解特性,近似为二者的叠加。随后采用Coats-Redfern法对热解曲线进行了拟合,建立了分阶段的拟合动力学方程。
     该论文有图65幅,表25个,参考文献146篇。
Lignite is abundant and widely distributed solid fossil resource in the world. However, its current industrial utilization (i.e. lignite fired power generation) is inefficient and has been causing environmental pollution, due to the lignite disadvantages of high moisture content, high ash content, low calorific heating value, low ash fusion temperature, easy weathering, self-ignition and high elemental contents of sulfur and nitrogen. Therefore, it is nessessary to upgrade liginte quality before utilization. One potential technology is to blend lignite with carbon-neutral biomass resouce for combution, which can reduce not only fossil-based CO_2 emission but also the emissions of other pollutants such as SOx and NOx. In this dissertation research, a process based on Mechnical and Thermal dewatering system was developed and studied to produce fuel briquettes from lignite-biomass blends. The binding mechanisms between lignite and biomass and the co-pyrolysis of lignite and biomass were investigated and discussed, respectively. Specifically, this dissertation research was divided into 4 sections as follows.
     Firstly, the briquetting processing conditions and the optimization of processing parameters for bio-briquette were studied. Two Chinese lignite (Xianfeng & Xiaolongtan) were blended with the biomass samples of rice stalk, wheat straw and spruce sawdust, respectively. The effects of briquetting pressures, briquetting temperatures, pressure holding times, the mass ratios of biomass to lignite and particle sizes on the strength of the bio-briquettes were studied. The mechanical strength of obtained briquettes was evaluated with respect to compressive strength, impact strength and drop strength. The relation between processing conditions and mechanical strength of bio-briquette was further studied. The order of these factors in terms of importance was briquetting pressure, biomass/lignite mass ratio, treatment temperature and treatment time. The interaction effects between briquetting pressure, biomass/lignite mass ratio and compressive strength and impact strength were significant. But, the interaction effects between temperature, treatment time and compressive strength was not statistically significant.
     Secondly, the binding mechanisms between lignite and biomass were investigated. With micro-structural analysis, it was found that biomass fibers with different lengths interconnected and interlocked each other. As a result, lignite particles well connected together, forming complicated network structure. Under the conditions of high pressures and temperatures, a glass transition was observed during the formation of biomass particle. Liquid bridges were formed between glass transitional materials, water and melted light materials. Then the liquid bridges in the briquette changed to be in the form of solid, after cooled and moved out of the mold. These solid bridges increased the strength of bio-briquettes. Also, the plastic properties of briquettes was improved and the relax properties (elasticities) decreased, due to the high pressure and temperature treatments. The presence of the mechanical interlocking bonds resisted the disruptive forces caused by elastic recovery from compression. These above positive changes improved the drop strength of bio-briquette and avoided cracking. Moreover, the mechanical strength and water resistance of bio-briquettes further improved with the biomass being pretreated with weak alkaline solutions, which acted as a binder between lignite and biomass particles. On the other hand, the particle characteristics and electrical potential characteristics were also investigated. The Zeta potential of lignite and biomass surfaces was always negatively charged, which helped prevent particle agglomeration. Though the mechnical and thermal process increased the contact angles of bio-briquette surface, the water resistance was not improved significantly. The pore volume, specific surface area and porosity were reduced by the process too.
     High mechanical strength of bio-briquette was the result of several binding mechanisms. Among different mechanisms, the form of structural bridges connecting particles was the dominant one. By comparison, the mechanical bond force and physical/chemical bond forces (i.e. chemical bonds, electrostatic, Van der Waals’forces et al) were negligible.
     Thirdly, a pilot scale test of bio-briquette was examined. A regression equation of the relation between biomass/lignite mass ratio, treatment time, briquetting temperature and drop strength was established. The optimal pilot-scale processing condition was rice husk mass ratio of 27-31 %, treatment time of 21-22min, briquetting temperetue of 146-153℃. The optimal conditions for xiaolongtan lignite/wheat straw were adjusted to be wheat straw size of 0.16-0.38 mm, briquetting temperetue of 140℃, treatment time of 20 min and briquetting pressure of 15 MPa.
     Finally, the co-pyrolysis characteristic of lignite with biomass was preliminarily investigated. It revealed that the co-pyrolysis process consisted of 4 stages. The third stage was considered the most important phase, causing 40%-50% mass loss during pyrolysis. Furthermore, based on the analysis of TG curves, it was noted that the co-pyrolysis of lignite/rice stalk blends could be the overall result of pyrolysing lignite and rice stalk independently. In addition, by the method of Coats-Redfern, reaction kinetic model for each stage of the pyrolysis was developed in this dissertation research .
     The dissertation has 65 figures, 25 tables and 146 references.
引文
[1]煤炭工业发展“十一五”规划[R].国家发展和改革委员会,2007.
    [2]国家煤矿安全监察局.中国煤炭工业年鉴(2008增) [M].北京:《中国煤炭工业年鉴》编辑部, 2010.
    [3] KATALAMBULA H, GUPTA R. Low-Grade Coals: A Review of Some Prospective Upgrading Technologies? [J]. Energy & Fuels, 2009, 23(7): 3392-3405.
    [4]涂华,李文华,姜英.褐煤动力配煤研究与分析[J].煤炭科学技术, 2008, 36(04): 101-105.
    [5]王祥薇,张红飞,宋振梁. 1150t/h锅炉掺烧褐煤的性能试验研究[J].动力工程, 2009, 29(12): 1088-1092.
    [6]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术, 2001, 7(01): 72-76.
    [7]张晓杰,王阳,李振中,等.褐煤及其混煤燃烧、结渣特性的实验研究[J].动力工程, 1999, 19(06): 428-433.
    [8]李永华,李松庚,冯兆兴,等.褐煤及其混煤燃烧NO_x生成的试验研究[J].中国电机工程学报, 2001, 21(08): 34-36,41.
    [9]孙迎,王永征,王明,等.无烟煤混煤燃烧氮氧化物排放特性的试验研究[J].电站系统工程, 2009, 25(03): 20-22,8.
    [10]程军,周俊虎,刘建忠,等.褐煤混煤燃烧过程中硫污染物的动态排放规律[J].煤炭学报, 2003, 28(04): 409-413.
    [11]周俊虎,方磊,程军,等.煤液化残渣与褐煤混合燃烧硫污染物排放规律[J].浙江大学学报(工学版), 2006, 40(01): 131-134,138.
    [12] [澳]李春柱;余江龙,常丽萍译.维多利亚褐煤科学进展[M].北京:化学工业出版社, 2009.
    [13]徐振刚,刘随芹.型煤技术[M].北京:煤炭工业出版社, 2001.
    [14]张传祥.黏结剂组分对型煤热稳定性影响的研究[J].煤炭科学技术, 2002, 30(03): 42-44,66.
    [15] TOSUN Y I. Clean fuel-magnesia bonded coal briquetting [J]. Fuel Processing Technology, 2007, 88(10): 977-981.
    [16]程小平,马永和.用腐植酸盐作粘结剂制锅炉型煤的研究[J].山西矿业学院学报, 1997, 15(02): 209-213.
    [17]高振森,周国江,许占贤,等.锅炉型煤用改性淀粉粘结剂的研究与应用[J].选煤技术, 2002, 01): 19-21.
    [18]李登新,吴家珊,宋永玮.煤与粘结剂的相互作用和型煤抗压强度的关系[J].煤炭转化, 1992, 15(04): 76-82.
    [19] ALTUN N E, HICYILMAZ C, KOK M V. Effect of different binders on the combustion properties of lignite - Part I. Effect on thermal properties [J]. Journal of Thermal Analysis and Calorimetry, 2001, 65(3): 787-795.
    [20]郑雪琴,黄建辉,刘明华,等.改性黑液制备型煤粘结剂及其性能研究[J].造纸科学与技术, 2005, 24(01): 45-47.
    [21]李登新,孟繁玲,林永富.褐煤有粘结剂冷压成型研究[J].煤, 1998, 06): 24-25,49.
    [22]富童心.利用焦油渣作粘结剂研制工业型煤[J].煤炭加工与综合利用, 1994, 02): 21-24.
    [23]王燕芳,高俊,李师仑.纸浆废液系粘结剂制气化型煤[J].煤炭加工与综合利用, 1995, 04): 3-6.
    [24] BEKER U G. Briquettability of lignite and woody wastes composite fuel [J]. Energy Sources, 2000, 22(2): 99-107.
    [25] YILDIRIM M, OZBAYOGLU G. Briquetting of Tuncbilek lignite fines by using ammonium nitrohumate as a binder [J]. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 2004, 113(1): 13-18.
    [26] YILDIRIM M, OZBAYOGLU G. Production of ammonium nitrohumate from Elbistan lignite and its use as a coal binder [J]. Fuel, 1997, 76(5): 385-389.
    [27] YILDIRIM. Briquetting of Afsin/Elbistan and Sorgun/Yozgat Lignites without Adding a Binder [C]. International Mining Congress and Exhibition of Turkey, 2003, 385-390.
    [28]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社, 1999.
    [29] YAMAN S. Fuel briquettes from biomass-lignite blends [J]. Fuel Processing Technology, 2001, 72(1): 1-8.
    [30]肖雷,王传真,姚菁华,等.褐煤/秸秆混合燃料的成型实验研究[J].选煤技术, 2011, 1): 16-19.
    [31]肖雷,姚菁华,万永周,等.褐煤/生物质成型机理及工艺参数优化[J].中国矿业大学学报, 2010, 39(03): 352-356.
    [32]张亚婷.复合型生物质型煤粘结剂的制备与应用[J].西安科技大学学报, 2009, 29(04): 474-477.
    [33]张香兰,徐德平,许志华,等.生物质型煤粘结剂的研究[J].煤炭科学技术, 2000, 28(10): 39-42.
    [34]黄光许,张如意,谌伦建.小麦秸秆作型煤粘结剂的试验研究[J].中国煤炭, 2005, 31(03): 52-54.
    [35]陈列绒,葛岭梅,周安宁.氢氧化钠水解玉米秸作型煤黏结剂的研究[J].煤炭科学技术,2003, 31(03): 36-38.
    [36]张香兰,徐德平,许志华,等.氢氧化钠改性生物质作型煤粘结剂的研究[J].煤炭学报, 2001, 26(01): 105-108.
    [37] CHAIKLANGMUANG S, SUPA S, KAEWPET P. Development of fuel briquettes from biomass-lignite blends [J]. Chiang Mai J Sci, 2008, 35(1): 43-50.
    [38]王娜,吴鹏.褐煤微生物转化对型煤防水性能的影响[J].矿业工程研究, 2009, 24(04):55-57.
    [39] IVANOV I, SUDAKOVA I, KUZNETSOV B. Manufacture of Briquetted and Granulated Fuels from Lignite with Biobinders and Heated Die [J]. Chemistry, 2003, 6(11):847-852.
    [40]王晓利,王晓翠,张冬梅.一种新型复合型煤粘结剂的研究[J].中国矿业, 2004, 13(10): 82-83.
    [41]唐黎华,朱子彬,赵庆祥,等.活性污泥作为气化用型煤粘结剂的研究Ⅰ.污泥添加量和型煤成型条件的考察[J].环境科学学报, 1999, 19(01): 87-90.
    [42]高俊荣.褐煤热压脱水提质的试验研究[D].徐州;中国矿业大学, 2010.
    [43]万永周,肖雷,陶秀祥,等.褐煤脱水预干燥技术进展[J].煤炭工程, 2008, 08): 91-93.
    [44] STRAUSS K. STRAUSS K. Method and device for reducing the water content of water-containing brown coal: Germany, 96010064 [P]. 1996-4-4.
    [45] STRAUSS K, BERGINS C, WILD T. Mechanical/thermal dewatering - A new process for the utilisation of lignite for power generation; proceedings of the 5th International Symposium on Coal Combustion, Nanjing, F Nov 23-26, 2003 [C]. 2003.
    [46] BERGINS C. Kinetics and mechanism during mechanical/thermal dewatering of lignite [J]. Fuel, 2003, 82(4): 355-364.
    [47] BERGINS C. Mechanical/thermal dewatering of lignite. Part 2: A rheological model for consolidation and creep process [J]. Fuel, 2004, 83(3): 267-276.
    [48] BERGINS C, BERGER S, STRAUSS K. Mechanical/thermal dewatering - A perspective for an efficient solid/liquid separation [J]. Cfi-Ceramic Forum International, 1999, 76(3): 8-12.
    [49] BERGINS C, HULSTON J, STRAUSS K, et al. Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals [J]. Fuel, 2007, 86(1-2): 3-16.
    [50] WHEELER R A, HOADLEY A F A, CLAYTON S A. Modelling the mechanical thermal expression behaviour of lignite [J]. Fuel, 2009, 88(9): 1741-1751.
    [51] CLAYTON S A. Dewatering of biomaterials by mechanical thermal expression [J]. Drying Technology, 2006, 24(7): 819-834.
    [52] THAPA K B, QI Y, CLAYTON S A, et al. Lignite aided dewatering of digested sewagesludge [J]. Water Research, 2009, 43(3): 623-634.
    [53] ANDERSON B, JOHNSON T. Hydrothermal dewatering of low rank coal for use in a direct fired gas turbine; proceedings of the 3rd Japan/Australia Joint Technical Meeting on Coal, [C]. Brisbane, F, 1993
    [54] FAVAS G, JACKSON W R. Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product [J]. Fuel, 2003, 82(1): 53-57.
    [55] FAVAS G, JACKSON W R. Hydrothermal dewatering of lower rank coals. 2. Effects of coal characteristics for a range of Australian and international coals [J]. Fuel, 2003, 82(1): 59-69.
    [56] FAVAS G, JACKSON W R, MARSHALL M. Hydrothermal dewatering of lower rank coals. 3. High-concentration slurries from hydrothermally treated lower rank coals [J]. Fuel, 2003, 82(1): 71-79.
    [57] HASHIMOTO N, TOKUDA S. CWM Production from Upgraded Low Rank Coals; proceedings of the APEC Coal Trade and Investment Liberalisation and Facilitation Workshop, [C] Jakarta, F, 1997.
    [58]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技, 2009, 7(02): 17-22.
    [59]张伟.日本神户制钢UBC工艺的开发[J].洁净煤技术, 2010, 16(4): 63-67.
    [60] SATORU S, TETSUYA D, TAKUO S. UBC (Upgraded Brown Coal) Process Development [J]. Kobe Steel Engineering Reports, 2003, 53(2): 41-45.
    [61] KANDA H. Super-energy-saving Dewatering Method for High-specific-surface-area Fuels by Using Dimethyl Ether [J]. Adsorption Science & Technology, 2008, 26(5): 345-349.
    [62] KANDA H, MAKINO H. Energy-efficient coal dewatering using liquefied dimethyl ether [J]. Fuel, 2010, 89(8): 2104-2109.
    [63] MIURA K, MAE K, ASHIDA R, et al. Dewatering of coal through solvent extraction [J]. Fuel, 2002, 81(11-12): 1417-1422.
    [64] BUTLER C J, GREEN A M, CHAFFEE A L. Assessment of the water quality produced from mechanical thermal expression processing of three Latrobe Valley lignites [J]. Fuel, 2006, 85(10-11): 1364-1370.
    [65] RACOVALIS L, HOBDAY M D, HODGES S. Effect of processing conditions on organics in wastewater from hydrothermal dewatering of low-rank coal [J]. Fuel, 2002, 81(10): 1369-1378.
    [66] NAKAJIMA T, HASEGAWA H, TAKANASHI H, et al. Ecotoxicity of effluents from hydrothermal treatment process for low-rank coal [J]. Fuel, 2010, Article in Press.
    [67] BUTLER C J, GREEN A M, CHAFFEE A L. MTE water remediation using Loy Yang browncoal as a filter bed adsorbent [J]. Fuel, 2008, 87(6): 894-904.
    [68] BUTLER C J, GREEN A M, CHAFFEE A L. Remediation of mechanical thermal expression product waters using raw Latrobe Valley brown coals as adsorbents [J]. Fuel, 2007, 86(7-8): 1130-1138.
    [69] NAKAGAWA H, NAMBA A, B HLMANN M, et al. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst [J]. Fuel, 2004, 83(6): 719-725.
    [70]路阳,曹亦俊,章新喜,等.微粉煤摩擦电选脱硫降灰试验研究[J].选煤技术, 2006, 06): 3-5.
    [71]马瑞欣,石常省,章新喜.煤与单一矿物质在摩擦电选过程中的分离[J].中国矿业大学学报, 2010, 39(02): 270-274.
    [72] ZHENFU L, QINGRU C. Dry beneficiation technology of coal with an air dense-medium fluidized bed [J]. International Journal of Mineral Processing, 2001, 63(3): 167-175.
    [73] CHEN Q, WEI L. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA [J]. China Particuology Science and Technology of Particles, 2005, 3(Z1): 42.
    [74] FAN M, CHEN Q, ZHAO Y, et al. Magnetically stabilized fluidized beds for fine coal separation [J]. Powder Technology, 2002, 123(2-3): 208-211.
    [75] LUO Z, FAN M, ZHAO Y, et al. Density-dependent separation of dry fine coal in a vibrated fluidized bed [J]. Powder Technology, 2008, 187(2): 119-123.
    [76]杨云松,李功民,孙连兴.褐煤的干法选煤实践[J].选煤技术, 2009, (04): 40-42.
    [77] FRANCO A, DIAZ A R. The future challenges for "clean coal technologies": Joining efficiency increase and pollutant emission control [J]. Energy, 2009, 34(3): 348-354.
    [78] DOMAZETIS G, BARILLA P, JAMES B D. Lower emission plant using processed low-rank coals [J]. Fuel Processing Technology, 2010, 91(3):255-265.
    [79] STEEL K M, PATRICK J W. The production of ultra clean coal by chemical demineralisation [J]. Fuel, 2001, 80(14): 2019-2023.
    [80] STEEL K M, PATRICK J W. The production of ultra clean coal by sequential leaching with HF followed by HNO3 [J]. Fuel, 2003, 82(15-17): 1917-1920.
    [81] STEEL K M, BESIDA J, O'DONNELL T A, et al. Production of Ultra Clean Coal: Part I--Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids [J]. Fuel Processing Technology, 2001, 70(3): 171-192.
    [82] STEEL K M, BESIDA J, O'DONNELL T A, et al. Production of Ultra Clean Coal: Part II--Ionic equilibria in solution when mineral matter from black coal is treated with aqueoushydrofluoric acid [J]. Fuel Processing Technology, 2001, 70(3): 193-219.
    [83] STEEL K M, BESIDA J, O'DONNELL T A, et al. Production of ultra clean coal: Part III. Effect of coal's carbonaceous matrix on the dissolution of mineral matter using hydrofluoric acid [J]. Fuel Processing Technology, 2002, 76(1): 51-59.
    [84] WIJAYA N, ZHANG L. A Critical Review of Coal Demineralization and Its Implication on Understanding the Speciation of Organically Bound Metals and Submicrometer Mineral Grains in Coal [J]. Energy & Fuels, 2011, 25(1): 1-16.
    [85] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, et al. The effect of extraction condition on 'HyperCoal' production (1)--under room-temperature filtration [J]. Fuel, 2002, 81(11-12): 1463-1469.
    [86] YOSHIDA T, LI C, TAKANOHASHI T, et al. Effect of extraction condition on "HyperCoal" production (2)--effect of polar solvents under hot filtration [J]. Fuel Processing Technology, 2004, 86(1): 61-72.
    [87] OKUYAMA N, KOMATSU N, SHIGEHISA T, et al. Hyper-coal process to produce the ash-free coal [J]. Fuel Processing Technology, 2004, 85(8-10): 947-967.
    [88] MASAKI K, KASHIMURA N, TAKANOHASHI T, et al. Effect of pretreatment with carbonic acid on 'Hypercoal' (ash-free coal) production from low-rank coals [J]. Energy and Fuels, 2005, 19(5): 2021-2025.
    [89] NALLATHAMBI GUNASEELAN V. Anaerobic digestion of biomass for methane production: A review [J]. Biomass and Bioenergy, 1997, 13(1-2): 83-114.
    [90] ZENG X, MA Y, MA L. Utilization of straw in biomass energy in China [J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 976-987.
    [91] CHEN L, XING L, HAN L. Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology [J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2689-2695.
    [92] HEINIM J, JUNGINGER M. Production and trading of biomass for energy - An overview of the global status [J]. Biomass and Bioenergy, 2009, 33(9): 1310-1320.
    [93] SAXENA R C, ADHIKARI D K, GOYAL H B. Biomass-based energy fuel through biochemical routes: A review [J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 167-178.
    [94] ALAUDDIN Z A B Z, LAHIJANI P, MOHAMMADI M, et al. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2852-2862.
    [95] TANKSALE A, BELTRAMINI J N, LU G M. A review of catalytic hydrogen productionprocesses from biomass [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 166-1682.
    [96] AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624.
    [97]袁振宏,吴创之,马隆龙.生物质利用原理与技术[M].北京:化学工业出版社, 2005.
    [98] BEKER U G. Briquetting of Afsin-Elbistan lignite of Turkey using different waste materials [J]. Fuel Processing Technology, 1997, 51(1-2): 137-144.
    [99]金会心,李水娥,吴复忠.生物质型煤成型实验研究[J].贵州工业大学学报(自然科学版), 2008, 37(05): 44-46,52.
    [100]杨玉立,朱书全,张恒,等.生物质型煤热压成型工艺条件[J].中国煤炭, 2009, 35(05): 77-80.
    [101] KALIYAN N, MOREY R V. Densification characteristics of corn cobs [J]. Fuel Processing Technology, 2010, 91(5): 559-565.
    [102]В.Н.КРОХИН,于尔铁.褐煤无粘结剂成型的理论基础[J].煤炭加工与综合利用, 1988, (02): 53-58.
    [103]常鸿雁.粉煤成型机理研究[D].太原;太原理工大学, 2002.
    [104] BIKA D, TARDOS G I, PANMAI S, et al. Strength and morphology of solid bridges in dry granules of pharmaceutical powders [J]. Powder Technology, 2005, 150(2): 104-116.
    [105]赵玉兰,常鸿雁,吉登高,等.粉煤成型机理研究进展[J].煤炭转化, 2001, 24(03): 12-14,9.
    [106]黄光许,谌伦建,曹军.生物质型煤的成型机理和防水性能[J].煤炭学报, 2008, 33(07): 812-815.
    [107] KALIYAN N, MOREY R V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass [J]. Bioresource Technology, 2010, 101(3): 1082-1090.
    [108]谌伦建,柴一言,祝朝晖.型煤微观结构的研究[J].煤炭学报, 1997, 22(03): 304-306.
    [109] PIETSCH W. Size enlargement by agglomeration [M]. John Wiley Sons Inc 1991.
    [110]罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报, 2004, 29(03): 338-341.
    [111] MOHAN D, CHANDER S. Single, binary, and multicomponent sorption of iron and manganese on lignite [J]. Journal of Colloid and Interface Science, 2006, 299(1): 76-87.
    [112] MOHAN D, CHANDER S. Removal and recovery of metal ions from acid minedrainage using lignite--A low cost sorbent [J]. Journal of Hazardous Materials, 2006, 137(3): 1545-1553.
    [113] PEHLIVAN E, ARSLAN G. Removal of metal ions using lignite in aqueous solution--Low cost biosorbents [J]. Fuel Processing Technology, 2007, 88(1): 99-106.
    [114] PENTARI D, PERDIKATSIS V, KATSIMICHA D, et al. Sorption properties of low calorific value Greek lignites: Removal of lead, cadmium, zinc and copper ions from aqueous solutions [J]. Journal of Hazardous Materials, 2009, 168(2-3): 1017-1021.
    [115] U?URUM M. A study of removal of Pb heavy metal ions from aqueous solution using lignite and a new cheap adsorbent (lignite washing plant tailings) [J]. Fuel, 2009, 88(8): 1460-1465.
    [116] ?NAL Y, AKMIL-BASAR C, EREN D, et al. Adsorption kinetics of malachite green onto activated carbon prepared from Tun?bilek lignite [J]. Journal of Hazardous Materials, 2006, 128(2-3): 150-157.
    [117] QI Y, HOADLEY A F A, CHAFFEE A L, et al. Characterisation of lignite as an industrial adsorbent [J]. Fuel, 2011, 90(4): 1567-1574.
    [118] CHATTOPADHYAYA G, MACDONALD D G, BAKHSHI N N, et al. Adsorptive removal of sulfur dioxide by Saskatchewan lignite and its derivatives [J]. Fuel, 2006, 85(12-13): 1803-1810.
    [119]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报, 2004, 20(02): 242-245.
    [120]杨德.试验设计与分析[M].北京:中国农业出版社, 2002.
    [121] PIETSCH W. Agglomeration Processes - Phenomena, TechnoIogies, Equipment [M]. Weinheim: Wiley-VCH, 2002.
    [122] RUMPF H. The strength of granules and agglomerates [M]. New York: John Wiley and Sons, 1962.
    [123] BACK E L. The bonding mechanism in hardboard manufacture [J]. Holzforschung, 1987, 41(4): 247-258.
    [124] REHKUGLER G E, BUCHELE W F. Biomechanics of forage wafering [J]. Trans of ASAE, 1969, 12(1): 1-8.
    [125] KALIYAN N, VANCE MOREY R. Factors affecting strength and durability of densified biomass products [J]. Biomass and Bioenergy, 2009, 33(3): 337-359.
    [126]程芳琴,李莹英,路广军,等.改性生物质作为型煤黏结剂的研究[J].煤化工, 2008, 05): 25-29.
    [127]路广军,郭彦霞,程芳琴,等.生物质秸秆作为型煤粘结剂的研究[J].节能技术,2008, 26(02): 107-111.
    [128] IRVINE, M. G. The glass transitions of lignin and hemicellulose and their measurement by differential thermal analysis [J]. Anglais, 1984, 67(5): 118-121.
    [129] KHAN M, ASHRAF S, MALHOTRA V. Development and characterization of a wood adhesive using bagasse lignin [J]. International Journal of Adhesion and Adhesives, 2004, 24(6): 485-493.
    [130]李东颖,杨光瑞.表面电位对煤泥水混凝过程的作用及影响[J].煤炭加工与综合利用, 2009, 03): 17-19.
    [131]赵卫东,刘建忠,周俊虎,等.低阶煤高温高压水热处理改性及其成浆特性[J].化工学报, 2009, 60(06): 1560-1567.
    [132]张双全,吴国光.煤化学[M].徐州:中国矿业大学出版社, 2004.
    [133] SADHUKHAN A K, GUPTA P, GOYAL T, et al. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis [J]. Bioresource Technology, 2008, 99(17): 8022-8026.
    [134] ZHANG L, XU S, ZHAO W, et al. Co-pyrolysis of biomass and coal in a free fall reactor [J]. Fuel, 2007, 86(3): 353-359.
    [135]陈华艳,苏俊林,矫振伟.生物质型煤燃烧特性[J].吉林大学学报(工学版), 2008, 38(6): 1281-1286.
    [136] SONOBE T, WORASUWANNARAK N, PIPATMANOMAI S. Synergies in co-pyrolysis of Thai lignite and corncob [J]. Fuel Processing Technology, 2008, 89(12): 1371-1378.
    [137] PAN Y G, VELO E, PUIGJANER L. Pyrolysis of blends of biomass with poor coals [J]. Fuel, 1996, 75(4): 412-418.
    [138] MOGHTADERI B, MEESRI C, WALL T F. Pyrolytic characteristics of blended coal and woody biomass [J]. Fuel, 2004, 83(6): 745-750.
    [139] VUTHALURU H B. Thermal behaviour of coal/biomass blends during co-pyrolysis [J]. Fuel Processing Technology, 2003, 85(2-3): 141-155.
    [140] ORF O J J M, ANTUNES F J A, FIGUEIREDO J L. Pyrolysis kinetics of lignocellulosic materials--three independent reactions model [J]. Fuel, 1999, 78(3): 349-358.
    [141] VUTHALURU H B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis [J]. Bioresource Technology, 2004, 92(2): 187-195.
    [142] HATAKEYAMA T, QUINN F X. Thermal Analysis-Fundamentals and Applications to Polymer Science [M]. Second ed. Chichester: John Wiley and Sons, 1999.
    [143] VACHUSKA J, VOBORIL M. Kinetic data computation from non-isothermalthermogravimetric curves of non-uniform heating rate [J]. Thermochimica Acta, 1971, 2(5): 379-392.
    [144] AGRAWAL R K. A new equation for modeling nonisothermal reactions [J]. Journal of Thermal Analysis and Calorimetry, 1987, 32(1): 149-156.
    [145] LI C H. An integral approximation formula for kinetic analysis of nonisothermal TGA data [J]. AIChE journal, 1985, 31(6): 1036-1038.
    [146] COATS A W, REDFERN J P. Kinetic Parameters from Thermogravimetric Data [J]. Nature, 1964, 201(4914): 68-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700