矿渣水泥和魔芋葡甘聚糖的振动机械力化学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在挤压、冲击和剪切等机械应力的作用下,机械能在材料的结构中累积,造成材料的结构和性质发生变化,提高材料的反应活性,从而激发材料的化学反应。按照机械力使材料发生化学作用的条件不同,可以大致将机械力化学分为硬机械力化学效应和软机械力化学效应。硬机械力化学方法是通过对物料施加强烈机械力作用,直接合成制备材料或对材料进行改性的方法,其缺点是研磨过程的随机性、较高的掺杂量和较大的能耗。有高活性化合物参加的机械力化学反应称为软机械力化学,这些活性物质包括:氧-氢基团、过氧化物、硝酸盐、金属碳酸盐等,活性官能团可以促进机械力作用下的化学反应,从而降低反应对机械应力强度和反应时间的要求,以达到降低能耗,减少掺杂的目的。因此,在机械应力作用下,如何有效激发材料的机械力化学效应已经成为目前制备先进材料领域的重要研究课题之一。
     首先,本论文描述了可用于材料振动机械力化学效应的振动磨的结构和工作原理,并从能量利用的角度分析了振动磨与其它类型研磨设备(如行星磨、搅拌磨、球磨机、冲击磨和气流磨)的各自特点。与其它研磨设备相比,振动磨具有显著的优点。振动磨对材料作用的机械应力以碰撞和挤压为主,使其适用于对材料进行机械力化学处理。振动磨的能量密度较为适中,应力速度可调节的范围较大,能量密度和比能较大,因此,可使产品产生较高的活性,促使其发生机械力化学效应。因此,振动磨可以对无机和有机材料进行有效的振动机械力化学处理,尤其适用于处理韧性物料。
     进而,本论文分别对无机材料(矿渣水泥)和有机材料(魔芋葡甘聚糖)的振动机械力化学效应进行了较为深入的研究,探讨了振动机械力化学处理方法应用于不同材料时的机理。
     本论文研究了振动机械力化学效应对矿渣水泥水化反应活性及其硬化强度的影响。结果表明,振动机械激活使矿渣水泥的颗粒粒度减小,有效增加矿渣水泥中粒径在10μm以下颗粒的含量,并使高炉渣和硅灰颗粒与水泥颗粒均匀混合,同时,机械应力的循环作用使矿渣颗粒的结构发生变形,位错等缺陷的含量增加,使其水化反应激活能降低,水化反应速度常数增大,从而促进水化反应进行。矿渣中的硅颗粒参与水泥的水化反应,有利于C-S-H在硅颗粒上成核,加快C_3S水化反应速度,促进C-S-H的形成。经机械激活的矿渣水泥样品水化后H_2O和主结构之间的结合更加紧密,随着C-S-H相的生成,SiO_4~(4-)的聚合度有所增加。振动机械激活可以显著提高矿渣水泥的早期硬化强度,并有助于提高矿渣的掺入量。
     本课题还采用振动机械力化学的处理方法对魔芋葡甘聚糖进行了脱乙酰基和磷酸盐酯化反应的研究,并探讨了经振动机械力化学改性后,魔芋葡甘聚糖的应用性能。结果表明,在振动机械力化学处理时,魔芋葡甘聚糖分子结构中的活性基团与碱性改性剂发生皂化反应可以快速有效地脱去乙酰基。碱性改性剂的碱性越强,脱乙酰基改性的效果越好。经过振动机械力化学脱乙酰基处理后,魔芋葡甘聚糖样品的溶胀性能有所改善,其水溶胶的触变性随着研磨时间的延长而逐渐减弱。在相同机械力化学处理时间下,经KOH改性的魔芋葡甘聚糖样品水溶胶的粘度比NaOH改性的样品大。脱去乙酰基以后,魔芋葡甘聚糖分子结构中拥有更多的-OH,使其有更多的机会形成分子间氢键,使魔芋葡甘聚糖分子与水分子的连接更加紧密,因此,脱乙酰基的魔芋葡甘聚糖样品具有较好的黏度稳定性,并随着改性时间的延长而增强。经振动机械力化学脱乙酰基改性后,魔芋葡甘聚糖样品在100℃左右的失重(吸附水逸出)大于原料,与NaOH相比,采用KOH对魔芋葡甘聚糖进行机械力化学脱乙酰基改性有利于减少其在受热时的总失重。另外,在振动磨机械应力作用下,魔芋葡甘聚糖中的羟基可被磷酸盐基团取代发生酯化反应。分析表明,通过振动机械力化学处理可以使魔芋葡甘聚糖与六偏磷酸钠发生酯化反应。经酯化改性,魔芋葡甘聚糖水溶胶的透光率优于原料,吸附金属离子量与原料相比较高。在改性时间为10 min时经酯化改性的魔芋葡甘聚糖样品的透光率和吸附性达到最佳值。魔芋葡甘聚糖大分子链的完整性对其絮凝能力的影响大于磷含量的影响。
     本研究将振动机械力化学方法应用于处理矿渣水泥和魔芋葡甘聚糖均获得了较好的结果,说明振动机械力化学具有较广泛的适用性,是一种处理材料的有效方法。
The cumulation of mechanical energy in solids occurs under the effects of various mechanical stresses, such as compression, impact and shear, leading to the transformations of structure and property of solids. Therefore, the chemical reaction of material is activated by the increase of material reactivity in the mechanical stress field. The mechanochemistry is divided into hard mechanochemistry and soft mechanochemistry based on their mechanical stress difference, which induces the mechano-chemical reaction. The classic mechano-chemical effects, i.e., hard mechanochemistry, aim at the direct sythesis of a product via an intensively grinding process. The problems of using hard mechanochemical method involve unregulated grinding process, contamination and high energy consumption. Recent development is inevitably shifted toward mechano-chemical processes under softer or milder conditions. The soft mechano-chemical effects are correlated to the substances with some surface functional groups, such as OH groups, peroxide, nitrate and metallic carbonate, et al., with a higher reactivity rather than anhydrous oxides. These substances tend to perform chemical reaction under the mechanical activation and allow to decrease the level of mechanical loading under milder mechanochemical conditions, thus leading to reduction of the energy consumption and contamination. This method in the processing of advanced materials has attracted more attentions during recent years.
     Firstly, this dissertation described the structure and operation mechanism of vibrating mill. The energy utilization of various mills, such as vibrating mill, planetary mill, stirred beads mill, ball mill, disintegrator and jet mill, were evaluated to understand the efficient application of vibrating mill for the mechano-chemcial effect on materials used in this dissertation. The vibrating mill is a kind of efficient grinding equipment for mechano-chemical reaction of materials due to its superior characteristics like intensive mechanical stress (i.e., collision and compression), moderate energy density and a greater adjustment range of stress rate. It is indicated that vibrating mill can be used to induce mechano-chemical effects on inorganic and organic materials, especially on some materials with a greater toughness.
     Secondly, this dissertation systemically investigated the mechanochemical effects on inorganic and organic materials (i.e., slag cement and konjac glucomannan) in vibrating mills. The mechanisms of mechano-chemical effects on these materials in vibrating mills were analyzed, respectively.
     This dissertation investigated the mechanical activation of slag cement in an intensive vibrating mill in order to accelerate the hydration and increase the mechanical strength. The results showed that the mechanical activation of slag cement in the vibrating mill could reduce the particle size of slag cement and increase the amount of particles finer than 10μm. The blast furnace slag, silica fume and cement were well mixed in the process of mechanical activation. Meanwhile, the activated slag cement particles possessed a distortion of structure and increased defects. Therefore, the slag cement particles treated by the vibrating mill show a higher rate of hydration due to the decrease of activation energy. The silica particles in slag cement could favor the acceleration of the hydration rate of C_3S by enhancing the nucleation of C-S-H on the surface of silica particles. In the process of hydration of slag cement, the activated samples showed a stronger bonding between H2O and the host structure. The polymerization degree of SiO44- increased with the formation of C-S-H phase. It was also found that the mechanical activation of slag cement in the vibrating mill could enhance the early strength development of slag cement and increase the addition amount of slag into cement, compared to unactivated slag cement.
     The de-acetylation and esterification of konjac glucomannan by mechano-chemical treatment in a vibrating mill were also investigated, respectively. The results showed that the mechano-chemical treatment under alkaline condition was efficient to remove the acetyls from konjac glucomannan. The alkalinity of modifier could dominate the efficiency of de-acetylation of konjac glucomannan. The swelling property of konjac glucomannan de-acetylated by mechano-chemical treatment in the vibrating mill was improved. The measurement of the konjac glucomannan gel rheology indicated that the mechano-chemical treatment could reduce the thixotropy in the de-acetylated konjac glucomannan. The de-acetylated konjac glucomannan treated by KOH exhibited a higher viscosity than that treated by NaOH. The konjac glucomannan after deacetylation possessed the more hydroxyl groups. The molecules of deacetylated konjac glucomannan could form the more inter-molecular hydrogen bonds, leading to an enhanced connection between konjac glucomannan molecules and water molecules. Therefore, the de-acetylated konjac glucomannan samples possessed a higher swelling property and a greater viscous stability, showing a positive relation with grinding duration. According to the thermogravimetric analysis, the de-acetylated konjac glucomannan samples showed a higher mass loss (around 100 oC) due to the loss of hydroxyl groups of konjac glucomannan, compared to the original konjac glucomannan sample. The mass loss of konjac glucomannan sample treated by KOH was lower than that by NaOH. This illustrated that KOH could be more effective to reduce the mass loss of konjac glucomannan.
     In addition, the esterification of konjac glucomannan with sodium hexametaphosphate was stimulated by mechano-chemical treatment in a vibrating mill. The aqueous solutions of konjac glucomannan showed a higher transmittance after mechano-chemically esterification. As a flocculant, the treated konjac glucomannan adsorbed more metallic ions rather than the non-treated konjac glucomannan sample. The optimized duration of mechano-chemical treatment of konjac glucomannan for the superior transmittance and adsorption property was 10 min. It was found that the effect of formation of backbone of konjac glucomannan on the adsorption property of konjac glucomannan dominated over the effect of phosphorus content of konjac glucomannan.
引文
[1]杨南如.机械力化学过程及效应(I)-机械力化学效应[J].建筑材料学报, 2000, 3(1): 19-26
    [2] Gutman E. M. Mechanochemistry of materials [M]. UK: Cambridge International Science Publishing, 1998: VII
    [3]李竟先.陶瓷熔块制备过程中的机械力化学效应及其对熔块釉性能的影响[D].广州:华南理工大学, 1991
    [4]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社, 1999: 333-366
    [5]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社, 2008: 48
    [6]盖国胜,徐政.超细粉碎过程中物料的理化特性变化及应用[J].粉体技术, 1997, 3(2): 41-42
    [7]卢寿慈,毋伟.矿物颜填料机械力化学改性的理论与实践[J].中国粉体技术, 1999, 5(1): 33-37
    [8]李振兴,方莹.机械力化学效应及在矿物粉体深加工中的应用[J].中国非金属矿工业导刊, 2005, (5): 39-41
    [9]张克立.固体无机化学[M].武汉:武汉大学出版社, 2005: 40
    [10]杨华明.材料机械化学[M].北京:科学出版社, 2010: 1
    [11] Takahashi H. Effect of dry grinding on koalin minerals: I. Koalinite [J]. Bulletin of the Chemical Society of Japan, 1959, 32(3): 235-245
    [12]李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用[J].武汉工业大学学报, 1993, 15(1): 23-26
    [13] Juhász A. Z. Aspects of mechanochemical activation in terms of comminution theory [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, (141): 449-462
    [14] Liao J. F., Senna M. Enhanced dehydration and a morphization of Mg(OH)2 in the oresence of ultrafine SiO2 under mechanochemical conditions [J]. Thermochimica Acta, 1992, 210: 89-102
    [15] Avvakumov E., Senna M., Kosova N. Soft Mechanochemical Synthesis: A Basis for NewChemical Technologies [M]. UK: Kluwer Academic Publishers, 2001: 3
    [16] Senna M. Recent development of materials design through a mechanochemical route [J]. International Journal of Inorganic Materials, 2001, 3(6): 509-514
    [17] Senna M., Kinoshita T., Abe Y., et al. Smart soft-mechanochemical syntheses of well-crystallized pure phase fine particulates of mixed oxides for electroceramics [J]. Journal of the European Ceramic Society, 2007, 27(13-15): 4301-4306
    [18] Senna M. Incipient chemical interaction between fine particles under mechanical stress-a fearsibility of producing advanced materials via mechanochemical routes [J]. Solid State Ionics, 1993, 63-65: 3-9
    [19] Temuujin J., Aoyama M., Senna M., et al. Synthesis of Y-type hexaferrites via a soft mechanochemical route [J]. Journal of Solid State Chemistry, 2004, 177(11): 3903-3908
    [20] Gutman E. M. Mechanochemistry of materials [M]. UK: Cambridge International Science Publishing, 1998: 39-177
    [21] Gutman E. M. Mechanochemistry of solid surface [M]. Singapore: World Scientific, 1994: 7-75
    [22]杨华明.材料机械化学[M].北京:科学出版社, 2010: 74-77
    [23]北京师范大学、华中师范大学和南京师范大学无机化学教研室.无机化学(上册)[M].第四版.北京:高等教育出版社, 2002: 193-243
    [24] Tká?ováK. Mechanical activation of minerals [M]. Netherlands: Elsevier, 1989: 7-14
    [25]杨家红.矿物机械活化基础理论的研究进展[J].稀有金属与硬质合金, 1998(12): 38-42
    [26] Severin I., Serfrt H. J., Yariv S. J. Influnce of mechanochamical effect on solid state [J]. Solid state chemistry, 1990(88): 401
    [27]林海,陈秀枝.煤系高岭土颗粒超细化过程的机械化学效应[J].中国矿业, 1998, 7(5): 54-57
    [28]方全国.高岭土细磨过程机械力化学与助磨剂吸附特性研究[J].矿冶, 1997, 6(3): 37-41
    [29]陈世宫.机械活化及其在浸出过程中的应用[J].上海有色金属, 1998, 19(2): 91-96
    [30]赵中传,孙培梅.机械活化强化冶金反应的几个问题[J].中南工业大学学报, 1995, 26(6): 757-759
    [31] Wang X. H., Xie Y. Fine grinding of minerals [J]. Mineral processing and extractive metallurgy review, 1990, 7: 49-79
    [32]黄云峰,钱鑫.机械化学及其在矿物加工中的应用[J].金属矿山, 1999, 5: 17-20
    [33]赵中伟,赵天从,李洪桂.固体机械力化学[J].湖南有色金属, 1995, 11(2): 44-48
    [34] Wang Y. M., Pan Z. D. Mechanochemical effects on synthesis of ceramic materials and its compositions [J]. Journal of The Chinese Ceramic Society, 2005, 33(4): 506-515
    [35] Gutman E. M. Mechanochemistry of materials [M]. UK: Cambridge International Science Publishing, 1998: 178-199
    [36]秦景燕,王传辉.超细粉碎中的机械力化学效应[J].矿山机械, 2005, 33(10): 6-9
    [37]宋晓岚,邱冠周,杨华明.机械化学及其应用研究进展[J].金属矿山, 2004, 11: 34-38
    [38]巴拉姆鲍伊姆H. K.高分子化合物力化学[M].江畹兰,费鸿良.北京:化学工业出版社, 1982: 1-10
    [39]张士齐.塑料?橡胶的力化学反应[M].青岛:青岛出版社, 1991: 1
    [40]杨南如.机械力化学过程及效应(II)-机械力化学过程及应用[J].建筑材料学报, 2000, 3(2): 93-97
    [41]张克立.固体无机化学[M].武汉:武汉大学出版社, 2005: 147-226
    [42]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社, 1999: 333-366
    [43]宋晓岚,邱冠周,杨华明.超细功能粉体的机械化学合成研究进展[J].金属矿山, 2004, 7: 25-30
    [44] Behmanesh N., Heshmati-Manesh S., Ataie A. Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase [J]. Journal of Alloys and Compounds, 2006, 450(1-2): 421-425
    [45]岩元哲志,仙名保. Reformation of fine powdery materials by mechanochemical effects.Ⅱ.Change in the sintering behavior due to mechanical activation [J].粉体工学会志, 1984, 21(12): 774-777
    [46] Diaz-Guillén J. A., Fuentes A. F., Gallini S., et al. A rapid method to obtain nanometric particles of rhabdophane LaPO4·nH2O by mechanical milling [J]. Journal of Alloys and Compounds, 2007, 427(1-2): 87-93
    [47] Zhang, Q., Tojo T., Tongamp W., et al. Correlation between mechanochemical reactivity forming ABO4-type complex oxides and the structures of product materials[J]. Powder Technology, 2009, 195(1): 40-43
    [48] Hadi A., Yaacob I. I. Novel synthesis of nanocrystalline CeO2 by mechanochemical andwater-in-oil microemulsion methods [J]. Materials Letters, 2007, 61(1): 93-96
    [49] Brankovi? G., Vukoti? V., Brankovi? Z., et al.Investigation on possibility of mechanochemical synthesis of CaTiO3 from different precursors [J]. Journal of the European Ceramic Society, 2007, 27(2-3): 729-732
    [50] Min G. M., Murakami Y., Shindo D., et al. Microstructural investigation of CaTiO3 formed mechanochemically by dry grinding of a CaO-TiO2 mixture [J]. Powder Technology, 1999, 104(1): 75-79
    [51] Yang H. M., Du C. F., Hu Y. H., et al. Preparation of porous material from talc by mechanochemical treatment and subsequent leaching [J]. Applied Clay Science, 2006, 31(3-4): 290-297
    [52] Zhao Z., Long S., Chen A., et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution [J]. Hydrometallurgy, 2009, 99(3-4): 255-258
    [53] Zyryanov V. V., Uvarov N. F., Sadykov V. A., et al. Mechanochemical synthesis and conducting properties of nanostructured rhombohedral scandia stabilized zirconia ceramics [J]. Journal of Alloys and Compounds, 2009, 483(1-2): 535-539
    [54] Briak-BenAbdeslam H. E., Mochales C., Ginebra M. P., et al. Dry mechanochemical synt hesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: A kinetic study [J]. Journal of Biomedical Materials Research Part A, 2003, 67A(3): 927-937
    [55] Rhee S. H. Synthesis of hydroxyapatite via mechanochemical treatment [J]. Biomaterials, 2002, 23(4): 1147-1152
    [56] Ishikawa K., Miyamoto Y., Kon M., et al. Non-decay type fast-setting calcium phosphate cement composite with sodium alginate [J]. Biomaterials, 1995, 16(7): 523-527
    [57] Driessens F. C. M., Boltong M. G., Bermudez O., et al. Effective formulations for the preparation of calcium phosphate bone cements [J]. Journal of Materials Science: Materials in Medicine, 1994, 5(3): 164-170
    [58] Daculsi G., Patussi N., Martin S., et al. Macroporous calcium phosphate ceramic for long bone surgery in humansand dogs, clinical and histological study [J]. Journal of Biomedical Materials Research, 1990, 24(3): 379-396
    [59] Daculsi G., Legeros R. Z., Nery E., et al. transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physiological characterization [J]. Journal of Biomedical Materials Research, 1989, 23(8): 883-894
    [60] De Groot K. Bioceramics of calcium phosphate [M]. BocaRaton, FL: CRC Press, 1983
    [61] Liao J., Hamada K., Senna M. Synthesis of Ca-Mg via a mechanochemical hydrothermal process [J]. Journal of Materials Synthesis and Process, 2000, 8(5-6): 305-311
    [62] Suchanek W. L., Shuk P., Byrappa K., et al. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature[J]. Biomaterials, 2002, 23(3): 699-710
    [63] Gonzalez G., Villalba R., Sagarzazu A. Synthesis of biomaterials by mechanochemical transformation [J]. Materials Science Forum, 2002, 386-388: 645-650
    [64] Rhee S. H. Synthesis of hydroxyapatite via mechanochemical treatment[J]. Biomaterials, 2002, 23(4): 1147-1152
    [65] El Briak-Benabdeslam H., Mochales C., Planell J. A., et al. Influence of water addition on the kinetics of mechanochemical synthesis of hydroxyapatite from DCPD + CaO [J]. Key Engineering Materials, 2004, 254-256: 931-934
    [66] Serraj S., Boudevill E. P., Pauvert B., et al. Effect on composition of dry mechanical grinding of calcium phosphate mixture [J]. Journal Biomedical Materials Research, 2001, 55(4): 566-575
    [67] Yeong K. C. B., Wang J., Ng S. C. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4 [J]. Biomaterials, 2001, 22(20): 2705-2712
    [68] González G., Sagarzazu A., Villalba R. Mechanochemical transformation of mixtures of Ca(OH)2 and (NH4)2HPO4 or P2O5 [J]. Materials Research Bulletin, 2006, 41(10): 1902-1916
    [69] Fahami A., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B. Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite [J]. Solid State Sciences, In Press
    [70] Mochales C., El Briak-BenAbdeslam H., Ginebra M. P., et al. Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics [J]. Biomaterials, 2004, 25(7-8): 1151-1158
    [71] Salas J., Benzo Z., Gonzalez G., et al. Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite [J]. Journal of Materials Science: Materials in Medicine, 2009, 20(11): 2249-2257
    [72] Schaffer G. B., McCormick P. G. Mechanical Alloying [J]. Materials Forum, 1992, 16: 91-97
    [73] Awano M., Kuwahara Y. Proceedings of the 6th Symposium on Reactivity of Solids [R]. Japan: Chemical Society of Japan, 1995
    [74]徐僖.新技术在高分子材料科学与工程中的应用[J].化工进展, 1995(4): 11-13
    [75]张剑光,张明福,韩杰才,等.高能球磨法制备纳米钛酸钡的晶化过程[J].压电与声光, 2001, 23(5): 381-383
    [76]蒲永平,段卫东,吴建鹏.机械力化学法制备钛酸钡粉体[J].陶瓷科学与艺术, 2004(1): 20-22
    [77]吴其胜,高树军,张少明,等. BaTiO3纳米晶机械力化学合成[J].无机材料学报, 2002, 17(4): 719-724
    [78] Senna M. Smart mechanochemistry-Charge transfer control for tailored solid-state reaction under minimum external energy [J]. Journal of Alloys and Compounds, 2007, 434-435: 768-772
    [79] Sydorchuk V. V., Zazhigalov V. A., Khalameida S. V., et al. Investigation of physicochemical transformation at mechanochemical, hydrothermal and microwave treatment of barium titanyloxalate [J]. Journal of Alloys and Compounds, 2009, 482(1-2): 229-234
    [80] Temuujin J., Aoyama M., Senna M., et al. Synthesis of Y-type hexaferrites via a soft mechanochemical route [J]. Journal of Solid State Chemistry, 2004, 177(11): 3903-3908
    [81] Boldyrev V. V. Mechanochamical effect on crystal [J]. Materials Research Bulletin, 1983, 18: 1317
    [82] Ding J., McCormick P. G., Street R. Magnetization Processes in High Coercivity SmCo5 and Sm2Fe17Nx Prepared by Mechanical Alloying [J]. Tokyo: International Conference on Advanced Materials, 1993
    [83] Botta P. M., Bercoff P. G., Aglietti E. F., et al. Two alternative synthesis routes for MnZn ferrites using mechanochemical treatments [J]. Ceramics International, 2006, 32(8): 857-863
    [84] Rojac T., Kosec M., ?egedin P., et al. The formation of a carbonato complex during the mechanochemical treatment of a Na2CO3-Nb2O5 mixture [J]. Solid State Ionics, 2006, 177(33-34): 2987-2995
    [85] Rojac T., Kosec M., Polomska M., et al. Mechanochemical reaction in the K2CO3-Nb2O5 system[J]. Journal of the European Ceramic Society, 2009, 29(14): 2999-3006
    [86] Zduji? M., Poleti D., Jovaleki? C., et al. The evolution of structure induced by intensive milling in the system 2Bi2O3-3TiO2 [J]. Journal of Non-Crystalline Solids, 2006, 352(28-29): 3058-3068
    [87] Legendre F., Poissonnet S., Bonnaillie P. Synthesis of nanostructured SnO2 materials byreactive ball-milling [J]. Journal of Alloys and Compounds, 2007, 434-435: 400-404
    [88] Bolarin A. M., Sanchez F., Palomares S., et al. Synthesis of calcium doped lanthanum manganite by mechanosynthesis [J]. Journal of Alloys and Compounds, 2007, 436(1-2): 335-340
    [89] Rodríguez-Reynaa E., Fuentesa A. F., Maczka M., et al. Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling [J]. Journal of Solid State Chemistry, 2006, 179(2): 522-531
    [90] Moreno K. J., Guevara-Liceaga M. A., Fuentes A. F. Room-temperature synthesis and conductivity of the pyrochlore type Dy2(Ti1-yZry)2O7 (0≤y≤1) solid solution [J]. Journal of Solid State Chemistry, 2006, 179(3): 928-934
    [91] Alguer? M., Moure A., Pardo L., et al. Processing by mechanosynthesis and properties of piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 with different compositions [J]. Acta Materialia, 2006, 54(2): 501-511
    [92] Khachane M., Moure A., Elaatmani M., et al. Mechanosynthesis of the ferroelectric materials Ba2ANb5O15 (A = K, Na, Li) [J]. Journal of Alloys and Compounds, 2006, 424(1-2): 231-236
    [93] Balá? P., Takacs L., Godo?íkováE., et al. Preparation of nanosized antimony by mechanochemical reduction of antimony sulphide Sb2S3 [J]. Journal of Alloys and Compounds, 2007, 434-435: 773-775
    [94] Eigen N., Kunowsky M., Klassen T. Synthesis of NaAlH4-based hydrogen storage material using milling under low pressure hydrogen atmosphere [J]. Journal of Alloys and Compounds, 2007, 430(1-2): 350-355
    [95] Rongeat C., Jansa I. L., Oswald S., et al. Mechanochemical synthesis and XPS analysis of sodium alanate with different additives [J]. Acta Materialia, 2009, 57(18): 5563-5570
    [96] Shim J.-H., Lee G.-J.,Cho Y. W. Reaction products between TiCl3 catalyst and Li3AlH6 during mechanical mixing [J]. Journal of Alloys and Compounds, 2006, 419(1-2): 176-179
    [97] Sartori S., Istad-Lem A., Brinks H. W., et al. Mechanochemical synthesis of alane [J]. International Journal of Hydrogen Energy, 2009, 34(15): 6350-6356
    [98] Paskevicius M., Webbb J., Pitt M. P., et al. Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar [J]. Journal of Alloys and Compounds, 2009, 481(1-2): 595-599
    [99] Ji Woo Kima, Hee-Suk Chung, Jae-Hyeok Shim, et al., Synthesis and liquid phase sintering of TiN/TiB2/Fe-Cr-Ni nanocomposite powder[J], Journal of Alloys and Compounds, 2006, (422): 62-66
    [100] Mosbah A., Calka A., Wexler D. Rapid synthesis of titanium nitride powder by electrical discharge assisted mechanical milling [J]. Journal of Alloys and Compounds, 2006, 424(1-2): 279-282
    [101] Calka A., Wexler D., Mosbah, A. Y. Synthesis of nanopowders under high frequency electric discharge assisted mechanical milling [J]. Journal of Alloys and Compounds, 2007, 434-435: 463-466
    [102] Calka A., Oleszak D. Synthesis of TiB2 by electric discharge assisted mechanical milling [J]. Journal of Alloys and Compounds, 2007, 440(1-2): 346-348
    [103] Horiuchi S., Heang J. Y., He L. L., et al. Facilitated synthesis of cubic boron nitride by a mechanochemical effect [J]. Philosophical Magzine, 1998, 78(5): 1065-1072
    [104] Lohse B. H., Calka A., Wexler D. Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon [J]. Journal of Alloys and Compounds, 2007, 434-435: 405-409
    [105] Sun Y., Yao B., He Q., et al. Synthesis and formation mechanism of cubic ZrN nanopowders by mechanochemical reaction of ZrCl4 and Li3N [J]. Journal of Alloys and Compounds, 2009, 479(1-2): 599-602
    [106] Balá? P., FiceriováJ., ?epelák V., et al. Thiourea leaching of silver from mechanically activated tetrahedrite [J]. Hydrometallurgy, 1996, 43(1-3): 367-377
    [107] Breen C., Illés J., Yarwood J., et al. Variable temperature diffuse reflectance infrared Fourier transform spectroscopic investigation of the effect of ball milling on the water sorbed to kaolin. Vibrational Spectroscopy, 2007, 43(2): 366-379
    [108] Makóé., Senkár Z., Kristóf J., et al. Surface modification of mechanochemically activated kaolinites by selective leaching [J]. Journal of Colloid and Interface Science, 2006, 294(2): 362-370
    [109] Gunko V. M., Voronin E. F., Nosach L. V., et al. Nanocomposites with fumed silica/poly(vinyl pyrrolidone) prepared at a low content of solvents [J]. Applied Surface Science, 2006, 253: 2801-2811
    [110] Damm C., Mallembakam M. R., Peukert W. Effect of grinding conditions on mechanochemical grafting of poly(1-vinyl-2-pyrrolidone) onto quartz particles [J]. Advanced Powder Technology, 2010, 21(1): 50-56
    [111] Hasegawa M., Kanda Y., et al. Surface modification of fine inorganic powders by wet grinding with soapless emulsion polymerization [J]. Powder Technology, 1994, 78(2): 159-163
    [112] Hasegawa M., Arai K., Saito S. Selective adsorption of polymer on freshly ground solid surface in soapless emulsion polymerization [J]. Journal of applied polymer science, 1987, 33(2): 411-418
    [113] Oprea C. V., Weiner F. Mechanochemical grafting of some inorganic supports [J]. Journal of applied polymer science, 1986, 31(3): 951-954
    [114]李冷,日下英史,中广吉孝.硅灰石的微粉碎与物性研究[J]. 1999, 5(4): 15-18
    [115]毋伟,卢寿慈.重钙聚苯乙烯机械力化学接枝改性工艺研究[J].非金属矿, 2000, 23(1): 5-6
    [116] Wu W., Lu S. Mechano-chemical surface modification of calcium carbonate particles by polymer grafting [J]. Powder Technology, 2003, 137(1-2): 41-48
    [117]曾凡,胡永平.矿物加工颗粒学[M].北京:中国矿大出版社, 1995
    [118]刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报, 2002, 12(4): 32-35
    [119] Popa M., Popa A. A. Mechanochemical treatment of CaCO3 for reducing hydrophylicity [J]. Polymer-plastics technology and engineering, 1998, 37(1): 115-126
    [120] Martinelli G., Plescia P. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2 [J]. Physics of the Earth and Planetary Interiors, 2004, 142(3-4): 205-214
    [121] Liu G., Li F., Chen Z., et al. The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction [J]. Journal of Solid State Chemistry, 2006, 179(1): 331-335
    [122] Yin S., Yamaki H., Komatsu M., et al. Synthesis of visible-light reactive TiO2-xNy photocatalyst by mechanochemical doping [J]. Solid State Sciences, 2005, 7(12): 1479-1485
    [123] Huang M. H., Mao S., Feick H., et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899
    [124] Wang Y. W., Zhang L. D., Wang G. Z., et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J]. Journal of Crystal Growth, 2002, 234: 171-175
    [125] Lin H. M., Tzeng S. J., Hsiau P. J., et al. Electrode effects on gas sensing properties of nanocrystalline zinc oxide [J]. Nanostructured Materials, 1998, 10(3): 465-477
    [126] Look D. C. Recent advances in ZnO materials and devices material [J]. Science and Engineering: B, 2001, 80(1-3): 383-387
    [127] Lu J., Zhang Q., Wang J., et al. Synthesis of N-Doped ZnO by grinding and subsequent heating ZnO-urea mixture [J]. Powder Technology, 2006, 162(1): 33-37
    [128]Ao W., Li J., Yang H., et al. Mechanochemical synthesis of zinc oxide nanocrystalline [J]. Powder Technology, 2006, 168(3): 148-151
    [129] Shen L. M., Bao N. Z., Yanagisawa K., et al. Direct synthesis of ZnO nanoparticles by a solution-free mechanochemical reaction [J]. Nanotechnology, 2006, 17(20): 5117-5123
    [130] Pardeshi S. K., Patil A. B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method[J]. Journal of Molecular Catalysis A: Chemical, 2009, 308(1-2): 32-40
    [131]林金辉,李金涛,叶巧明,等.铝酸酯DL-411与硅烷KH-570偶联剂复合改性粉石英研究[J].非金属矿, 2006, 29(3): 25-28
    [132] Simionescu C., Oprea C. V. Study on mechanochemical syntheses of some macromolecular complexes of vanadium and manganeses with polyamides and polyester-polyamides as ligands [J]. Die Makromolekular Chemie, 1980, 181(8): 1579-1590
    [133] Oprea C. V., Neguleanu C., et al. Mechanochemical syntheses [J]. Die Makromolekular Chemie, 1969, 126: 217-230
    [134]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社, 1999: 358
    [135] Wei Y., Yan J., Lu S., et al. Mechanochemical decomposition of pentachlorophenol by ball milling [J]. Journal of Environmental Sciences, 2009, 21(12): 1761-1768
    [136] Todorovi? Markovi? B., Jokanovi? V., Jovanovi? S., et al. Surface chemical modification of fullerene by mechanochemical treatment [J]. Applied Surface Science, 2009, 255(17): 7537-7541
    [137]陈玲,胡飞,李晓玺,等.机械力化学效应对马铃薯淀粉消化性能和抗酶解性能的影响[J].食品科学, 2001, 22(8): 15-18
    [138]二国二郎.淀粉科学手册[M].王薇青.北京:中国轻工业出版社, 1990
    [139] Englyst H. N., Cummings J. H. Resistant starch, a new food component: a classfication of starch for nutuitional purposes [R]. England: lth European Confrernce on FoodScience and Technology, 1987
    [140] Evers A. D., Stevens D. J. Production and measurement of starch damage in flour. Part 3. effect of type of damage on baking performance [J]. Starch, 1984, 36(11): 390-392
    [141] Stark J. R.,Yin X. S. The effect of physical damage on large and small barley starch granules [J]. Starch, 1986, 38(11): 369-374
    [142] Chen R., Yi C. B., Wu H. Degradation kinetics and molecular structure development of hydroxyethyl cellulose under the solid state mechanochemical treatment [J]. Carbohydrate Polymers. 2010, 81(2): 188-195
    [143]王国建,杨富平.机械力和化学双重降解制备PVC加工助剂的研究[J].中国塑料, 2006, 20(5): 73-76
    [144]郭少云,徐僖.振磨降解制得的低分子量PVC对PVC增塑作用的研究[J].高分子材料科学与工程, 1995, 11(2): 81-86
    [145]Zhou, C. F., Du X. S., Liu Z., et al. Solid phase mechanochemical synthesis of polyaniline branched nanofibers[J]. Synthetic Metals, 2009, 159(13): 1302-1307
    [146] Huang J. X., Moore J. A., Acquaye J. H., et al. Mechanochemical Route to the Conducting Polymer Polyaniline [J]. Macromolecules, 2005, 38(2): 317-321
    [147] Abdiryim T., Zhang X. G., Jamal R. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids [J]. Materials Chemistry and Physics, 2005, 90(2-3): 367-372
    [148] Abdiryim T., Jamal R., Nurulla I. Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline [J]. Journal of Applied Polymer Science, 2007, 105(2): 576-584
    [149] Ding Y. J., Abdiryim T., An S. Y., et al. Effect ofβ-cyclodextrin on the solid-state synthesized polyaniline doped with hydrochloric acid [J]. Journal of Applied Polymer Science, 2008, 107(6): 3864
    [150] Lira-Cantu M., Gomez-Romero P. Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes [J]. Chemistry Materials, 1998, 10: 698-704
    [151] Pri-Bar I., James B. R. Mechanochemical, solvent free, palladium-catalyzed hydrodechlorination of chloroaromatic hydrocarbons [J]. Journal of Molecular Catalysis A: Chemical, 2007, 264(1-2): 135-139
    [152] Zhang Q. W., Saito F., Ikoma T., et al. Effects of quartz addition on the mechanochemical dechlorination of chlorobiphenyl by using CaO [J]. Environmental Science & Technology, 2001, 35(24): 4933-4935
    [153] Huang J. X., Moore J. A., Acquaye J. H., et al. Mechanochemical Route to the Conducting Polymer Polyaniline [J]. Macromolecules, 2005, 38(2): 317-321
    [154]卢寿慈.粉体技术手册[M].北京:化学工业出版社, 2004: 62-98
    [155]尹忠俊,张少军,李忠富.振动磨简体内部的能量传递规律[J].北京科技大学学报, 2006, 28(5): 471-474
    [156] Huang H., Pan J. ,McCormick P. G. On the dynamics of mechanical milling in a vibratory mill [J]. Materials Science and Engineering A, 1997, 232(1-2): 55-62
    [157] Boldyrev V. V. Mechanochemistry of inorganic solids [J]. Thermochimica Acta, 1987, 110: 303-317
    [158] Tká?ováK. Mechanical activation of minerals [M]. Netherlands: Elsevier, 1989: 70-108
    [159]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社, 2008: 24-36
    [160] Magini M., Colella C., Guo W., et al. Some hints about energy transfer in the mechanosynthesis of materials [J]. International Journal of Mechanochemistry and Mechanical Alloying, 1994, 1(1): 14-25
    [161]唐果宁,彭猛.离散磨介群动力学特性数值分析[J].振动与冲击, 2009, 28(8): 184-187
    [162] Pourghahramani P., P?lson B., Forssberg E. Multivariate projection and analysis of microstructural characteristics of mechanically activated hematite in different grinding mills [J]. International Journal of Mineral Processing, 2008, 87(3-4): 73-82
    [163]汪洋,沈宝中,夏小华, et al.不同粉碎方式及条件对低熔点玻璃粉特性的影响[J].中国非金属矿工业导刊, 2007(2): 53-55
    [164] Avvakumov E., Senna M., Kosova N. Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies [M]. UK: Kluwer Academic Publishers, 2001: 64-65
    [165] Kobayashi N., Guilin P., Kobayashi J., et al. A new pulverized biomass utilization technology [J]. Powder Technology, 2008, 180(3): 272-283
    [166] Chen Y. L., Chang J. E., Shih P. H., et al. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture [J]. Journal of Environmental Management, 2010, 91(9): 1892-1897
    [167] Wang X. Y., Lee H. S., Park K. B., et al. A multi-phase kinetic model to simulatehydration of slag-cement blends [J]. Cement and Concrete Composites, 2010, 32(6): 468-477
    [168]唐卫军.钢渣矿渣复合微粉对水泥和混凝土性能影响的实验研究[D].北京:中国地质大学, 2009
    [169] Lecomte I., Henrist C., Liégeois M., et al. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement [J]. Journal of the European Ceramic Society, 2006, 26(16): 3789-3797
    [170]孙宝云.高炉矿渣粉在水泥和混凝土中的应用[J].建筑石膏与胶凝材料, 2004, 9: 56-57
    [171] Samet B.,Chaabouni M. Characterization of the Tunisian blast-furnace slag and its application in the formulation of a cement [J]. Cement and Concrete Research, 2004, 34(7): 1153-1159
    [172] Zhang X., Ding X. Z., Lim T. H., et al. Microwave study of hydration of slag cement blends in early period [J]. Cement and Concrete Research, 1995, 25(5): 1086-1094
    [173]张苹,李秋义,赵铁军,等.超细矿渣粉对水泥水化的影响[J].东北大学学报(自然科学版), 2010, 31(9): 1300-1303
    [174]朱明,胡曙光,杨文.机械力化学作用对硅酸二钙晶体结构的影响[J].水泥工程, 2006, 2: 9-13
    [175]胡曙光,朱明.粉磨机械作用对β-C2S物理化学性质的影响[J].硅酸盐学报, 2006, 34(5): 560-565
    [176]陶珍东,张颖,杨中喜,等.高能球磨活化硬化水泥浆体的研究[J].水泥工程, 2004, 4: 21-24
    [177] Scian A. N., López J. M. P., Pereira E. Mechanochemical activation of high alumina cements-hydration behavior. I. [J]. Cement and Concrete Research, 1991, 21(1): 51-60
    [178] Scian A. N., Pereira E. Mechanochemical activation of high alumina cements-hydration and thermomechanic behavior. II. [J]. 1994, 24(5): 937-947
    [179] ?ner M. A study of intergrinding and separate grinding of blast furnace slag cement [J]. Cement and Concrete Research, 2000, 30(3): 473-480
    [180] ?ner M., Erdo?du K., GünlüA. Effect of components fineness on strength of blast furnace slag cement [J]. Cement and Concrete Research, 2003, 33(4): 463-469
    [181]侯新凯,徐德龙,曹红红.高活性矿渣粉对矿渣水泥性能的效应[J].西安建筑科技大学学报(自然科学版), 2006, 38(1): 9-17
    [182] Memon N. A., Sumadi S. R.,Ramli M. Performance of high wokability slag-cement mortar for ferrocement [J]. Building and Environment, 2007, 42(7): 2710-2717
    [183]张永娟,张雄.矿渣水泥活性研究[J].同济大学学报(自然科学版), 2005, 33(2): 208-211
    [184] Rai A., Prabakar J., Raju C. B., et al. Metallurgical slag as a component in blended cement [J]. Construction and Building Materials, 2002, 16(8): 489-494
    [185] Jau W. C., Tsay D. S. A study of the basic engineering properties of slag cement concrete and its resistance to seawater corrosion [J]. Cement and Concrete Research, 1998, 28(10): 1363-1371
    [186] Binici H., Temiz H., K?se M. M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice [J]. Construction and Building Materials, 2007, 21(5): 1122-1128
    [187] Bágel L. Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume [J]. Cement and Concrete Research, 1998, 28(7): 1011-1020
    [188] Xi Y., Siemer D. D., Scheetz B. E. Strength development, hydration reaction and pore structure of autoclaved slag cement with added silica fume [J]. Cement and Concrete Research, 1997, 27(1): 75-82
    [189]朱蓓蓉,吴学礼,杨全兵.超细矿渣掺和料对普通硅酸盐水泥性能的影响及其作用机理[J].混凝土与水泥制品, 1997, 6: 20-22+25
    [190] Zhang X., Ding X. Z., Lim T. H., et al. Microwave study of hydration of slag cement blends in early period [J]. Cement end Concrete Research, 1995, 25(5): 1086-1094
    [191] Kumar S., Kumar R., Bandopadhyay A., et al. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement [J]. Cement and Concrete Composites, 2008, 30(8): 679-685
    [192] Sajedi F. ,Razak H. A. The effect of chemical activators on early strength of ordinary Portland cement-slag mortars [J]. Construction and Building Materials, 2010, 24(10): 1944-1951
    [193] Konsta-Gdoutos M. S., Shah S. P. Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag [J]. Cement and Concrete Research, 2003, 33(8): 1269-1276
    [194] Escalante-GarcíJ. I., Gorokhovsky A. V., Mendoza G., et al. Effect of geothermal wasteon strength and microstructure of alkali-activated slag cement mortars [J]. Cement and Concrete Research, 2003, 33(10): 1567-1574
    [195] Puertas F., Martínez-Ramírez S., Alonso S., et al. Alkali-activated fly ash/slag cement: Strength behaviour and hydration products [J]. Cement and Concrete Research, 2000, 30(10): 1625-1632
    [196] Fernández-Jiménez A., Palomo J. G., Puertas F. Alkali-activated slag mortars Mechanical strength behaviour, Cement and Concrete Research [J]. 1999, 29(8): 1313-1321
    [197] Bakharev T., Sanjayan J. G., Cheng Y. B. Alkali activation of Australian slag cements [J]. Cement and Concrete Research, 1999, 29(1): 113-120
    [198] Fernández-Jiménez A., Puertas F. Alkali-activated slag cements: kinetic studies [J]. Cement and Concrete Research, 1997, 27(3): 359-368
    [199] Wang S. D., Scrivener K. L. Hydration products of alkali activated slag cement [J]. Cement and Concrete Research, 1995, 25(3): 561-571
    [200] Shi C. J., Day R. L. A calorimetric study of early hydration of alkali-slag cements [J]. Cement and Concrete Research, 1995, 25(6): 1333-1346
    [201] Sajedi F. ,Razak H. A. Comparison of different methods for activation of ordinary Portland cement-slag mortars [J]. Construction and Building Materials, 2010, 25(1): 30-38
    [202] Babaian, P. M., Wang K. J., Mishulovich A., et al. Effect of mechanochemical activation on reactivity of cement kiln dust-fly ash systems [J]. ACI Materials Journal, 2003, 100(1): 55-62
    [203] Gartner E. M., Uchikawa H. Cement Technology [M]. Westerville, Ohio: The American Ceramic Society, 1993
    [204]张世礼.特大型振动磨及其应用[M].北京:冶金工业出版社, 2007: 1
    [205] Hughes T. L., Methven C. M., Jones T. G. J., et al. Determining cement composition by Fourier transform infrared spectroscopy [J]. Advanced Cement Based Materials, 1995, 2(3): 91-104
    [206] Moenke H. H. W. Silica, the three-dimentional silicates, borosilicates and beryllium silicates, The infrared spectra of minerals [M]. Surrey: Mineralogical Society Monograph 4, Adlard & Son Ltd., Bartholomew Press, 1974: 365-444
    [207] Russell J. D. Infrared spectroscopy of inorganic compounds, Laboratory metjods invibratinal spectroscopy [M]. New York: John Wiley & Sons Ltd., 1987: 425-449
    [208] Mollah M. Y. A., Yu W., Schennach R., et al. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate [J]. Cement and Concrete Research, 2000, 30(2): 267-273
    [209] Ghosh S. N., Handoo S. K. Infrared and Raman spectral studies in cement and concrete [J]. Cement and Concrete Research, 1980, 10(6): 771-782
    [210] Kloprogge J. T., Schuiling R. D., Ding Z., et al. Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuric acid [J]. Vibrational Spectroscopy, 2002, 28(2): 209-221
    [211] Mollah M. Y. A., Kesmez M., Cocke D. L. An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V [J]. Science of the Total Environment, 2003, 325(1-3): 255-262
    [212]ROSS, S. D. Sulphates and other Oxy-anions of Group VI, The infrared spectra of minerals [M]. Surrey: Mineralogical Society, Monograph 4, Adlard & Son Ltd., Bartholomew Press, 1974: 423 - 444
    [213] Trezza M.A., Lavat A.E. Analysis of the system 3CaO·Al2O3-CaSO4·2H2O-CaCO3-H2O by FT-IR spectroscopy [J]. Cement and Concrete Research,2001, 31(6): 869-872
    [214] Richard T., Mercury L., Poulet F., et al. Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations [J]. Journal of Colloid and Interface Science, 2006, 304(1): 125-136
    [215] Midgley H. G. The formation and phase composition of Portland cement clinker, The chemistry of cements [M]. New York: Academic Press, 1964: 89-130
    [216] Tká?ováK. Mechanical activation of minerals [M]. Netherlands: Elsevier, 1989: 133-138
    [217] Sajedi F. ,Razak H. A. Effects of thermal and mechanical activation methods on compressive strength of ordinary Portland cement-slag mortar [J]. Materials & Design, 2010, 32(2): 984-995
    [218]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社, 2005: 7-8
    [219] Rhodes M. Introduction to Particle Technology [M]. New York: John Wiley & Sons, 1998: 223-240
    [220] Wu Z. Q., Young J. F. The hydration of tricalcium silicate in the presence of colloidalsilica [M]. Journal of Materials Science,1984, 19(11): 3477-3486
    [221] Jonasson J. E., Ronin V. Energetically Modified Cement (EMC) [R]. Lillehammer, Norway, Proceedings of the 3rd International Conference on High-Strength Concrete, 1994: 752-759
    [222] Ramachandran V. S. Concrete Admixtures Handbook - Properties, Science, and Technology [M]. New Jersey: Noyes Publications, 1995: 1-14
    [223] Levitt M. Concrete Materials - Problems and Solutions [M]. London: E & FN SPON, 2003: 1-2
    [224] Bullard J. W., Jennings H. M., Livingston R. A., et al. Mechanisms of cement hydration [J]. Cement and Concrete Research, 2011, In Press
    [225] Schweitzer J. W., Livingston R. A., Rolfs C., et al. In situ measurements of the cement hydration profile during the induction period [R]. Montreal, Canada: Proceedings of the Twelfth International Congress on the Chemistry of Cement, National Research Council of Canada, 2007
    [226] Bellmann F., Damidot D., M?ser B., et al. Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate [J]. Cement and Concrete Research, 2010, 40(6): 875-884
    [227] Shi C. ,Day R. L. A calorimetric study of early hydration of alkali-slag cements [J]. Cement and Concrete Research, 1995, 25(6): 1333-1346
    [228] YlméR., J?glid U., Steenari B. M., et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques [J]. Cement and Concrete Research, 2009, 39(5): 433-439
    [229]何永佳,胡曙光. 29Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程学报, 2007, 25(1): 147-153
    [230] Brundle C. R., Evans C. A., Wilson S. Encyclopedia of Materials Characterization - Surfaces, Interfaces, Thin Films [M]. Boston: Reed Publishing (USA) Inc., 1992: 460-465
    [231] Hanna R. A., Barrie P. J., Cheeseman C. R., et al. Solid state 29Si and 27Al NMR and FTIR study of cement pastes containing industrial wastes and organics [J]. Cement and Concrete Research, 1995, 25(7): 1435-1444
    [232]钟白茜,杨南如. 29Si-NMR法和TMS-GC法研究水泥水化速度及[SiO4]4-四面体聚合结构[J].南京化工学院学报, 1994, 16(3): 26-32
    [233]方永浩.固体高分辨核磁共振在水泥化学研究中的应用[J].建筑材料学报, 2003, 6(1): 54-60
    [234] Soare L. C., Garcia-Luna A. Synthesis and Characterization of Inorganic Polymer Cement from Metakaolin and Slag [M]. New York: John Wiley & Sons, Inc., 2009: 283-292
    [235]刘勤晋,黄泽澄.魔芋及其保健成份KGM的功能与应用前景[J].观点与角度, 1998, 5(7): 52-53
    [236]崔熙,周平,李松林,任延军.中药魔芋的研究概况[J].中药材, 1995, 18(7): 368-370
    [237]冲增哲.魔芋科学[M].古明远.成都:四川大学出版社, 1990: 88-89
    [238]莫湘涛,张梅芬,李敏艳.生物法提取魔芋中葡甘露聚糖[J].湖南师范大学自然科学学报. 1998, 21(1): 85-88
    [239]刘佩瑛.魔芋学[M].北京:中国农业出版社, 2004: 241-252
    [240]许时婴,钱和.魔芋葡甘露聚糖的化学结构与流变性质[J].无锡轻工业学院学报, 1991, 10(1): 1-12
    [241] Maekaji K. Determination of Acidic Components of Konjac Mannan [J]. Agricultural and Biological Chemistry, 1978(42): 177-178
    [242] Dea I. C. M., Morrison A. Chemistry and Interactions of Seed Galactomannans [J]. Advances in Carbohydrate Chemistry and Biochemistry, 1975, 31: 241-312
    [243] Maeda M., Shimahara H., Sugiyama N. Detailed examination of the branched structure of konjac glucomannan [J]. Agriculture Biology Chemistry, 1980, 44(2): 245-252
    [244]冲增哲著,吴万兴,王照利译.魔芋甘露聚糖化学结构[J].陕西林业科技, 1999,增刊: 54-62
    [245] Pang J., Sun Y. ,Sun Y. Studies on Single Chain Structure of Konjac Glucomannan [J].结构化学, 2006, 25(12): 1441-1448
    [246]可燕,车生泉,周秀佳.魔芋葡甘露聚糖的研究进展[J].中国中药杂志, 1999, 24(1): 6-8
    [247]冲增哲.魔芋科学[M].古明远.成都:四川大学出版社, 1990: 135-144
    [248]王照利,吴万兴,李科友.魔芋精粉中甘露聚糖含量的测定[J].陕西林业科技, 1998, 1: 18-20
    [249]罗学刚.高强度可食性魔芋葡甘聚糖薄膜研究[J].中国包装, 2000, 20(1): 89-91
    [250]冲增哲.魔芋科学[M].古明远.成都:四川大学出版社, 1990: 96
    [251]沈悦玉,杨湘庆.魔芋胶的特征和魔芋凝胶食品[J].食品科学, 1995, 16(6): 14-19
    [252]何东保,杨朝云,詹东风.黄原胶与魔芋胶协同相互作用及其凝胶化的研究[J].武汉大学学报, 1998, 44(2): 198-200
    [253]张东华,汪庆平,杨学义.天然高分子魔芋葡甘聚糖的复配产物成膜研究[J].日用化学工业, 2000, 1: 19-21
    [254] Dave V., Sheth M., McCarthy S. P., et al. Liquid crystalline, rheological and thermal properties of konjac glucomannan [J]. Polymer, 1998, 39(5): 1139-1148
    [255]刘佩瑛.魔芋学[M].北京:中国农业出版社, 2004: 271-279
    [256]陈欣,林丹黎.魔芋葡甘聚糖的性质、功能及应用[J].重庆工学院学报(自然科学版), 2009(7): 36-39
    [257]张茂玉,黄承钰.魔芋食品对便秘者肠道功能的影响[J].营养学报, 1990, 12(2): 185-190
    [258] Aoyama Y., Matsumoto H. Effect on liver and serum lipids in rats of dietary additions of fibers and cholesty ramine to a cystine-excess diet [J]. Agricultural and Biological Chemistry, 1988, 52(11): 2811-2816
    [259] Kiriyama S., Morisaki H. The application of KJ [J]. Agricultural and Biological Chemistry, 1970, 34(4): 641
    [260] Venter C. S.,Vorster H. H. The influnce of KJ on human body [J] Journal of Nutrition, 1990, 120: 1046
    [261] Vorster C. S., Kruger H. S. A new kind of food [J]. Journal of Plant Foods, 1985, 6: 263
    [262] Biancardi G., Palmiero L. The influnce of KJ food on fat [J]. Current therapeutic research, 1989, 46(5): 908
    [263]孙远明,吴青,沈国莲,等.魔芋葡甘露聚糖的结构?食品学性质及保健功能[J].食品与发酵工业, 1999, 25(5): 47-51
    [264]可燕,车生泉,周秀佳.魔芋葡甘露聚糖的研究进展[J].中国中药杂志, 1999, 24(1): 6-8
    [265]李群英,李明贵.国内近几年对魔芋精粉在食品工业中应用研究的进展[J].食品工业科技, 1990, 5: 32-34
    [266] Yu H., Huang A.,Xiao C. Characteristics of konjac glucomannan and poly(acrylic acid) blend films for controlled drug release [J]. Journal of Applied Polymer Science, 2006,100(2): 1561-1570
    [267] Xia B., Ha W., Meng X.-W., et al. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer [J]. Carbohydrate Polymers, 2009, 79(3): 648-654
    [268] Wen X., Cao X., Yin Z., et al. Preparation and characterization of konjac glucomannan-poly(acrylic acid) IPN hydrogels for controlled release [J]. Carbohydrate Polymers, 2009, 78(2): 193-198
    [269]黄红,王雪梅,郑雪琴,等.棕榈酸葡甘聚糖酯的合成及取代度的测定[J].安徽大学学报(自然科学版), 2009, 33(3): 82-86
    [270] Dave V., Sheth M., McCarthy S. P., et al. Liquid crystalline, rheological and thermal properties of konjac glucomannan [J]. Polymer, 1998, 39(5): 1139-1148
    [271] Li B., Xie B.,Kennedy J. F. Studies on the molecular chain morphology of konjac glucomannan [J]. Carbohydrate Polymers, 2006, 64(4): 510-515
    [272] Gao S.,Nishinari K. Effect of deacetylation rate on gelation kinetics of konjac glucomannan [J]. Colloids and Surfaces B: Biointerfaces, 2004, 38(3-4): 241-249
    [273] Perols C., Piffaut B., Scher J., et al. The potential of enzyme entrapment in konjac cold-melting gel beads [J]. Enzyme and Microbial Technology, 1997, 20(1): 57-60
    [274] Cheng L. H., Abd Karim A., Norziah M. H., et al. Modification of the microstructural and physical properties of konjac glucomannan-based films by alkali and sodium carboxymethylcellulose [J]. Food Research International, 2002, 35(9): 829-836
    [275] Xiao C., Gao S., Wang H., et al. Blend films from chitosan and konjac glucomannan solutions [J]. Journal of Applied Polymer Science, 2000, 76(4): 509-51
    [276] Yang G., Zhang L., Yamane C., et al. Blend membranes from cellulose/konjac glucomannan cuprammonium solution [J]. Journal Membrane Science, 1998, 139(1): 47-56
    [277]邹新禧,谢美然.魔芋葡甘露聚糖的研究进展[J].现代化工, 1995, 12: 15-17
    [278]沈悦玉,杨湘庆.魔芋胶的特征和魔芋凝胶食品[J].食品科学, 1995, 16(6): 14-19
    [279] Abhyankar A. R., Mulvihill D. M., Fenelon M. A., et al. Microstructural characterization ofβ-lactoglobulin-konjac glucomannan systems: Effect of NaCl concentration and heating conditions [J]. Food Hydrocolloids, 2010, 24(1): 18-26
    [280] Gao S., Guo J., Wu L., et al. Gelation of konjac glucomannan crosslinked by organic borate [J]. Carbohydrate Polymers, 2008, 73(3): 498-505
    [281] Gao S., Guo J., Nishinari K. Thermoreversible konjac glucomannan gel crosslinked by borax [J]. Carbohydrate Polymers, 2008, 72(2): 315-325
    [282]李波,谢笔钧.国外魔芋葡甘聚糖的开发研究现状[J].农牧产品开发, 1999, 8: 6-7
    [283]莫卫平,蒙义文,贾成禹,等.葡甘聚糖凝胶及其衍生物研究[J].离子交换与吸附, 1992, 8(1): 5-9
    [284] Liu F., Luo X.,Lin X. Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan [J]. Journal of Hazardous Materials, 2010, 178(1-3): 844-850
    [285]陈立贵,袁新强,王忠,等.三偏磷酸三钠对魔芋葡甘聚糖的改性研究[J].安徽农业科学, 2008, 36(5): 1767-1769
    [286]陈立贵.磷酸酯化魔芋葡甘聚糖水凝胶的降解性能影响因素研究[J].安徽农业科学, 2008, 36(23): 9842-9843+9879
    [287]吴绍艳,张升晖,颜益志.三聚磷酸钠对魔芋葡甘聚糖酯化交联改性研究[J].食品工业科技, 2005, 26(5): 138-142
    [288]奉平,陈旭东,杨大成,等.魔芋葡甘露聚糖磷酸酯对高岭土悬浊液的絮凝研究(I) [J].化学研究与应用, 1995, 7(3): 326-328
    [289]张迎庆,干信,谢笔钧,等.魔芋葡甘聚糖凝胶珠硫酸酯化修饰工艺优化研究[J].农业工程学报, 2005, 21(6): 140-143
    [290] Duan J., Lu Q., Chen R., et al. Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion [J]. Carbohydrate Polymers, 2010, 80(2): 436-441
    [291] Xie C., Feng Y., Cao W., et al. Novel biodegradable flocculating agents prepared by grafting polyacrylamide to Konjac [J]. Journal of Applied Polymer Science, 2009, 111(5): 2527-2536
    [292]邵怿,邱舒,张文莉,等.交联羧甲基魔芋葡甘聚糖空心微球制备及应用[J].化学研究与应用, 2009(3): 389-392
    [293]陈浩,沈敏,薛爱芳,等.交联羧甲基魔芋葡甘聚糖微柱预富集-GFAAS测定痕量铅、镉、铜的研究[J].光谱学与光谱分析, 2009, 29(5): 1422-1426
    [294] Liu F., Luo X., Lin X., et al. Removal of copper and lead from aqueous solution by carboxylic acid functionalized deacetylated konjac glucomannan [J]. Journal of Hazardous Materials, 2009, 171(1-3): 802-808
    [295]刘莉.魔芋葡甘聚糖交联梭甲基改性及其对金属离子的吸附和解吸性能研究[D].武汉:华中农业大学, 2008
    [296] Lin X., Wu Q., Luo X., et al. Effect of degree of acetylation on thermoplastic and melt rheological properties of acetylated konjac glucomannan [J]. Carbohydrate Polymers, 2010, 82(1): 167-172
    [297] Xu C., Luo X., Lin X., et al. Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends [J]. Polymer, 2009, 50(15): 3698-3705
    [298]张东华,汪庆云,杨学义.天然高分子魔芋葡甘聚糖的复配产物成膜研究[J].日用化学工业, 2000, 1: 19-21
    [299] Shen D., Wan C.,Gao S. Molecular weight effects on gelation and rheological properties of konjac glucomannan-xanthan mixtures [J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(3): 313-321
    [300] Harrington J. C.,Morris E. R. An unusual manifestation of phase separation in mixtures of disordered gelatin with konjac glucomannan [J]. Food Hydrocolloids, 2009, 23(2): 460-467
    [301] Fitzsimons S. M., Tobin J. T.,Morris E. R. Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature [J]. Food Hydrocolloids, 2008, 22(1): 36-46
    [302] Cheng L. H., Abd Karim A.,Seow C. C. Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid [J]. Food Chemistry, 2008, 107(1): 411-418
    [303] Chen J., Liu C., Chen Y., et al. Structural characterization and properties of starch/konjac glucomannan blend films [J]. Carbohydrate Polymers, 2008, 74(4): 946-952
    [304] K?k M. S., Abdelhameed A. S., Ang S., et al. A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan [J]. Food Hydrocolloids, 2009, 23(7): 1910-1917
    [305] Liu J., Li B., Zhu B., et al. Study on properties and aggregation structures of deacetylated konjac glucomannan/chitosan hydrochloride absorbent blend gel films [J]. Journal of Applied Polymer Science, 2010, 115(3): 1503-1509
    [306]郭晓明,王根礼,叶伟林,等.基于脱乙酰基魔芋葡甘聚糖固定酶的H2O2生物传感器[J].分析测试学报, 2008, 27(6): 581-584
    [307] Penroj P., Mitchell J. R., Hill S. E., et al. Effect of konjac glucomannan deacetylation on the properties of gels formed from mixtures of kappa carrageenan and konjac glucomannan [J]. Carbohydrate Polymers, 2005, 59(3): 367-376
    [308] Maekaji K. Determination of acidic component of konjac mannan [J]. Agricultural and Biological Chemistry, 1978, 42(1): 177-178
    [309] Maekaji K. Mechanism of gelation of konjac mannan [J]. Agricultural and Biological Chemistry, 1974, 38(2): 315-321.
    [310] Williams M. A. K., Foster T. J., Martin D. R., et al. A Molecular Description of the Gelation Mechanism of Konjac Mannan [J]. Biomacromolecules, 2000, 1: 440-450
    [311]潘志东.魔芋葡甘露聚糖(KGM)的超细粉制备与机械力化学改性[D].广州,华南理工大学,2002
    [312] Boldyrev V V. Mechanochemistry of Solids: Past, Present and Prospects [J]. Journal of Materials Synthesis and Processing, 2000, 8: 121-132
    [313] Kenji M. The mechanism of gelation of konjac mannan [J]. Agricultral Biological Chemistry, 1974, 38(2): 315-321
    [314]郭振楚.糖类化学[M].北京:化学工业出版社, 2005: 106-110
    [315] Kato K., Nitta M., Mizuno T. Infrared spectroscopy of some mannans [J]. Agricultural Biology Chemistry, 1973, 37(2): 433-435
    [316] Yu H., Huang Y., Ying H., et al. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan [J]. Carbohydrate Polymers, 2007, 69(1): 29-40
    [317] Xie C., Feng Y., Cao W., et al. Novel biodegradable flocculating agents prepared by phosphate modification of Konjac [J]. Carbohydrate Polymers, 2007, 67(4): 566-571
    [318] Koroskenyi B.,McCarthy S. P. Synthesis of Acetylated Konjac Glucomannan and Effect of Degree of Acetylation on Water Absorbency [J]. Biomacromolecules, 2001, 2: 824-826
    [319] Tabilo-Munizaga G., Barbosa-Cánovas G. V. Rheology for the food industry [J]. Journal of Food Engineering, 2005, 67(1-2): 147-156
    [320] Mezger T. G. The rheology handbook: for users of rotational and oscillatory rheometers [M]. 2nd edition. Hannover: Vincentz Network GmbH & Co. KG, 2002: 60
    [321]李斌,谢笔钧.魔芋葡甘聚糖中乙酰基对其链结构及膜性能的影响[J].粮食与饲料工业, 2005(10): 21-23
    [322]庞杰,林琼,张甫生,等.魔芋葡甘聚糖功能材料研究与应用进展[J].结构化学, 2003, 22(6): 633-642
    [323] Liu F., Luo X. ,Lin X. Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan[J]. Journal of Hazardous Materials, 2010, 178(1-3): 844-850
    [324]张克立.固体无机化学[M].武汉:武汉大学出版社, 2005: 205-209
    [325] Yu H., Huang A.,Xiao C. Characteristics of konjac glucomannan and poly(acrylic acid) blend films for controlled drug release [J]. Journal of Applied Polymer Science, 2006, 100(2): 1561-1570
    [326] Li B., Kennedy J. F., Jiang Q. G., et al. Quick dissolvable, edible and heatsealable blend films based on konjac glucomannan - Gelatin [J]. Food Research International, 2006, 39(5): 544-549
    [327]刘佩瑛.魔芋学[M].北京:中国农业出版社, 2004: 256-260
    [328]顾雪蓉,陆云.高分子科学基础[M].北京:化学工业出版社, 2003: 89
    [329]董炎明,张海良.高分子科学简明教程[M].北京:科学出版社, 2008: 213
    [330]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社, 2006: 77-78
    [331] Senna M.,Nakayama S. Preparation and properties of nano-amorphous organic and inorganic particles via chemical and mechanochemical routes [J]. Journal of Alloys and Compounds, 2009, 483(1-2): 265-270
    [332] Senna M. Smart mechanochemistry-Charge transfer control for tailored solid-state reaction under minimum external energy [J]. Journal of Alloys and Compounds, 2007, 434-435: 768-772
    [333] Senna M. Charge transfer and hetero-bonding across the solid-solid interface at room temperature [J]. Materials Science and Engineering A, 2001, 304-306: 39-44
    [334]肖锦,周勤.天然高分子絮凝剂[M].北京:化学工业出版社, 2005: 209-220
    [335] Kohyama K., Iida H., Nishinari K. A mixed system composed of different molecular weights konjac glucomannan and kappa carrageenan: large deformation and dynamic viscoelastic study [J]. Food Hydrocolloids, 1993, 7(3): 213-226
    [336] Prawitwong P., Takigami S., Takahashi R., et al. Effects of g-irradiation on properties of konjac mannan [J]. Transactions of the Materials Research Society of Japan, 2006, 31(3): 727-730
    [337] Prawitwong P., Takigami S. ,Phillips G. O. Phase transition behaviour of sorbed water in Konjac mannan [J]. Food Hydrocolloids, 2007, 21(8): 1368-1373
    [338] Long L., Hui R., Liu-liu M., et al. Study on swelling model and thermodynamic structure of native konjac glucomannan [J]. Journal of Zhejiang University - Science B, 2009, 10(4): 273-279
    [339] Pang J., Sun Y., Yang Y., et al. Studies on Hydrogen Bonding Network Structures of Konjac Glucomannan [J].结构化学, 2008, 27(4): 431-436
    [340]庞杰.功能性葡甘聚糖的设计与开发[M].北京:中国轻工业出版社, 2009, 105-108
    [341] Heinze T., Liebert T., Koschella A.多糖酯化反应[M].尹学琼,林强.北京:化学工业出版社, 2009: 111-113
    [342]庞杰.资源植物魔芋的功能活性成分[M].北京:科学出版社, 2008: 71-75
    [343] Liu M. M., Fan .J Y., Wang K., et al. Synthesis, characterization and evaluation of phosphated cross-linked konjac glucomannan hydrogels for colon targeted drug Delivery [J]. Drug delivery, 2007, 14(6): 397-402
    [344] Wang Y., Ye Y., Li B., et al. Dry Preparation of Konjac Glucomannan Phosphate Ester with High Degree of Substitution [J]. Journal of Anhui Agricultural Science, 2009, 37(25): 12173-12175
    [345]庞杰,孙远明,乐学义,等.六偏磷酸钠对魔芋葡甘聚糖干法改性研究[J].西南农业大学学报, 2000, 22(1): 59-61
    [346]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社, 2001: 100-119
    [347]肖锦,周勤.天然高分子絮凝剂[M].北京:化学工业出版社, 2005: 217-218
    [348] Yu H., Huang Y., Ying H., et al. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan [J]. Carbohydrate Polymers, 2007, 69(1): 29-40
    [349]肖丽霞,王丽霞,陆蒸,等.魔芋葡甘聚糖的酯化及其产物特性[J].无锡轻工大学学报, 2005, 24(1): 34-37
    [350]吴绍艳,张升晖,颜益志.三聚磷酸钠对魔芋葡甘聚糖酯化交联改性研究[J].食品工业科技, 2005, 26(5): 138-142
    [351]王春林.分光光度法测定有机磷的研究[J].淀粉与淀粉糖, 1992, (1): 35-37
    [352]王洋,叶阳,李斌,等.高取代度魔芋葡甘聚糖磷酸酯的干法制备[J].安徽农业科学, 2009, 37(25): 12173-12175
    [353] Wang L., Duan J., Miao W., et al. Adsorption-desorption properties andcharacterization of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate [J]. Journal of Hazardous Materials, 2010, 186(2-3): 1681-1686
    [354] Stoll S., Buffle J. Computer simulation of bridging flocculation processes: the role of colloid to polymer concentration ratio on aggregation kinetics [J]. Journal of Colloid and Interface Science, 1996, 180(2), 548-563

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700