微污染水中微囊藻毒素的脱除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微囊藻毒素是水体富营养化藻类中产生的一类肝脏毒素,是潜在的肿瘤促进剂,而且具有化学稳定性,不能被常规饮用水处理工艺有效地脱除。高级氧化技术是以羟基自由基(·OH)为主要氧化剂的水处理技术,在适当的条件下,可以将污染物矿化为水、二氧化碳和无机盐。高级氧化技术为微污染水中微囊藻毒素的降解指明了方向。
    为了研究微囊藻毒素的降解技术,首先优化了从实验室培养的铜绿微囊藻中提取微囊藻毒素的程序,并建立了固相萃取和高效液相色谱(SPE-HPLC)富集和分析微囊藻毒素的方法。本文以广泛存在的微囊藻毒素MC-LR、MC-RR 为研究目标,采用了均相高级氧化技术如UV/H2O2光氧化和Fenton 试剂氧化、非均相高级氧化技术如UV/TiO2-Fe3+光催化氧化、常规混凝与Fenton 试剂氧化联用技术以及高锰酸钾氧化技术等,研究了微囊藻毒素的降解行为。
    研究结果表明,UV/H2O2光氧化能有效地降解微囊藻毒素,·OH 氧化和UV光分解是微囊藻毒素降解的直接原因;藻毒素的降解经历了异构化、·OH 对共轭二烯和肽键的亲电加成、ADDA 和肽环断裂、有机中间体的进一步降解等过程,降解过程能近似用准一级动力学方程描述;根据UV 光分解、H_2O-2 和·OH 氧化微囊藻毒素的原理和稳态近似法,建立了UV/H_2O_2 光氧化降解藻毒素的动力学模型,能很好地解释溶液中H_2O_2、HO-2 、CO-3 、HCO-3 等对藻毒素降解的影响;对比实验表明UV 光分解对藻毒素有一定的降解作用,而H2O2氧化藻毒素的效率很低。UV/H_2O_2 光氧化体系中,UV 和H-2O_2 氧化去除藻毒素具有协同作用,H_2O_2 在UV 照射下产生的·OH 对藻毒素有很强的氧化能力;UV/H_2O_2 光氧化过程中溶液pH 值的变化,说明藻毒素并不是直接被矿化为CO2、H_2O 和其它无机小分子物质,而是经历了一系列中间产物,由大分子逐渐变为小分子物质;藻毒素的降解效率与其起始浓度、pH 值、H_2O_2浓度、光照强度及反应时间等有关。藻毒素起始浓度的增加会显著减小其降解速率。在中性和弱碱性条件下,藻毒素的降解速率较快。在较低的H_2O_2浓度范围(0~1 mmol·L~(-1_)内,H_2O_2浓度的增加可以显著地提高藻毒素的降解速率,MC-LR、MC-RR 降解的总表观速率常数kobs与H_2O_2 浓度的关系可分别表示为: k_(obs) = 0.0378C_(H_2O_2)0.2115(MC-LR) 、k_(obs) = 0.0512C_(H_2O_2_0.1467(MC-RR)。H_2O_2 浓度较高时,会明显抑制藻毒素的降解。光照强度的增大能促进藻毒素的降解,但是二者之间并没有直接的正比关系。最佳实验条件下,起始浓度为0.20 mg/L 的MC-LR 和0.72mg/L 的MC-RR 溶液的去除效率分别可以达到80.8%和94.8%。
    Fenton 试剂也能有效地氧化微囊藻毒素,但氧化机理与UV/H_2O_2 光氧化有所差异。反应初始阶段,大部分微囊藻毒素得到降解,降解过程与准一级动力学有很好的相关性,然后进入一个相对缓和的氧化过程;藻毒素的降解效率与
The increase of population and the consequent intensification of agricultural andindustrial activities have led to the enhancement of eutrophication in superficialfreshwater bodies, and then it has led to cyanobacteria blooms more frequentworldwide. Microcystins are mainly produced by freshwater cyanobacteria such asMicrocystis, Oscillatoria, Nostoc, Aphanizomenon and Anabaena. Microcystinsdisplay hepatotoxic behaviour and cause tumor promotion. Furthermore, theirchemical characteristic is so stable that the conventional water treatment processeshave only limited efficiency in removing soluble microcystins. The advancedoxidation processes (AOPs), which involve the production of reactive oxidativespecies, especially the hydroxyl radicals (·OH), are capable of mineralizing organiccontaminants into H2O, CO2 and other inorganics. AOPs provide promising treatmentoptions for microcystins-containing water.
    To meet the need of further research, microcystins were extracted firstly from theMicrocystis aeruginosa cultured in laboratory. The accumulation, separation andpurification procedures of microcystins were optimized, and then the solid phaseextraction and high performance liquid chromatography (SPE-HPLC) analyticalmethod was developed for analysis of microcystins. Experiments were carried out toinvestigate the degradation behaviours of microcystins using some AOPs includingthe homogeneous and heterogeneous oxidative techniques and other practicaltechniques. The main conclusions are as follows:
    The UV/H2O2 photooxidation was effective in removing microcystins in water,and UV photolysis and ·OH were responsible for the degradation of microcystins. Themajor destruction pathway of microcystin included the isomerization of microcystin,electrophilic addition of ·OH on the conjugated diene structure of ADDA moiety andpeptide bond, cleavage of dihyroxylated ADDA and the peptide bond, and furtheroxidation of the intermediates. The degradation process accorded approximativelywith the pseudo-first-order kinetics. Considering the contributions of individual UVphotolysis, H2O2 and ·OH oxidation in the combined homogeneous system, asimplified kinetic model for the degradation of microcystins was developed using thepseudo-first-order equation and steady-state approximation. This kinetic modelprovided better understanding for the effects of H_2O_2、HO_2 、CO_3 and HCO_3 on thedegradation of microcystins. The control experiments showed that H2O2 was difficultto oxidize microcystins while UV direct photolysis could decompose microcystinspartially. However, the UV/H2O2 system could significantly enhance the degradationefficiency due to the synergetic effect between UV radiation and H2O2 oxidation.The ·OH generated from the decomposition of H2O2 under the UV irradiation wasresponsible for the synergetic effects. The variation of pH in the process indicated theformation of organic acids, which showed that microcystins were not mineralized toH2O, CO2 and other inorganics directly but converted to some intermediates firstly,then partial mineralization was achieved. The degradation efficiencies of microcystinsdepended on the following factors: A lower initial microcystin concentration led to afaster and more efficient degradation; The neutral and weak alkaline solutions were
    more appropriate to carry out degradation reaction; In a lower H2O2 concentrationrange, the degradation of microcystins improved significantly with increasing H2O2concentration. Under the experimental conditions, the relationships between theobserved rate constants and H2O2 concentrations could be described as follows:kobs = 0.0378CH2O20.2115(MC-LR), kobs = 0.0512CH2O20.1467 (MC-RR). On the other hand, thedegradation of microcystins retarded obviously while H2O2 increased to a largerconcentration. It was attributed to the ions and radicals could scavenge ·OH in thesolution; Increasing UV light intensity could enhance but was not directlyproportional to the degradation rate of microcystins. Under the optimal conditions, thedegradation efficiencies of MC-LR and MC-RR could reach 80.8% and 94.8%,respectively. Fenton reagent oxidation was also effective in removing microcystins. In all cases,most of microcystins degradation occurred during the initial 10 min of reaction.Microcystins transformation was characterized by pseudo-first order kinetics duringthis brief initial phase, while the subsequent phase exhibited a sharp drop indegradation rate. This behavior suggested a mechanism where Fenton reagentproduced an initial surge of ·OH that resembling a “pulse”injection as opposed to the“continuous”injection observed in the UV/H2O2 system. There existed an optimalFe2+ dosage, and a higher addition resulted in brown turbidity that hindered theabsorption of the UV light required for photolysis and caused the recombinationof ·OH. In this case, Fe2+ reacted with ·OH as a scavenger. After reacting for 30 min,the degradation efficiencies of MC-LR and MC-RR could up to 92.4% and 95.8%under the experimental conditions, respectively. In the presence of UV radiation, theoxidation potential of Fenton and Fenton-like reagent could be enhanced vigorouslyand followed the sequence of UV/Fe2+/H2O2 ≈UV/Fe3+/H2O2 > Fe2+/H2O2 >Fe3+/H2O2. The effect of UV light attributed to the direct ·OH formation andregeneration of Fe2+ from the photolysis of the Fe(III) complex in solution. The effectof ferric chloride flocculation on soluble microcystins was negligible. However, itcould remove most organic materials that would be favourable for the degradation ofmicrocystins by Fenton and Fenton-like reagent oxidation. The experiments performed in the heterogeneous photocatalytic processesexhibited best degradation results of microcystins and followed the order:UV/TiO2-Fe3+/H2O2>UV/TiO2-Fe3+>UV/TiO2. The doping of Fe3+ greatly improvedthe photocatalytic reactivity of TiO2, and H2O2 appeared to significantly enhance thedegradation of microcystins due to the higher generation rate of ·OH. The experimentsresults showed that the degradation of microcystins on TiO2-Fe3+ was in accordancewith Langmiur-Hinshelwood (L-H) kinetic model well. Under the experimentalconditions, the apparent reaction rate constants of MC-LR and MC-RR were 0.2435and 0.4102 mg·L?1·min?1, and the corresponding Langmiur adsorption equilibriumconstants KA were 2.6301 and 0.7606 mg?1·L, respectively. The degradationefficiencies of microcystins mainly depended on the TiO2-Fe3+ dosage and UV lightintensity. Increasing the addition amount of TiO2-Fe3+ would increase both the surfacearea of catalyst available for adsorption and the Fe(III) complex. However, there
引文
[1] Chow C W K, Drikas M, House J, Burch M D, Velzeboer R M A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res., 1999, 33(15): 3253~3262
    [2] Haider S, Naithani V, Viswanathan P N, Kakkar P. Cyanobacterial toxins: a growing environmental concern. Chemosphere, 2003, 52(1): 1~21
    [3] de Figueiredo D R, Azeiteiro U M, Esteves S M, Gon?alves F J M, Pereira M J. Microcystin-producing blooms—a serious global public health issue. 2004, 59(2): 151~163
    [4] Carmichael W W. Toxins of cyanobacteria. Sci. Am., 1994, 270(1): 78~86
    [5] Brittain S, Mohamed Z A, Wang J, Lehmann V K B, Carmichael W W, Rinehart K L. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon, 2000, 38(12): 1759~1771
    [6] Falconer I R. Toxic cyanobacterial bloom problems in Australian waters: risks and impacts on human health. Phycologia, 2001, 40 (3): 228~233
    [7] Williams D E, Dawe S C, Kent M L, Andersen R J, Craig M, Holmes C F B. Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon, 1997, 35(11): 1617~1625
    [8] 孟玉珍, 张丁, 王兴国, 朱宝玉, 张红茹, 王宏. 郑州市黄河水源水藻类和藻类毒素污染状况调查. 中华预防医学杂志,2000, 34(2): 92~94
    [9] Duy T N, Lam P K S, Shaw G R, Connell D W. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae) toxins in water. Rev. Environ. Contam. Toxicol., 2000, 163: 113~185
    [10] WHO. Cyanobacterial toxins: microcystin-LR. In: Guidelines for drinking water quality, 2 Edition, Addendum to Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, Switzerland, 1998, 95~110
    [11] 国家环境保护总局. 地表水环境质量标准GB3838-2002. 2002-06-01
    [12] Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K I. Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon, 2002, 40(7): 1017~1025
    [13] Codd G A. Cyanobacterial toxins, the perception of water quality, and the priorisation of eutrophication control. Ecol. Eng., 2000, 16(1): 51~60
    [14] Codd G A. Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci. Technol., 1995, 32(4): 149~156
    [15] Vasconcelos V M, Pereira E. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res., 2001, 35(5): 1354~1357
    [16] Lawton L A, Robertson P K J, Cornish B J P A, Marr I L, Jaspars M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J. Catal., 2003, 213(1): 109~113
    [17] Senogles-Derham P J, Seawright A, Shaw G, Wickramisingh W, Shahin M. Toxicological aspects of treatment to remove cyanobacterial toxins from drinking water determined using the heterozygous P53 transgenic mouse model. Toxicon, 2003, 41 (8): 979~988
    [18] Sivonen K, Namikoshi M, Evans W R, Carmichael W W, Sun F, Rouhiainen L, Luukkainen R, Rinehart K L. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl. Environ. Microbiol., 1992a, 58: 2495~ 2500
    [19] Botes D P, Wessels P L, Kruger H, Runnegar M T C, Santikarn S, Smith R J, Barna J C J, Williams D H. Configuration assignments of the amino acid residues and the presence of n-methyl dehydroalanine in toxins from the blue-green alga Microcystis aeruginosa. J Chem. Soc. Perkin. Trans. 1, 1985, 1: 2747~2748
    [20] Dawson R M. The toxicology of microcystins, Toxicon, 1998, 36(7): 953~962
    [21] Stirling D J, Quilliam M A. First report of the cyanobacterial toxin cylindrospermopsin in New Zealand. Toxicon, 2001, 39(8): 1219~1222
    [22] Harada K-I, Ogawa K, Matsuura K, Murata H, Suzuki M, Watanabe M F, Itezono Y, Nakayama N. Structural determination of geometrical isomers of microcystins-LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem. Res. Toxicol., 1990, 3(5): 473~481
    [23] An J, Carmichael W W. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon, 1994, 32(4): 495~507
    [24] McElhiney J, Lawton L A, Leifert C. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon, 2001, 39(9): 1411~1420
    [25] Fleming L E, Rivero C, Burns J, Williams C, Bean J A, Shea K A, Stinn J. Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae, 2002, 1(2): 157~168
    [26] Jacquet C, Thermes V, de Luze A, Puiseux-Dao S, Bernard C, Joly J S, Bourrat F, Edery M. Effects of microcystin-LR on development of medaka fish embryos (Oryzias latipes). Toxicon, 2004, 43(2): 141~147
    [27] Jochimsen E M, Carmichael W W, An J S, Cardo D M, Cookson S T, Holmes C E M, Antines M B de C, Filho D A de Melo, Lyra T M, Burreto V S T, Azevedo S M F O, Jarvis W R. Liver failure and death following exposure to microcystin toxins at a hemodialysis center in Brazil. New Eng. J. Med., 1998, 338: 873-878
    [28] Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe M F, Park H-D, Chen G-C, Chen G., Yu S-Z. Detection of microcystin, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis, 1996, 17(6): 1317~1321
    [29] 赵金明, 蒋颂辉, 朱惠刚. 藻毒素对自来水提取物诱导大鼠肝癌的促进作用. 中国环境 科学, 2003, 23(1): 16~20
    [30] Graham J L, Jones J R, Jones S B, Downing J A, Clevenger T E. Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res., 2004, 38(20): 4395~4404
    [31] Utkilen H, Gjolme N. Toxin production by microcystin aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol., 1992, 58(4): 1321~1325
    [32] Harada K-I, Mayumi T, Shimada T, Fujii K, Kondo F, Park H-D, Watanabe M F. Co-production of microcystins and aeruginopeptins by natural cyanobacterial bloom. Environ. Toxicol., 2001, 16(4): 298~305
    [33] Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe M M. Phylogenetic relationship between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol. Lett., 1999, 172(1): 15~21
    [34] 宋立荣, 雷腊梅, 何振荣, 刘永定. 滇池水华蓝藻铜锈微囊藻和绿色微囊藻的生长生理 特性及毒素分析. 水生生物学报, 1999, 23(5): 402~408
    [35] Wicks R J, Thiel P G. Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ. Sci. Technol., 1990, 24(9): 1413~1418
    [36] Sivonen K. Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of and hepatotoxin production by oscillatoria agardhii strains. Appl. Environ. Microbiol., 1990, 56: 2658~2666
    [37] Rapala J, Sivonen K. Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecol., 1998, 36(2): 181~192
    [38] Rivasseau C, Martins S, Hennion M C. Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J. Chromatogra. A., 1998, 799(1-2): 155~169
    [39] de Maagd P G, Hendriks J, Seinen W, Sijm D T H M. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res., 1999, 33(3): 677~680
    [40] 张维昊, 宋立荣, 徐小清, 刘永定, 张锡辉. 天然水体中微囊藻毒素归宿的初步研究. 长江流域资源与环境, 2004, 13(1): 84~88
    [41] Hitzfeld B C, Hoger S J, Dietrich D R. Cyanobacterial toxins: remove during drinking water treatment, and human risk assessment. Environ. Health Perspect, 2000, 108(suppl. 1): 113~122
    [42] Harada K-I, Tsuji K, Watanabe M F, Kondo F. Stability of microcystins from cyanobacteria-III. Effect of pH and temperature. Phycologia, 1996, 35: 83~88
    [43] Lahti K, Rapala J, F?rdig M, Niemel? M, Sivonen K. Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Res., 1997, 31(5): 1005~1012[44] Lawton L A, Cornish B J P A, Macdonald A W R. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Res., 1998, 32(3): 633~638
    [45] Keil C, Forchert A, Fastner J, Szewzyk U, Rotard W, Chorus I, Kr?tke R. Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Res., 2002, 36(8): 2133~2139
    [46] Chorus I, Bartram J. Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management. London. E & FN Spon, 1999, 416
    [47] Ortea P M, Allis O, Healy B M, Lehane Mary, NíShuilleabháin A, Furey A, James K J. Determination of toxic cyclic heptapeptides by liquid chromatography with detection using ultra-violet, protein phosphatase assay and tandem mass spectrometry. Chemosphere, 2004, 55(10): 1395~1402
    [48] Lawrence J F, Menard C. Determination of microcystins in blue-green algae, fish and water using liquid chromatography with ultraviolet detection after sample clean-up employing immunoaffinity chromatography. J Chromatogra. A., 2001, 922(1-2): 111~117
    [49] Dahlmann J, Budakowski W R, Luckas B. Liquid chromatography–electrospray ionisation-mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins. J. Chromatogra. A., 2003, 994(1-2): 45~57
    [50] Ruangyuttikarn W, Miksik I, Pekkoh J, Peerapornpisal Y, Deyl Z. Reversed-phase liquid chromatographic–mass spectrometric determination of microcystin-LR in cyanobacteria blooms under alkaline conditions. J. Chromatogra. B., 2004, 800(1-2): 315~319
    [51] Maizels M, Budde W L. A LC/MS method for the determination of cyanobacteria toxins in water. Anal. Chem., 2004, 76(5): 1342~1351
    [52] Lawton L A, Edwards C, Codd G A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 1994, 119: 1525~1530
    [53] Lee H S, Jeong C K, Lee H M, Choi S J, Do K S, Kim K, Kim Y H. On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high-performance liquid chromatography with diode-array detection. J. Chromatogra. A, 1999, 848(1-2): 179~184.
    [54] Spoof L, Karlsson K, Meriluoto J. High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. J. Chromatogra. A, 2001, 909(2): 225~236
    [55] Kaya K, Sano T. Total microcystin determination using erythro-2-methyl-3-(methoxy-d3) -4-phenybutyric acid (MMPB-d3) as the intenal standard. Anal. Chim. Acta, 1999, 386(1-2): 107~112
    [56] Tsuji K, Masui H, Uemura H, Mori Y, Harada K-I. Analysis of microcystins in sediments using MMPB method. Toxicon, 2001, 39(5): 687~692
    [57] Rivasseau C, Racaud P, Deguin A, Hennion M-C. Evalution of an ELISA kit for the monitoring of microcystins (cyanobacterial toxins) in water and algae environmental samples. Environ. Sci. Technol., 1999, 33(9): 1520~1527
    [58] Metcalf J S, Bell S G, Codd G A. Production of novel polyclonal antibodies against the cyanobacterial toxin microcystin-LR and their application for the detection and quantification of microcystins and nodularin. Water Res., 2000, 34(10): 2761~2769
    [59] Kondo F, Matsumoto H, Yamada S, Tsuji K, Ueno Y, Harada K-I. Immunoaffinity purification method for detection and quantification of microcystins in lake water. Toxicon, 2000, 38(6): 813~823
    [60] Robillot C, Vinh J, Puiseux-Dao S, Hennion M-C. Hepatotoxin production kinetics of the cyanobacterium Microcystis aeruginosa PCC 7820, as determined by HPLC-mass spectrometry and protein phosphatase bioassay. Environ. Sci. Technol., 2000, 34(16): 3372~ 3378
    [61] Repavich W M, Sonzogni W C, Standridge J H, Wedepohl R E, Meisner L F. Cyanobacteria (blue-green algae) in Wisconsin waters acute and chronic toxicity. Water Res., 1990, 24(2): 225~231
    [62] Lam A K Y, Prepas E E, Spink D, Hredey S E. Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Res., 1995, 29(8): 1845~1854
    [63] Chow C W K, House J, Velzeboer R M A, Drikas M, Burch M D, Steffensen D A. Effect of ferric chloride flocculation on cyanobacterial cells. Water Res., 1998, 32(3): 808~814
    [64] Hall T, Hart J, Croll B, Gregory R. Laboratory-scale investigations of algal toxin removal by water treatment. J. Chart. Inst. Water E, 2000, 14(2): 143~149
    [65] Karner D A, Standridge J H, Harrington G W,Barnum R P. Microcystin algal toxins in source and finished drinking water. J. Am. Water Works Ass., 2001, 93(8): 72~81,16
    [66] Chow C W K, Panglisch S, House J, Drikas M, Burch M D, Gimbel R. Study of membrane filtration for the removal of cyanobacterial cells. Aqua (Oxford), 1997, 46(6): 324~334.
    [67] Muntisov M, Trimboli P. Removal of algal toxins using membrane technology. Water, 1996, 23(2): 21~34
    [68] Neumann U, Weckesser J. Elimination of microcystin peptide toxins from water by Reverse Osmosis. Environ. Toxicol. Water Qual., 1998, 13(2): 143~157
    [69] Jia R B, Zhang X H, Zhang W H, Zhang G M, Wang Z S. Fluctuation of microcystins in water plant. J Environ. Sci. Heal. A., 2003, 38(12): 2867~2875
    [70] Hart J, Fawell J K, Croll B. Fate of both intra-and extracellular toxins during drinking water treatment. Water Supply, 1998, 16(1-2): 611~616
    [71] Donati C,Drikas M, Hayes R, Newcombe G. Microcystin-LR adsorption by powdered activated carbon. Water Res., 1994, 28(8): 1735~1742
    [72] Pendleton P, Schumann R, Shiaw H W. Microcystin-LR adsorption by activated carbon. J. Colloid Interf. Sci., 2001, 240(1): 1~8
    [73] Lambert T W, Holmes C F B, Hrudey S E. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment. Water Res., 1996, 30(6): 1411~1422
    [74] Fawell J K, Hart J, James H A, Parr W. Blue-green algae and their toxins-analysis, toxicity, treatmentand environmental control. Water Supply, 1993, 11(3-4): 109~115
    [75] Bruchet A, Bernazeau F, Baudin I, Pieronne P. Algal toxins in surface waters: Analysis and treatment. Water Supply, 1998, 16(1-2): 619~623
    [76] Mohamed Z A, Carmichael W W, An J, El-Sharouny H M. Activated carbon removal efficiency of microcystins in an aqueous cell extract of Microcystis aeruginosa and Oscillatoria tenuis strains isolated from Egyptian freshwaters. Environ. Toxicol., 1999, 14(1): 197~201
    [77] Boisdon V, Bourbigot M M, Nogueira F, Wilson D, Lewis J. Combination of ozone and flotation to remove algae. Water Supply, 1994, 12(3-4): 209~220
    [78] Morris R J, Williams D E, Luu H A, Holmes C F B, Andersen R J, Calvert S E. The adsorption of microcystin-LR by natural clay particles. Toxicon, 2000, 38(2): 303~308
    [79] Takenaka S, Tanaka Y. Behavior of microcystins and its decomposition product in water treatment process. Chemosphere, 1995, 31(7): 3635-3641
    [80] Lambert T W, Holmes C F B, Hrudey S E. Microcystin class of toxins. Health effects and safety of drinking water supplies. Environ. Rev., 1994, 2(2): 167~186
    [81] Tsuji K, Watanuki T, Kondo F, Watanabe M F, Nakazawa H, Suzuki M, Uchida H, Harada K I. Stability of microcystins from cyanobacteria-Ⅳ. Effect of chlorination on decomposition. Toxicon, 1997, 35(7): 1033~1041
    [82] Nicholson B C, Rositano J, Burch M D. Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Res., 1994, 28(6): 1297~1303
    [83] Drikas M. Removal of cyanobacterial toxins by water treatment processes. I: Toxic cyanobacteria-a global perspective. Aselaide, South australian centre for water quality research, Salisbury, Austria, 1994, 30~44
    [84] Rositano J, Nicholson B, Pieronne P. Destruction of cyanobacterial toxins by ozone. Ozone Sci. Eng., 1998, 20(3): 223~238
    [85] 陈卫, 李圭白, 邹浩春. 高锰酸钾复合药剂去除太湖水中蓝藻的室内试验研究. 哈尔滨 建筑大学学报, 2001, 34(3): 72~74
    [86] Hart J,Stott P. Microcystin-LR removal from water (Report FR0367), Buckinghamshire, Marlow, Foundation for Water Res., 1993
    [87] Kull T P J, Backlund P H, Karlsson K M, Meriluoto J A O. Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: Reaction kinetics, characterization, and toxicity of reaction products. Environ. Sci. Technol., 2004, 38(22): 6025~6031
    [88] Sharma V K. Use of iron (VI) and iron(V) in water and wastewater treatment. Water Sci. Technol., 2004, 49(4): 69~74
    [89] Yuan B L, Qu J H, Fu M L. Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation. Toxicon, 2002, 40(8): 1129~1134
    [90] Benoufella F, Laplanche A, Boisdon V, Bourbigot M M. Elimination of microcystis cyanobacteria (blue-green algae) by an ozoflotation process: a pilot plant study. Water Sci. Technol., 1994, 30(8): 245~257
    [91] Hoeger S J, Dietrich D R, Hitzfeld B C. Effect of Ozonation on the removal of cyanobacterial toxins during drinking water treatment. Environ. Health Perspect., 2002, 110(11): 1127~ 1132
    [92] Stefan J H, Daniel R D, Bettina C et al. Effect of ozonation in drinking water treatment on the removal of cyanobacterial toxins and toxicity of by-products after ozonation of microcystin-LR. Environ. Toxicol., 2000, 15(1): 143~151
    [93] Harada K I, Murata H, Quiang Z, Suzuki M, Konda F. Mass spectrometric screening method for mixrocystins in cyanobacterial. Toxicon, 1996, 34(6): 701~710
    [94] Rositano J,Newcombe G,Nicholson B, Sztajnbok P. Ozonation of NOM and algal toxins in four treated waters. Water Res., 2001, 35(1): 23~32
    [95] Himberg K., Keijola A.M., Hiisvirta L., Pyysalo H., Sivonen K. Effect of water treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: a laboratory study. Water Res., 1989, 23(8): 979~ 984
    [96] Keijola A M, Himberg K, Esala A L, Sivonen K, Hiisvarta L. Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot plant experiments. Toxicity Assess, 1988, 3: 643~656
    [97] Maatouk I, Boua?cha N, Fontan D, Levi Y. Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant. Water Res., 2002, 36(11): 2891~2897
    [98] Abdo M S E, Shaban H, Bader M S H. Decolorization by ozone of direct dyes in presence of some catalysis. J Environ. Sci. Heal. A.: Environ. Sci. Eng., 1988, 23(7): 697~710
    [99] Gracia R, Aragues J L, Ovelleiro J L. Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone Sci. Eng., 1996, 18(3): 195~208
    [100] Volk C, Roche P, Joret J-C, Paillard H. Comparison of the Effect of Ozone, Ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution. Water Res., 1997, 31(3): 650~656
    [101] Ma J, Graham N J D. Degradation of atrazine by manganese-catalyzed ozonation: influence of humic substrances. Water Res., 1999, 33(3): 785~793
    [102] Legube B, Karpl N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal. Today, 1999, 53(1): 61~72
    [103] Cousins I T, Bealing D J, James H A, Sutton A. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res., 1996, 30(2): 481~485
    [104] Lam A K Y, Fedorak P M, Prepas E E. Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay. Environ. Sci. Technol., 1995, 29(2): 242~246
    [105] Jones G J, Orr P T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res., 1994, 28(4): 871~876
    [106] 吕锡武, 稻森悠平,丁国际. 有毒蓝藻及藻毒素生物降解的初步研究. 中国环境科学, 1999, 19(2): 138~140
    [107] Saitou T, Sugiura N, Itayama T, Inamori Y, Matsumura M. Degradation of microcystin by biofilm in practical treatment facility. Water Sci. Technol., 2002, 46(11-12): 237~244
    [108] Grutzmacher G, Bottcher G, Chorus I, Bartel H. Removal of microcystins by slow sand filtration. Environ. Toxicol., 2002, 17(4): 386~394
    [109] Park H D, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol., 2001, 16(4): 337~343
    [110] 闫海, 潘纲, 张明明. 微囊藻毒素研究进展. 生态学报, 2002, 22(11) :1968~1975
    [111] Bourne D G, Jones G J, Blakeley R L, Jones A. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Appl. Environ. Microbiol., 1996, 62(11): 4086~ 4094
    [112] Bourne D G, Riddles P, Jones G J, Smith W, Blakeley R L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin-LR. Environ. Toxicol., 2001, 16(6): 523~534
    [113] Takenaka S,Watanabe M F. Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease . Chemosphere, 1997, 34(4): 749~757
    [114] 余冉,吕锡武,稻森悠平. 生物接触氧化预处理水中藻类及其毒素. 中国给水排水, 2002, 18(12): 9~12
    [115] 金丽娜, 张维昊, 郑利, 徐小清. 滇池水环境中微囊藻毒素的生物降解. 中国环境科学, 2002, 22(2): 189~192
    [116] 吴振斌, 陈辉蓉, 雷腊梅, 宋立荣, 付贵萍, 金建明, 贺锋, 何振荣. 人工湿地系统去 除藻毒素研究. 长江流域资源与环境, 2000, 9(2): 242~247
    [117] Miller M J, Fallowfield H J. Degradation of cyanobacterial hepatotoxins in batch experiments. Water Sci. Technol., 2001, 43(12): 229~232
    [118] Debellefontaine H, Chakchouk M, Foussant J N, Tissot D, Striolo P. Treatment of organic aqueous waste: wet air oxidation, wet peroxide oxidation. Environ. Pollut., 1996, 92(2): 155~164
    [119] Cocero M J, Alonso E, Sanz M T, Fdz-Polanco F. Supercritical water oxidation process under energetically self-sufficient operation. J. Supercrit. Fluid, 2002, 24(1): 37~46
    [120] Iliuta I, Larachi F. Wet air oxidation solid catalysis analysis of fixed and sparged three-phase reactors. Chem. Eng. Process., 2001, 40(2): 175~185
    [121] Kaya K, Sano T. A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chem. Res. Toxicol., 1998, 11(3): 159~163
    [122] Alam M Z B, Otaki M, Furumai H, Ohgaki S. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Res., 2001, 35(4): 1008~1014
    [123] Tsuji K, Naito S, Kondo F, Ishikawa N, Watanabe M F, Suzuki M, Harada K I. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol., 1994, 28(1): 173~177
    [124] Tsuji K, Watanuki T, Kondo F, Watanabe M F, Suzuki S, Nakazawa H, Suzuki M, Uchida H, Harada K-I. Stability of microcystins from cyanobacteria Ⅱ. Effect of UV light on decomposition and isomerization. Toxicon, 1995, 33(12): 1619~1631
    [125] 陈晓国, 肖邦定, 徐小清, 林匡飞. 微囊藻毒素在紫外光下的光降解. 农业环境科学学 报, 2003, 22(3): 283~285
    [126] Gajdek P, Bober B, Mej E, Bialczyk J. Sensitised decomposition of microcystin-LR using UV radiation. J. Photochem. Photobiol. B., 2004: 76(1-3): 103~106
    [127] Welker M, Steinberg C. Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence. Water Res., 1999, 33(5): 1159~1164
    [128] Welker M, Steinberg C. Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environ. Sci. Technol., 2000, 34(16): 3415~3419
    [129] Haarstrick A, Kut O M, Heinzle E. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluilized-bed photoreactor. Environ. Sci. Technol., 1996, 30(3): 817~824
    [130] Mills A, Le Hunte S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A., 1997, 108(1): 1~35
    [131] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chem. Rev., 1993, 93(2): 671~698
    [132] Lawton L A, Robertson P K J. Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chem. Soc. Rev., 1999, 28(4): 217~224
    [133] Robertson P K J, Lawton L A, Münch B, Rouzade J. Destruction of cyanobacterial toxins by semiconductor photocatalysis. Chem. Commun., 1997, 4: 393~394
    [134] Robertson P K J, Lawton L A, Cornish B J P A, Jaspars M. Processes influencing the destruction of microcystin-LR by TiO2 photocatalysis. J. Photochem. Photobiol. A, 1998, 116(3): 215~219
    [135] Lawton L A, Robertson P K J, Cornish B J P A, Jaspars M. Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation. Environ. Sci. Technol., 1999, 33(5): 771~775
    [136] Robertson P K J, Lawton L A, Münch B, Cornish B J P A. Destruction of cyanobacterial toxins by titanium dioxide photocatalysis. J. Adv. Oxid. Technol., 1999, 4: 20~26
    [137] Liu I, Lawton L A, Cornish B, Robertson P K J. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR. J. Photochem. Photobiol. A., 2002, 148(1-3): 349~354
    [138] Cornish B J P A, Lawton L A, Robertson P K J. Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl. Catal. B: Environ., 2000, 25(1): 59~67
    [139] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69~96
    [140] Feitz A J, Waite T D, Jones G J, Boyden B H, Orr P T. Photocatalytic degradation of the blue green algae toxin microcystin-LR in a natural organic-aqueous matrix. Environ. Sci. Technol., 1999, 33(2): 243~249
    [141] Shephard G S, Stockenstr?m S, de Villiers D, Engelbrecht W J, Sydenham E W, Wessels G F S. Photocatalytic degradation of cyanobacterial microcystin toxins in Water. Toxicon, 1998, 36(12): 1895~1901
    [142] Abdullah M, Low G K-C, Matthews R W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem., 1990, 94(17): 6820~6825
    [143] Shephard G S, Stockenstr?m S, de Villiers D, Engelbrecht W J, Wessels G F S. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst, Water Res., 2002, 36(1): 140~146
    [144] 陈晓国, 肖邦定, 徐小清, 方涛. 太阳光/多孔TiO2 膜催化降解微囊藻毒素. 中国给水排水, 2003, 19(7): 16~19
    [145] Lee D K, Kim S C, Kim S J. Chung I S, Kim S W. Photocatalytic oxidation of microcystin-LR with TiO2-coated activated carbon. J. Chem. Eng., 2004, 102(1): 93~98
    [146] Lee D K, Kim S C, Cho I C, Kim S J, Kim S W. Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Sep. Purif. Technol., 2004, 34(1-3), 59~66
    [147] Kim S C, Lee D K. Removal of microcystin-LR from drinking water with TiO2-coated activated carbon. Water Sci. Technol.: Water Supply, 2004, 4(5-6): 21~28
    [148] Xing H, Yuan B L, Wang Y Z, Qu J H. Photocatalytic detoxification of microcystins combined with ferrate pretreatment. J. Environ. Sci. Heal. A., 2002, 37(4): 641~649
    [149] 苑宝玲, 陈一萍, 郑雪琴, 刘会娟, 曲久辉. 高铁-光催化氧化协同去除藻毒素的研究. 环境科学, 2004, 25(5): 106~108
    [150] Prengle H W. Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation. Environ. Sci. Technol., 1983, 17(12): 743~747
    [151] Peyton G R, Huang F Y, Burleson J L, Glaze W H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 1. general principles and oxidation of tetrachloroethylene. Environ. Sci. Technol., 1982, 16(8): 448~453
    [152] Beltran F J, Ovejero G., Rivas J. Oxidation of polynuclear aromatic hydrocarbons in water. 4. ozone combined with hydrogen peroxide, Ind. Eng. Chem. Res., 1996, 35(3): 891~898
    [153] Glaze W H, Peyton G R, Lin S, Huang R Y, Burleson J L. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 2. natural trihalomethane precursors, Environ. Sci. Technol., 1982, 16(8): 454~458
    [154] Peyton G R, Glaze W H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. photolysis of aqueous ozone, Environ. Sci. Technol., 1988, 22(7): 761~767
    [155] 吕锡武, 孔青春. 紫外-微臭氧处理饮用水中有机优先污染物. 中国环境科学, 1997, 17(4): 377~380
    [156] Duguet J P. Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a ground water. Ozone Sci. Eng., 1990, 12(3): 281~284
    [157] Wenzel A, Gahr A, Niessner R. TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Res., 1999, 33(4): 937~946
    [158] Zeff J D, Leitis E. Oxidation of organic compounds in water. U.S. Patent 4792407, 1988
    [159] Bossmann S H, Oliveros E, Gob S, Siegwart S, Dahlen E P, Payawan J L, Straub M, Worner M, Braun A M. New evidence against hydroxyl radicals as reactive intermediate in thermal and photochemically enhanced Fenton’s reactions. J. Phys. Chem. A., 1998, 102(28): 5542~5550
    [160] Arslan I, Balcioglu I A, Tuhkanen T. Oxidative treatment of simulated dye house effluent by UV and near UV light--assisted Fenton’s reagent. Chemosphere, 1999, 39(15): 2767~2783
    [161] Pignatello J J, Liu D, Huston P. Evidence for an additional oxidant in the photoassisted fenton reaction. Environ. Sci. Technol., 1999, 33(11): 1832~1839
    [162] Pignatello J J, Chen R. Role of quinone intermediates as electron shuttles in Fenton and photoassisted fenton oxidations of aromatic compounds. Environ. Sci. Technol., 1997, 31(8): 2399~2406
    [163] Arslan-Alaton I, Gurses F. Photo-Fenton-like and photo-Fenton-like oxidation of Procaine Penicillin G formulation effluent. J. Photochem. Photobiol. A., 2004, 165(1-3): 165~175
    [164] Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol., 1992, 26(2): 313~319
    [165] Pignatello J J, Huston P L. Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-Fenton reaction. Environ. Sci. Technol., 1996, 30(12): 3457~3463
    [166] Tang W Z, Chen R Z. Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere, 1996, 32(5): 947~958
    [167] Kormann C, Bahnemann D W, Hoffmann M R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol., 1988, 22(7): 798~806
    [168] Sun Y F, Pignatello J J. Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ. Sci. Technol., 1993, 27(2): 304~310
    [169] Lin S-S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol., 1998, 32(10): 1417~1423
    [170] Gajdek P, Lechowski Z, Bochnia T, Kepczynski M. Decomposition of microcystin-LR by Fenton oxidation. Toxicon, 2001, 39(10): 1575~1578
    [171] Takenaka S, Tanaka Y. Decomposition of cyanobacterial microcystins by iron(III) chloride. Chemosphere, 1995, 30(1): 1~8
    [172] Lawton L A, Edwards C. Purification of microcystins. J. Chromatogra. A., 2001, 912(2): 191~209
    [173] Spoof L, Meriluoto J. Rapid separation of microcystins and nodularin using a monolithic silica C18 column. J. Chromatogra. A., 2002, 947(2): 237~245
    [174] Ramanan S, Tang J, Velayudhan A. Isolation and preparative purification of microcystin variants. J. Chromatogra. A., 2000, 883(1-2): 103~112
    [175] Saito K, Ishii H, Nishida F, Saito H, Abe T, Toyota Y. Purification of microcystins by DEAE and C18 cartridge chromatography. Toxicon, 2002, 40(1): 97~101
    [176] Botes D P, Kruger H, Viljoen C C. Isolation and characterization of four toxins from the blue green alga Microcystis aeruginosa. Toxicon, 1982, 20: 945~954
    [177] Lawton L A, McElhiney J, Edwards C. Purification of closely eluting hydrophobic microcystins (peptide cyanotoxins) by normal-phase and reversed-phase flash chromatography. J. Chromatogra. A., 1999, 848(1-2): 515~522
    [178] Edwards C, Lawton L A, Coyle S M, Ross P. Automated purification of microcystins. J. Chromatogra. A., 1996, 734(1): 175~182
    [179] Nina G, Hans U. The extraction and stability of microcystin-RR in different solvents. Phycologia, 1996, 35(suppl. 6): 80~82
    [180] Fastner J, Flieger I, Neumann U. Optimised extraction of microcystins from field samples-a comparison of different solvents and procedures. Water Res., 1998, 32(10): 3177~3181
    [181] Metcalf J S, Codd G A. Microwave oven and boiling water bath extraction of hepatotoxins from cyanobacterial cells. FEMS Microbiol. Lett. 2000, 184(2): 241~246
    [182] 郝赤, Wilkins R M, Rajenderan C. 铜绿微囊藻细胞培养与藻毒素LR 提取的研究. 中国 环境科学, 2000, 20(6): 544~546
    [183] Meriluoto J A O, Eriksson J E. Rapid analysis of peptide toxins in cyanobacteria. J. Chromatogra. A., 1988, 438(6): 93~96
    [184] Rapala J, Sivonen K, Lyra C, Niemela S I. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol., 1997, 63(6): 2206~2212
    [185] 闫海, 潘纲, 张明明, 陈海柳, 邹华. 微囊藻毒素的提取和提纯研究. 环境科学学报, 2004, 24(2): 355~359
    [186] 苑宝玲, 曲久辉. 藻类肝毒素的富集提取与分离. 分析化学,2001, 29(12): 1406~1408
    [187] Meriluoto J. Chromatography of microcystins. Anal. Chim. Acta, 1997, 352(1-3): 277~298
    [188] 张维昊, 徐小清. 固相萃取高效液相色谱法测定水中痕量微囊藻毒素. 分析化学,2001, 29(5): 522~525
    [189] Colonna G M, Caronna T, Marcandalli B. Oxidative degradation of dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes Pigm., 1999, 41(3): 211~220
    [190] Kurbus T, Le Marechal A M, Vonc?ina D B. Comparison of H2O2/UV, H2O2/O3 and H_2O_2/Fe~(2+) processes for the decolorisation of vinylsulphone reactive dyes. Dyes Pigm., 2003, 58(3): 245~252
    [191] Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K. Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm., 2002, 52(2): 69~78
    [192] Galindo C, Kalt A. UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study, Dyes Pigm., 1998, 40(1): 27~35
    [193] Glaze W H. Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind. Eng. Chem. Res., 1995, 34(7): 2314~2323
    [194] Shu H Y, Chang M C, Fan H J. Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters, J. Hazard. Mater., 2004, B113(1-3): 201~208
    [195] Crittenden J C, Hu S, Hand D W, Green S A. A kinetic model for H2O2/UV process in a completely mixed batch reactor, Water Res., 1999, 33(10): 2315~2328
    [196] Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng., 1987, 9(4): 335~352
    [197] Shen Y S, Ku Y, Lee K C. The effect of light absorbance on the decomposition of chlorophenols by ultraviolet radiation and UV/H2O2 processes. 1995, 29(3): 907~914
    [198] Christensen H, Sehested K, Corfitzen H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem., 1982, 86(9): 1588~1590
    [199] Christensen H, Sehested K. Reaction of hydroxyl radicals with hydrogen at elevated temperatures. Determination of the activation energy. J. Phys. Chem., 1983, 87(1): 118~ 120
    [200] Beltran F J, Ovejero G., Rivas J. Oxidation of polynuclear aromatic hydrocarbons in water. 3. UV radiation combined with hydrogen peroxide, Ind. Eng. Chem. Res., 1996, 35(3): 883- 890
    [201] Buxton G V, Elliot A J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions. Radiat. Phys. Chem., 1986, 27(3): 241~243
    [202] Glaze W H, Kang J W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J. AWWA , 1988, 5: 57~63
    [203] Glaze W H, Kang J W. Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in the semibatch reactor. Ind. Eng. Chem. Res., 1989a, 28(11): 1573~1580
    [204] Glaze W H, Kang J W. Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res., 1989b, 28(11): 1580~1587
    [205] Malik P K, Sanyal S K. Kinetics of decolourisation of azo dyes in wastewater by UV/H2O2 process. Sep. Purif. Technol., 2004, 36(3): 167~175
    [206] Lopez A, Bozzi A, Mascolo G., Kiwi J. Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution, J. Photochem. Photobiol. A., 2003, 156(1-3): 121~126
    [207] Glaze W H, Beltran F, Tuhkanen T, Kang J W. Chemical models of advanced oxidation processes. Water Poll. Res. J. Canada., 1992, 27(1): 23~42
    [208] De A K, Chaudhuri B, Bhattacharjee S, Dutta B K. Estimation of ·OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation, J. Hazard. Mater., 1999, B64(1): 91~104
    [209] Aràntegui J, Prado J, Chamarro E, Esplugas S. Kinetics of the UV degradation of atrazine in aqueous solution in the presence of hydrogen peroxide. J. Photochem. Photobiol. A., 1995,
     88(1): 65~74
    [210] Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/O·?) in aqueous solution. J. Phys. Chem. Ref. Data, 1988, 17(2): 513~886
    [211] Weinstein J, Bielski B H J. Kinetics of the interaction of HO2 and O2 -radicals with hydrogen peroxide. The Haber–Weiss reaction. J. Am. Chem. Soc., 1979, 101(1): 58~62.
    [212] Koppenol W H, Bulter J, Van Leeuwen J W L. The Haber–Weiss cycle. Photochem. Photobiol., 1978, 28(4-5): 655~660
    [213] Schested K, Rasmussen O L, Fricke H. Rate constants of OH with HO2, O2 -and H2O2 + from hydrogen peroxide formation in pulse-irradiated oxygenated water. J. Phys. Chem., 1968, 72(2): 626~631
    [214] Draganic Z D, Negron-mendoza A, Sehested K, Vujosevic S I, Navarro-Gonzales R, Albarran-Sanchez M G, Draganic I G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. Radiat. Phys., Chem., 1991, 38(3): 317~321
    [215] Mohey El-Dein A, Libra J A, Wiesmann U. Mechanism and kinetic model for the decolorization of the azo dye reaction black 5 by hydrogen peroxide and UV radiation, Chemosphere, 2003, 52(6): 1069~1077
    [216] Haag W R, Yao C C. Rate constant for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 1992, 26(2): 1005~1013
    [217] Ince N H. ‘‘Critical’’effect of hydrogen peroxide in photochemical dye degradation. Water Res. 1999, 33(4): 1080~1084
    [218] Stefan M I, Hoy A R, Bolton J R. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ. Sci. Technol., 1996, 30(7): 2382~2390
    [219] Kochanyt J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. measurement of the primary rate constants for reaction of ·oh radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of H2O2. Environ. Sci. Technol., 1992, 26(2): 262~265
    [220] Elkanzi E M, Kheng G B. H2O2/UV degradation kinetics of isoprene in aqueous solution. J. Hazard. Mater., 2000, B73(1): 55~62
    [221] Kochanyt J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. measurement of the primary rate constants for reaction of ·OH radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of H2O2. Environ. Sci. Technol., 1992, 26(2): 262~265
    [222] Fenton H J H. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc., 1894, 65: 899~910
    [223] Walling C. Fenton's reagent revisited. Acc. Chem. Res., 1975, 8(4): 125~131
    [224] Lipczynska-Kochany E. Degradation of aqueous nitrophenols and nitro benzene by means of Fenton reaction. Chemosphere, 1991, 22(5-6): 529~536
    [225] Ma Y S, Huang S T, Lin J G. Degradation of 4-nitrophenol using the Fenton process. Water Sci. Technol., 2000, 42(3): 155~160
    [226] Neamtu M, Yediler A, Siminiceanu I, Kettrup A. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J. Photochem. Photobiol.
     A., 2003, 161(1): 87~93
    [227] Tang W Z, Tassos S. Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent. Water Res., 1997, 31: 1117~1125
    [228] Bandala E R, Martínez D, Martínez E, Dionysiou D D. Degradation of microcystin-LR toxin by Fenton and photo-Fenton processes. Toxicon, 2004, 43(7): 829~832
    [229] Kang S F, Wang T H, Lin Y H. Decolorization and degradation of 2,4-dinitrophenol by Fenton's reagent. J. Environ. Sci. Health A., 1999, 34(4): 935~950
    [230] Benitez F J, Beltran-Heredia J, Acero L J, Gonzalez T. Degradation of protocatechuic acid by the advanced oxidation process. Ozone/UV radiation and H2O2/UV radiation. Water Res., 1996, 30(7): 1597~1604
    [231] Ghaly M Y, Hartel G., Mayer R, Haseneder R. Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manage., 2001, 21(1): 41~47
    [232] Swaminathan K, Sandhya S, Carmalin S A, Pachhade K, Subrahmanyam Y V. Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere, 2003, 50(5): 619~625
    [233] Faust B C, Hoigne J. Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ., 1990, 24(1): 79~89
    [234] Pignatello J J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol., 1992, 26(5): 944~951
    [235] 程丽华, 黄君礼, 倪福祥. Fenton 试剂生成·OH 的动力学研究. 环境污染治理技术与设 备, 2003, 4(5): 12~14, 33
    [236] Safarzadeh-Amiri A, Bolton J R, Cater S R. The use of iron in advanced oxidation processes. J. Adv. Oxid. Technol., 1996, 1: 18~26
    [237] Burbano A A, Dionysiou D D, Suidan M T, Richardson T L. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res., 2005, 39(1): 107~118
    [238] de laat J, Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol., 1999, 33(16): 2726~2732
    [239] Sun Y F, Pignatello J J. Organic intermediates in the degradation of 2,4-dichloropheno- xyacetic acid by Fe3+/H2O2 and Fe3+/H2O2/UV. J. Agric. Food Chem., 1993, 41(7): 1139~ 1142
    [240] Sun Y F, Pignatello J J. Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J. Agric. Food Chem., 1992, 40(2): 322~327
    [241] Pignatello J J, Sun Y F. Complete oxidation of metalochlor and methyl parathion in water by the photo assisted Fenton reaction. Water Res., 1995, 29(8): 1837~1844
    [242] Huston P L, Pignatello J J. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo assisted Fenton reaction. Water Res., 1999, 33(5): 1238~1246
    [243] de Laat J, Gallard H, Ancelin S, Legube B. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700