环境中微囊藻毒素的检测、提纯及其紫外光助催化降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化的日益加剧,蓝藻水华爆发带来的微囊藻毒素污染成为一个全球关注的环境问题。微囊藻毒素MCs是由蓝藻所产生的一种具有强烈致癌作用的肝毒素,其分子结构复杂、种类繁多,以痕量形式稳定地存在于各类富营养化的天然水体中,传统的处理工艺难以有效祛除,这对人类健康构成了极大的潜在威胁。目前迫切要求对MCs进行快速定性、定量分析的同时,也需要大量MCs纯品作为试验材料进行深入研究,以便寻找一种稳定高效的方法降解祛除饮用源水中的MCs。本论文围绕着MCs的分离检测、纯化制备以及UVA光助高级氧化方法(AOP)降解这几个主题,以太湖梅梁湾采集的样品为对象开展了一系列研究工作。具体包括以下内容:
     优化建立了基于固相萃取(SPE)-高效液相色谱(HPLC)和商品化的ELISA试剂盒的两种途径检测水样中痕量MCs的方法。通过对样品预处理中小柱、淋洗、洗脱、浓缩定容等关键环节的单因素考察,确立的SPE方法能够高效稳定地将水样中MCs浓缩富集1000倍;洗脱液采用配有DAD检测器的HPLC仪器,以含有三氟乙酸(TFA)的甲醇溶液等度洗脱方式进行MCs检测,SPE–HPLC方法不但可以定性不同种类的MCs,而且可以进行准确定量检测。结果同ELISA方法进行了比较验证。采用这两种方法对夏季太湖梅梁湾的水样进行了检测,结果表明水中主要含有的微囊藻毒素为MC-RR和MC-LR,其中MC-RR含量更高,在峰值9月份两种MCs浓度都已经超过了有关标准,需要采取措施控制。
     在室温条件下采用60%的甲醇结合藻细胞超声粉碎方法从水华藻浆中提取了MCs,毒素浓度较高而杂质含量较低,调节pH值使残余色素蛋白变性析出得以分离。在SPE-HPLC仪器上进行了提取MCs分离条件的优化,并运用LC-ESI/MS设备进一步确认鉴定毒素类型,结果表明MC-RR、MC-YR和MC-LR这几种藻毒素是太湖水华藻样中主要的MCs类型,还包括一种去甲基化的MC-RR和一种未见报道的MCs;同样以此提取液为对象,在Flash色谱和制备型HPLC仪器上进行了MCs放大制备试验,在流动相比例为甲醇/水=55/45,流速选定为10mL/min,进样量为400μL的最佳条件下,同时分离、纯化制得约0.1mg纯净MC-RR和MC-LR单体。
     不同光照条件下考察了Fenton试剂和Fenton体系对高低不同浓度的提取MC-LR的降解情况,并采用甲基紫褪色光度法对过程中产生的羟自由基进行间接测量,探讨了这些过程中藻毒素降解的机理。结果表明Fenton体系可以部分降解MC-LR,降解速率和程度与Fenton试剂用量成正比,基本遵循羟自由基氧化进攻的机理;在低强度辐照UVA光照下,Fe~(3+)和Fe~(2+)能够有效降解MC-LR,前者更为显著,但过程中的羟自由基产量和毒素降解率的正相关性降低,Fe(OH)~(2+)络合物产生光生羟自由基是导致毒素降解主要的引发剂;UVA-Fenton体系中二者的协同效应加速了体系中Fe~(2+) /Fe~(3+)的循环,极大提高了羟自由基产量,使MC-LR降解速率大于Fenton和Fe~(3+)(Fe~(2+))/UVA体系中降解速率之和;广谱的太阳光参与的Fe~(2+)(Fe~(3+))体系和Fenton体系降解MC-LR比UVA更为高效;在采用太阳光照射和模拟天然水中的浓度和
The occurrence of toxic water bloom of cyanobacteria algae has been a serious pollution problem in recent years. Microcysins (MCs) is a group of extremely hepatotoxic toxin produced by the species of cyanobacteria. Due to complicated structure and diverse congener, the MCs pollution is characteristic of trace-level, recalcitrant and complex in eutrophic freshwater. It has been proven difficult to be removed by conventional water treatments and constitute potential hazard to public health, some necessary measures of monitoring and determination on MCs are urgently needed. Furthermore, purified MCs are also needed to utilize as reagent material in relevant research field, such as degradation of MCs in drinking water with high efficiently. Focused on determination and purification of MCs, as well as degradation by photo-Advanced Oxidation Process, this dissertation selected the water and bloom sample from Meiliang Bay, TaiHu Lake as objective to conduct a series of investigation.
     To optimize and develop two methods of trace level MCs determination based on solid phase extraction (SPE)-high performance liquid chromatography (HPLC) and ELISA, single factor comparisons were conducted in such key SPE processes as cartridge, rinse, elution and concentration. MCs in water sample could be condensed 1000 times by this method. When methanol solution with trifluoroacetic acid (TFA) was applied to mobile phase, HPLC assay offered a good potential for a sensitive and selective determination of MCs. The results were compared and validated between SPE-HPLC with ELISA method. According to the results for water samples from TaiHu lake during warm months, MC-RR and MC-LR were main MCs component, and the content of former was usually greater than the later. The maximum contents of both MCs which appeared in September have exceeded the guideline and some measures must be taken to make MCs pollution under control.
     At the room temperature, the 60% methanol solution with ultrasonic method was applied to extract MCs from bloom sample. The massive of phycocyanin protein was removed by adjusting the pH of solvents to the isoelectric point. SPE-HPLC has been employed to isolate MCs and the structures of the obtained MCs were further identified with HPLC, spectrophotometer, and electrospray ionization mass spectrometry (ESI-MS). The result showed that MC-RR, MC-LR and MC-YR were main MCs component in bloom sample, with a small quantity of Dimethyl MC-RR and a kind of unknown MCs. Methods were also established to isolate and purify MCs with Flash chromatography and preparative chromatography. Under the condition of mobile phase with 55% methanol solution, flow rate 10ml/min and injection volume 400μL, about 0.1mg pure MC-RR and MC-LR were obtained.
引文
[1] 2004年中国环境状况公报》中国国家环保总局,2005,6
    [2]《全国主要湖泊、水库富营养化调查研究》课题组.湖泊富营养化调查规范(第二版).北京: 中国环境科学出版社,1990
    [3] Chorus L, Bartram J. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Great Britain, St Edmundsbury Press. 1999, P57.
    [4] 钱凯先 国内外湖泊富营养化研究及对策.环境科学,1985,9(2):59-63。
    [5] 徐 海 滨 , 严 卫 星 淡 水 湖 泊 微 囊 藻 毒 素 的 污 染 和 毒 理 学 研 究 卫 生 研 究 ,2002,31(6):477-480
    [6] 窦明,谢平,夏军 汉江水华问题研究 水科学进展,2002,13(5):557-560
    [7] 卢大远,刘培刚,范天俞 等 汉江下游突发“水华”的调查研究 环境科学研究,2000,13(2):28-31
    [8] 董云仙 洱海蓝藻水华研究 云南环境科学,1999,18(4):28-31
    [9] 周云龙,于明 水华的发生、危害和防治 生物学通报,2004.39(6):11-14
    [10] Porat R, Teltsch B, Mosse R A, et al. Turbidity changes caused by collapse of cyanobacterial gas vesicles in water pumped from Lake Kinneret into the Israeli national water carrier. Water Research, 1999,33 (7):1634-1644
    [11] 王红兵,朱惠刚 淡水浮游藻类污染及其毒性.上海环境科学,1995, 14(8):38-41
    [12] 胡宗达,周元清 水华蓝藻毒素研究概述 云南环境科学,2004,23(3):8-11
    [13] Codd G A. Cyanobacterial toxins: occurrence, properties and biological significance . Water Science and Technology, 1995, 32(4): 149-156
    [14] Carmichael, W.W,et al. Twolaboratory case studies on the.oral toxicity to calves of the freshwater cyanophyte (blue green alga) Anabaena .osaquaeNRC44-1. Can. Vet. J. 1977,18, 71- 75.
    [15]Duy T N, et al. Toxicology and risk assessment of freshwater cyanobacterial(blue-green algae) toxins in water. Rev Environ Contam Toxicol,2000,163:113-186.
    [16] Botes D P, et al. Configuration assignments of the amino acid residues and the presence of N-methyl dehydroalanine intoxins from the blue-green alga Microcystis aeruginosa. Chem. Soc. Perkin Trans.1982,1: 2747-2748
    [17] Park H D, Namikoshi M, Brittain S M, et al. [-Leul]microcystin-LR, a new microcystin isolated from waterbloom in Canadian prairie lake.Toxicon,2001,39:855-862
    [18] Rivasseau C, Martins S, Hennion M-C. Determination of some physiochemical parameters of microcystins(cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J Chromatography, 1998, 799(1-2):155-158
    [19]Schripsema J, Dagnino D., Complete assignment of the NMR spectra of [D-Leu1]-microcystin-LR and analysis of its solution structure. Magn. Reson. Chem. 2002, 40: 614–617
    [20]Goldberg J,Huang H. et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995, 376:745-753.
    [21]Hawkins P.R., Runnegar M.T.C., Jackson A.R.B., and Falconer I. R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green algae) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl. Environ. Microbio. 1985, 50:1292-1295.
    [22]yenstrand P., Metcalf J.S, Beattie K.B., Codd G.A. Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulation. Toxicon. 2001,39: 589-594
    [23] Pia S.M. Vesterkvist, Jussi A.O. Meriluoto. Interaction between microcystins of different hydrophobicities and lipid monolaters. Toxicon. 2003, 41:349-355
    [24] Rivasseau C., Martins S., et al. Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J. Chromatography A. 1998, 799: 155-169.
    [25]Maagd P., Hendriks. et al. pH-dependent hydrophobicity of the cyanobacteria toxinmicrocystin-LR. War. Res. 1999,33(3): 677-679
    [26] House, H.O, The alkylation of active methylene compounds. In: Molecular Synthetic Reaction. 2nd ed. W.A. Benjamin, Califormia, 1972, P595-623
    [27] Kondo F,lkai Y,Oka H. et al. Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins, Chem. Res. Toxicol. 1992, 5: 591-59
    [28] Mackintosh R. W,Dalby K.N., Campbell D.G. et al. The cyanobacterial toxin microcystin bind covalently to cysteine-273 on protein phosphoatase 1. FEBS Lett. 1995, 371(3): 236-240.
    [29]Moorhead G , Mackintoshd R.W., Morrice N. et al., Purification of type 1 protein (serinelthreonine) phosphatases by mirocystin-sepharose affinity chromatography. FEBS Lett. 1994, 356, 46-50.
    [30] Takenaka S., Covalent glutathione conjugation to cyanobacterial hepatotoxin mictocystin LR by F344 rat cytosolic and mirosomal glutathione S-transferases Environ. Toxicol. Pharmacol. 2001, 9(4): 135-139
    [31]Mehto P., Ankelo M., Hinkkanen A,Mikhailov A. et al. A time-resolved fluooimmunometric assay for the detectors of microcystins,cyanobacterial peptide hepatooxins. Toxicon. 2001, 39(6): 831-836.
    [32] Lawton L.A., Robertson P.K.J., Cornish B.J.P.A., Jaspars M. Detoxification of microcystins (cyanobacterial hepatotoxins) using Ti02 photocatalytic oxidation Environ. Sci. Technol. 1999, 33(5): 771-77
    [33]Kaya K., Sano T. Total microcystin determination using erythro-2-methy l-3-(methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard. Analytica. Chimica. Acta. 1999, 386: 107-112
    [34] Tsuji K., Masui H., Uemura H., Mori Y., Harada K-I. Analysis of microcystins in sediments using MMPB method. Toxicon. 2001, 39(5): 687-692
    [35] Hart J, Fawell J K,Croll B,The Fate of Both Intra- and Extracellular Toxins During Drink water Treatment.[J].Water Supply,1998,16(5):611-617
    [36] Elke Dittmann. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC7806. Molecular Microbiology, 1997,779-787
    [37] Kleikauf, Von Dohren H. A non-ribosomal system of peptide biosynthesis. Eur J Biochem,1996,236:335-351
    [38] 宋立荣,雷腊梅,何阵荣,等.滇池水华蓝藻铜锈微囊藻和绿色微囊藻的生长生理特性及毒素分析.水生生物学报,1999,23(5):402-408
    [39] Utkilen H and Gjφlme N. Emerge the dominating controlling factor for microcystin production in Microcystis aeruginosa, Compilation of abstracts. 4th International Conference on Toxic Cyanoba- cteria ,1998, 63
    [40] Bickel H Lyck S and Utkilen H. Dose the energetic state of microcystis cells affect the microcystin content Compilation of abstracts. 4th International Conference on Toxic Cyanobacteria ,1998, 39
    [41] Meiβner K, Dittmann E, and B?rner T. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiology Letters , 1996,135:295-303
    [42] S Otsuka, S Suda, R Li, M Watanabe, H Oyaizu, S Matsurnoto and M M Watanabe, Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 33S internal transcribed spacer sequence. FEMS Microbiology Letters , 1999,172:15-21
    [43] Welker M, Steinberg C. Hepatoxic cyanobacteria in the shallow lake Muggelsee. Hydrobiologia, 1999, (408-409):263-268
    [44]Foremme Hermann, et al. Occurrence of cyanobacteria) toxins-microcystins and anatoxin-a-in Berlin water bodies with implications to human health and regulations. Environmental Toxicology, 2000,15 (2),120-130
    [45] Hirooka E Y, et al. Survey of microcystins in water between 1995 avid 1996 in Parana, Brazil using ELISA. Natural Toxins, 1999,7 (3):103-109
    [46] Campos 从 Neumann U, Weckesser J. Microcystin in cyanobacteria) blooms in a Chilean lake. Systematic and Applied Microbiology, 1999,22 (2):169-173
    [47] Lee T H. First report of microcystins in Taiwan. Toxicon, 1998,36 (2):247-25
    [48] 张维昊,滇池微囊藻毒素的环境化学行为研究 博士论文 中国科学院水生生物研究所,2001
    [49]穆丽娜,陈传炜,俞顺章等.太湖水体微囊藻毒素含量调查及其处理方法研究.中国公共卫生,2000,16(19):803-804
    [50]陈艳,俞顺章,林玉娣等.太湖流域水中微囊藻毒素含量调查.中国公共卫生,2002,18(12):1455-1456
    [51]张志红,赵金明,蒋颂辉等.淀山湖夏秋季微囊藻毒素-LR 和类毒素-A 分布状况及其影响因素。卫生研究,2003,32(4):316-31
    [52]连民,刘颖,俞顺章等.饮水中微囊藻毒素对人群健康影响的横断面研究.中华流行病学杂志,2000,21(6):437-440
    [53]徐海滨,孙明,隋海霞,等江西部阳湖微囊藻毒素污染及其在鱼体内的动态研究。卫生研究,2003,32(3):192-194
    [54]吴静,王玉鹏,蒋颂辉等城市供水藻毒素污染水平的动态研究.中国环境科学,2001,21(4):322-325
    [55] Cousins T T, Bcaling DJ, James H A ,et al. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res,1996,30:481~484。
    [56] Tsuji K, Watanuki T, kondo F, et al. Stability of microcystins from cyanobacteria-II , Effect of UV light on decomposition and isomerization. Toxicon, 1995,33:1619~1631。
    [57] Jones G J, Orr P T. Release and degradation of microcystin following algaecide treatment of a microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Wat. Res.,1994,28(4):871-87
    [58] Jones G J, Bourne Dq Robert L, et al. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Natural Toxins, 1994,2 (4):228-235
    [59] Lambert T W, Holmes C F O, Hrudey S E. Adsorption of microcystin-LR on activated carbon and removal in full scale water treatment. Wat Res,1996,30 (6):1411-142
    [60] 金丽娜,张维吴,郑利等 滇池水环境中微囊藻毒素的生物降解 中国环境科学,2002,22(2):189-192
    [61] Watanabe M F, Tsuji K, Watanabe Y, et al. Release of heptapeptide toxin (microcystin) during the decomposition process of Microcystis aeruginosa. Natural Toxins, 1992,1:48-53
    [62] Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, et al. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J cacer Res Clin Oncol,1992,118:420-424
    [63] Angeline K, Phillip M, Ellie E. Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay. Environ Sci Technol,1995,29 (2):242-246
    [64]Solter PF, Wollenberg GK, Huang X, et al. Prolonged sublethal exposure to the protein phosphatase inhibitor microcystin-LR results in multiple dose-dependent hepatotoxic effects. Toxicol Sci, 1998,44:87-96
    [65] 隋海霞,严卫星,徐海滨,微囊藻毒素的毒性以及水生生物的富集作用 卫生研究 2002,31(3):214-216
    [66] Wen-Xing Ding, Han-Ming Shen, Hui-Gang Zhu, et al. Studies on Oxidative Damage Induced by Cyanobacteria Extract in Primary Cultured Rat Hepatocytes. Environmental Research, 1998,56:12-18
    [67]Jochimsen EM, Carmichael WW, An JS,et al. Liver failure and death after exposure to microcystin at a hemodislysis center in Brazil. N Engl J Med,1998,338:873-878
    [68] Lambert T W, Holmes C F B, Hrudey S E. Microcystin class of toxins: health efects and safety of drinking water supplies. Environ Rev,1994,2:167-186
    [69] Mez k, Beatie K A, Hendriks J G A, et al. Identification of a microcystin in benthic cyobacteria linked to catle deaths on alping pastures in Switzerland. Eur J Phycol,1997,32(1):111-117
    [70]Lippy E C. Gastrointestinal illness at Sweickley. J Am Water Works Assoc,1976,68:606-610
    [71]Falconer I R, Beresford A M, Runnegerr M T C. Evidence of liver damage by toxin from a bloom of the blue-green alga Microcystis aeruginosa. Med J Aust,1983,1:511-51
    [72] S Pouria,A de Andrade,J Barbosa etal. Fatal microcystin intoxication in haemodialysis unit in Caruaru.Brazil.The Lancet,1998,352:21-26
    [73] 俞顺章,赵宁,资晓林 等 饮用水中微囊藻毒素与我国原发性肝癌关系的研究. 中华肿瘤杂志,2001,23 ( 2 ):96-99
    [74] Yu S Z. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepato1, 1995,10:674-682
    [75] Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxins, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in china, by highly sensitive immunoassay. Carcinogenesis,1996,17:1317-1321
    [76] Chen, Jun; Xie, Ping pp Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon, 2005,45 (5): 615-625
    [77] Magalhases VF, Soares RM, Azevedo SM, et al. Microcystin contamination in fish from the Jacarepagua Lagoon(Rio de Janeiro,Brazil); ecolcgical implication and human health risk. Toxicol, 2001,39(7):1077-1085
    [78] McElhiney J, Lawton LA, Leifert C. Investigations into the inhibitory effects ofmicrocystins on plant growth, and the toxicity of plant tissues following exposure. Toxicol ,2001,29(9):1411-1420
    [79] World Health Organization (1998a) Guidelines for drinking-water quality–Second edition-Volume 2.
    [80] Guidelines for Canadian Drinking Water Quality,1993
    [81] 韩志国,武宝歼,郑解生等淡水水体中的蓝藻毒素研究进展(综述).暨南大学学报(自然科学版),2001,22(3):129-13
    [82] Hoffmann J R H. Removal of microcystis toxins in water purification processes. Water SA,1976,2:58-60
    [83]Himberg K, Keola A M, Hiisvirta L, et al. The efect of water treatment processes on the removal of hepatotoxins from microcystis and oscillatoria cyanobacteria: a laboratory study. Wat Res,1989,23(8):979-984
    [84]James H, Fawell J K. Detection and removal of cyanobacterial toxins from freshwaters. Foundation for Water Research Report FR 0211,1991
    [85] Lambert T W, Holmes C F B, Hrudey S E. Microcystin class of toxins: health efects and safety of drinking water supplies. Environ Rev,1994,2:167-186
    [86] Lambert T W, Holmes C F O, Hrudey S E. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment. Wat Res,1996,30(6):1411-1422
    [87] Donati C D, Drikas M, Hayes R, et al. Microcystin-LR adsorption by powdered activated carbon. Water Res,1994,2 (8):1735-1742
    [88] Nicholson B, Rositano J, Burch M D. Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Research, 1994,28(6):1297-1303
    [89] Lam A K Y, Prepas E E, Spink D, et al. Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Research, 1995,29 (8):1845-1854
    [90] Senogles-Derham P J,Seawright A,Shaw Q et al. Toxicological aspects of treatment to remove cyanobacterial toxins from drinking water determined using the heterozygous P53 transgenic mouse model. Toxicon,2003,41:979-988
    [91] Keijola A M, Himberg K, Esala A L, et al. Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot-scale experiments. Toxic Assess, 1988,3:643-65
    [92] Stefan J H, Daniel R D, Betina C H. Efect of ozonation in drinking water treatment on the removal of cyanobacterial toxins and toxicity of by-products after ozonation of microcystin- LR. Environmental Toxicology,2000,15(1):143-151
    [93] Rositano J, Nicholson B, Pieronne P Destruction of cyanobacterial toxins by ozone. Ozone Science and Engineering, 1998,20(3):223-238
    [94]Drikas M. Control and/or removal of toxins, in Toxic Cyanobacteria: Current Status ofResearch and Management, Eds: Steffensen D.A. and Nicholson B.C Australian Centre for Water Quality, Salisbury, Australia, 1994, p.93
    [95] Rositano J,Nicholson B.C., Pieronne P. Destruction of cyanobacterial toxins by ozone. Ozone Sci. Technol. 1998, 20 (3):223-238
    [96] Martin Welker and Christaian Steinberg. Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environ. Sci.Technol, 2000,34:3415-3419.
    [97] Takenaka S,Watanabe M F. Microcystin LR egradation by Pseudotnonas aeruginosa alkaline protease. Chemosphere,1997,34(4):749-757
    [98]Bourne DqJones G J, Blakeley B L, et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Applied and Environ. Microbiology, 1996,62(11):4086-4094
    [99] 闰海,潘纲,张明明.微囊藻毒素研究进展 生态学报,2002,22(11):1968-19
    [100] 吴振斌,陈辉蓉,雷腊梅等.人工湿地系统去除藻毒素研究.长江流域资源与环境,2000,9(2): 242-247
    [101]吕锡武,稻森悠平,丁国际. 有毒蓝藻及藻毒素生物降解的初步研究.中国环境科学,1999, 19(2):138-142
    [102]Glaze W H, Kang J W, Chapin D H. The chemistry of water and wastewater treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science Engineering, 1987, 9:335-352
    [103] Perez M, Torrades F, Garcia-Hortal J A, et al. Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 2002, 36:63-74
    [104]Szpyrkowicz L, Juzzolino C, Kaul S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Research, 2001, 35(9):2129-2136
    [105]Shen Y S, Ku Y. Decomposition of gas-phase trichloroethene by the UV-TiO2 process in the presence of ozone. Chemosphere, 2002, 46:101-107
    [106]Benitez F J, Acero J L, Real F J. Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 2002, B89:51-65
    [107]Hoigne J.Inter-alibration of OH radical sources and waterquality parameters.International Conference “OxidationTechnologics for Water and Wastewater Treatment”.Goslar,Germany:1996.12-15
    [108]Rossetti R, Hull R, Gibson J M, et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50 ? size range: evolution from molecular to bulk semiconducting properties. J. Chem. Phys., 1985, 82: 552-559
    [109]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem., 1977, 81: 1484-1488
    [110]Leland J K, Bard A J. Photochemistry of colloidal semiconducting iron oxide polymorphs. J. Phys. Chem., 1987, 91: 5076-5083
    [111]Fujishima A, Honda K. Electrochemical photolysis of water at semiconductor electrode. Nature, 1972, 238(1): 37-38
    [112] Ollis D F, Hsiao C Y, Budiman L, et al. Heterogeneous photoassisted catalysis: conversion of perchlorethylene, dichlorethane, chloroacetic acids and chlorobenzenes. J. Catal., 1984, 88: 89-96
    [113] Mills A, Davies R H, Worsley D, Water purification by semiconductor photocatalysis. Chemical Society Reviews. 1993(22): 417-425
    [114] Assabane A, Ait Ichou Y, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania: identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Appl. Catal., B: Environ., 2000, 24: 71-87
    [115]Zhang Q H, Gao L, Guo J k. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal., B: Environ., 2000, 26: 207-215
    [116]Lachheb H, Puzenat E, Houas A, et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal., B: Environ., 2002, 39: 75-90
    [117]Einaga H, Futamura S, Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal., B: Environ., 2002, 38: 215-225
    [118]Lim T H, Jeong S M, Kim S D, et al. Photocatalytic decomposition of NO by TiO2 particles. J. Photochem. Photobiol., A: Chem., 2000, 134: 209-217
    [119]Schindler K M, Kunst M. Charge carrier dynamics in TiO2 powders. J. Phys. Chem., 1990, 94: 8222-8226
    [120] Malato S, Blanco J, Vidal A, et al. Photocatalysis with solar energy at a pilot-plant scale-an overview. Applied Catalysis B: Environmental 2002, 37:1-15
    [121] Fenton H J H. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc., 1894, 65 :899-910
    [122] Eisenhauer, H.R. Oxidation of phenolic wastes. Wat. Pollut. Control Fed. 1964. 36: 1116-112
    [123] Kremer M L. Complex visas‘Free Radical’mechanism for the catalytic decomposition ofH_2O_2 by Fe~(3+) . Int . J .Chem. Kinet, 1985,17 :1299-1314
    [124]Wink D A , Nimbus R W, Deserters M F , et al . A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N2nitrosodimethyl amine: evidence for an oxidative pathway not involving hydroxyl radical. Chem. Rev. Toxicol , 1991 ,4 :510-512
    [125]Walling C, Amarnath K. Oxidation of mandelic acid by Fenton’s reagent. J. A m. Chem. Soc., 1982, 104: 1085-1089
    [126]Kremer M L, Stein G. The catalytic decomposition of hydrogen peroxide by ferric perchlorate. Trans. Faraday Soc., 1959,55 :959-973
    [127]Barb W G, Baxendale J H , George P , et al.Reaction of ferrous and ferric ions with hydrogen peroxide. Part Ⅰ.The ferrous ion reaction. Trans. Faraday Soc., 1951,47:462-500
    [128] Zepp R G, Faust B C, Holgne J, Hydroxyl Radical Formation in Aqueous Reactions (pH 3-8) of Iron (1I) with Hydrogen Peroxide: the Photo-Fenton Reaction, Environ. Sci. Technol., 1992, 26, 313-319
    [129] Evans M G, George P, Uri N, the Fe(OH)~(2+) and Fe(OH)~(3+) Complexes, Trans. Faraday Soc., 1949, 45, 230-239
    [130]Flynn C M Jr., Hydrolysis of Inorganic ion (III) Salts, Chem. Review, 1984, 84, 31- 41
    [1] Haider S, Naithani V, Viswanathan P N , et al. Cyanobacterial toxins: a growing environmental concern. Chemosphere, 2003, 52 (1) : 1-21
    [2]Falconer I R,Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environ. Toxicol. Water Quality 1991,6:177-184
    [3]Ingrid C, Jamie B. Toxic cyanobacteria in water. London and New York: E&FN Spon Publisher, 1999,416
    [4]Fladmark K E, Serres M H,Larsen N L, etal Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon, 1998,36,1101-1114
    [5]Hiripi L,Nagy L. etal Insect(Locusta migratoria migratorioides) test monitoring the toxicity of cyanbacteria. Neurotoxicology 1998,19 (4-5):605-608
    [6]Lawton, L. A.; Robertson, P. K. J. ,etal Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO2 Photocatalytic Oxidation. Environment Sci& Technol,1999,33 (5):771-775
    [7] Pelander A, Ojanpera I., etal Screening for cyanobacterial toxins in bloom and strain samples by thin layer chromatography . Wat.Res,1996,30(6):1464-1470
    [8] Pelander A, Ojanpera I., etal Visual detection of cyanobacterial hepatotoxins by thin layer chromatography and application to water analysis. Wat Res .34(10):2643-2652
    [9] Lee H S, Jeong C K, Lee H M, etal. On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high-performance liquid chromatography with diodearray detection. J. of Chromatography A , 1999 , 848:179-184
    [10] Lawton L A, Edwards C, Codd G A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 1994, 119:1525-1530
    [11] Moollan R W, Rae B, Verbeek A . Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography . Analyst ,1996 ,121:233-238
    [12] Kondo F, Ikai Y. Reliable and sensitive method for determination of microcystins in compicated matrices by frit-fast atom bombardment liquid chromatography mass spectrometry. Natural Toxins ,1995,3(1):41-49
    [13] Barco M, Rivera J, Caixach J A nalysis of cyanobacterial hepatotoxins in water samples by microbore reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. Journal of Chromatography A. 2002 (959) 103-111
    [14] Shimizu, M., Iwasaki, Y. and Yamada, S. New fluorogenic dienophile: Synthesis, reaction with vitamin D, vitamin A and microcystins, and application to fluorometric assays. Yakugaku Zasshi (J. Pharmaceut.Soc. Jpn) 1995,115, 584-602.
    [15] Murata H, Shoj H, Oshikata M, etal High-performance liquid chromatography with chemiluminescence detection of derivatized microcystins. Journal of Chromatography A. 1995 (693) 263-270
    [16] Harada KI, Murata H, Qiang Z, et al. Mass spectrometric screening method for microcystins in cynobacteria .Toxicon, 1996,34(6):701-710
    [17]Kunimitsu K, Tomoharu S, Total microcystin determination using erythro-2-methyl-3- (methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard, Analytica chimica acta 386 (1999) 107-112
    [18] Li P C H, Hu S and Lam P K S.Development of a capillary Zone Electrophoretic Nethod for the Rapid separion and detection of hepatotoxic microcystins. Marine pollution Bulletin, 1999,39 (1~12):250-254
    [19]Siren H, Jussila M, Liu H, Peltoniemi S, etal, Separation, purity testing and identification of cyanobacterial hepatotoxins with capillary electrophoresis and electrospray mass spectrometry, Journal of Chromatography A, 1999, 839, 203-215.
    [20]Ueno Y, Nagata S ELISA analysis of microcystins, algal hepatotoxins, in environmental water. Toxicon 1997 (35) 482-483
    [21] Douglas. O. Mountfort, Patrick H, Jan S. Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. Toxicon 2005 (45) 199–206
    [22] Honkanen R E, Caplan F R. Development of a protein phosphatases–based assay for detection of phosphatase inhibitors in crude whole cell/animal extracts. Toxicon, 1996, 34(2):307-308
    [23] 徐立红,陈家平,徐建明,等. 微囊藻毒素对蛋白磷酸酶抑制作用的研究。环境科学学报,1999,19(5):536-539
    [24] Xu L H, Lam R K S, Chen J P. Use of protein phosphatase inhibition assay to detect microcystins in Donghu Lake and a fish pond in China. Chemosphere, 2000, 41:53-58.
    [25] Nelian B A, Williams D E, Luu H A, et al. The adsorption of microcystin-LR by natural clay particles. Toxicon, 2000, 38:303-308
    [26] Iva C, Manuela L, Piletsky S A.. Rational Design of a Polymer Specific for Microcystin-LR Using a Computational Approach. Anal. Chem.2002, 74,1288-1293
    [27] Meriluoto J.A.O., Chromatography of microcystins. Analytica Chimca Acta.1997, 352: 277-298.
    [28]徐立红,周炳升,张甬元,等. 微囊藻毒素环境行为的初步研究. 水生生物学报,1997,21 ( 1 ):85-89
    [29] Ramanan S, Tang J, Velayudhan A. Isolation and preparative purification of microcystinvariants. Journal of Chromatography A,2000,883:103-112
    [30] Vasconcelos V M, Sivonen K, Evans W R., etal, Hepatotoxic Microcystin diversity in cyanobacterial blooms collected in protuguess freshwatrs. Wat Res 1996 30(10):2377-2384
    [31] Hitzfeld, B.C.; Lampert, C.S.; Spaeth, N. etal., Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 2000,38:1731-1748
    [32] Feitz, A. J.; Waite, T. D.; Jones, G. J.;etal Photocatalytic Degradation of the Blue Green Algal Toxin Microcystin-LR in a Natural Organic-Aqueous Matrix. Environ. Sci. Technol.; 1999; 33(2):243-249.
    [33] 李效宇. 微囊藻毒素的毒理学研究. 博士学位论文,中国科学院水生生物研究所,2001
    [34]McElhiney J, Lawton L A., Detection of the cyanobacterial hepatotoxins microcystins.Toxicology and Applied Pharmacology 2005 (203) 219–230
    [35]Ikawa, M; Phillips, N; Haney, J F. etal., Interference by plastics additives in the HPLC determination of microcystin-LR and -YR Toxicon 1999,37:923-929
    [36] P. Hyenstrand, J.S. Metcalf, K.A. Beattie,etal. Losses of the cyanobacterial toxin microcystin -LR from aqueous solution by adsorption during laboratory manipulations. Toxicon , 2001,39:589-594
    [37] Zhang M M, Pan G, Yan H, etal. A method to extract algae toxin of microcystin-LR. Journal of Environmental Sciences 2004, 16(4): 694-696
    [38] Rapala J, Sivonen K. Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecology, 1998,36 (2): 181-192
    [39] Blom J F, Robinson J A, Juttner F, High grazer toxicity of [D-Asp3, Dha7] MCs-RR of planktothrix rubescens as compared to different microcystins. Toxicon, 2001,39: 1923-1932
    [1]Botes D P, Kruger H, Vilfoen C C.Isolation and characterization of 4 toxins fuom blue-green-alga, Microcystis-aeruginosa.Toxicon,1982,20(6):945-954
    [2] Bishop C. T., Anet E. F. L. J., and Gorham P. R. Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1. 1959. Can. J. Biochem. Physiol., 37, 453.
    [3]Meriluoto J.A.O., Chromatography of microcystins. Analytica Chimca Acta.1997, 352: 277-298
    [4]Harada K., Matsuura K., Suzuki M. et al., Chemical analysis of toxic peptides from cyanobacteria by reversed phase high performance liquid chromatography. Chromat. 1988, 448:257-283
    [5]Meriluoto J.A.O. and Eriksson J.E. Rapid analysis of peptide toxins in cyanobacteria. Journal of Chromatography. 1988, 438:93-9
    [6] Siegelman H.W., Adams W.H., Stoner RD,Slatkin D.N., In: Ragelis E.P(Ed.), Seafood Toxins, American Chemical Society, Washington, 1984, p.407
    [7]A.J. vander Westhuizen, J.N.Eloff. Toxin extraction from the blue-green alga microcystis aeruginosa by different extraction media. J.Limnol.Soc.s.Aft ,1982,8(2):76-83
    [8] P.G..J.de Maagd, A. J. Hendriks, et al. pH-Dependet hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res,1999,33(3):677-680
    [9]Harada K., Suzuki M. et al. Improved method for purification of toxic peptides produced by cyanobacteria. Toxicon. 1988, 26(5): 433-43
    [10]Lawton L.A., Edwardas C., et al. Extraction and high-performance liquid chromato-graphic method for the determination of microcystins in raw and treated waters. Analyst. 1994, 119: 1525-1529.
    [11]Ramanan S., Tang J., Velayudhan A. Isolation and preparative purification of rnicrocystin variants. J. Chromatogr. A. 2000, 883: 103-112
    [12] J.Fastner, I. Flieger, et al. Optimised extraction of microcystins from field samples a comparison of different solvents and procedures. Water Res,1998,32(10)3177-3181
    [13]Edwards C., Lawton L,et al.. Laboratory-scale purification of microcystins using flash chromatography and reversed-phase high-performance liquid chromatography. J. Chromat. A. 1996 734:163-17
    [14]Lawton L.A., Edwards C. et al., Purification of microcystins. J. Chromato.A 2001, 912(2):191-209.
    [15] C.J.ward, K.A.Beattie,E.Y.C.Lee,et al. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria:comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS,Microbiol.Lett. 1997,153(2):465-473
    [16]T.sano.Tomoharu, Kaya, Kunikitsu,et al. Two New(E)-2-Amino-2-Butenoic Acid(Dhb) -Containing Microcystins Isolated from Oscillatoria agardhii. Tetrahedron,1998, 54(3- 4):463-470
    [17] 张维昊.滇池微囊藻毒素的环境化学行为研究.博士学位论文,中国科学院水生生物研究所 2001, 56-60.
    [18] 殷刚,刘铮.钝顶螺旋藻中藻兰蛋白的分离纯化及特性研究.清华大学学报,1999,(6):20-22
    [19] Brooks W. P.,Codd G. A. Extraction and Purification of toxic peptides from natural blooms and laboratory isolates of the cyanobacterium microcystis aeruginosa. Lett Appl. Microbio1,1986, 2(1):1-3
    [20]Spoof L, Vesterkvist P, Lindholm T etal. Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. Journal of Chromatography A, 2003 (1020) 105–119
    [21]Zweigenbaum J.A., HenionJ.D, Beattie K.A. etal., Direct analysis of microcystins by microbore liquid chromatography electrospray ionization ion-trap tandem mass spectrometry. J of Pharmaceutical and Biomedical Analysis 2000(23) 723–733
    [22] Ruangyuttikarn W , Miksik I, Pekkoh J, etal.Reversed-phase liquid chromatographic–mass spectrometric determination of microcystin-LR in cyanobacteria blooms under alkaline conditions. Journal of Chromatography B, 2004 (800) 315–319
    [23]黄蓓,王广策,李振刚,藻蓝蛋白色素肽光动力学抗肿瘤作用的试验研究 激光生物学报 2002,11(3):194-198
    [24]刘畅,王世才,卢东昱. 利用光学多通道分析仪与分光光度计测定叶绿素的紫外-可见光区吸收光谱 物理实验,2005,25(12):38-41
    [25]Lawton L A, Edwards C. Purification of microcystins. J Chromatography A. 2001 (912): 191-209
    [26] 陈晓国,肖邦定,徐小清 微囊藻毒素 RR 的制备及鉴定 中国环境科学,2005,25(3):267-270
    [27] Sano T; Kaya K. Two New (E)-2-Amino-2-Butenoic Acid (Dhb)-Containing Microcystins Isolated from Oscillatoria agardhii. Tetrahedron,1998,54(3): 463-470
    [1]Christopher WK,Mary D.jenny H,et a1.The impact of conventional water treatment processes on ce11s of the cyanobacterium Microcystis aeruginosa. Wat Res,1999,33:3253-3262
    [2]Angeline KY,E11ie E,Dadid S,et a1.Chemical control of hepatotoxic phytoplanton bloorms:implications for human health.Wat Res,1995,29:1845-1854
    [3] Velzeboer, R.; Drikas, M.; Donati, C.; etal.Proceedings AWWA 16th Federal Convention, 1995, Sydney; Australian Water and Wastewater Association Inc.: Artarmon, Sydney, 1995; Vol. 1, pp 121-128.
    [4] Feitz A. J, Waite T. D, Jones G. J., et al., Photocatalytic Degradation of the Blue Green Algal Toxin Microcystin-LR in a Natural Organic-Aqueous Matrix. Environ. Sci. Technol. 1999,33 (5) :243-249.
    [5] Lawton, L. A.; Robertson, P. K. J. , etal Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO_2 Photocatalytic Oxidation. Environment Sci& Technol,1999,33 (5):771~775
    [6]Shephard G. S, Stockenstrom S, Villiers D D, etal. Photocatalytic Degradation of cyanobacterial toxins in water. Toxicon. 36 (1998) 1895-1901
    [7] Keijola A M, Himberg K, Esala A L, et al. Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot-scale experiments. Toxic Assess, 1988, 3:643-665
    [8] Stefan J H, Daniel R D, Betina C H. Efect of ozonation in drinking water treatment on the removal of cyanobacterial toxins and toxicity of by-products after ozonation of microcystin- LR. Environmental Toxicology, 2000, 15 (1):143-45
    [9] Rositano J, Nicholson B, Pieronne P Destruction of cyanobacterial toxins by ozone. Ozone Science and Engineering, 1998, 20 (3):223-238
    [10]Gajdek P, Lechowski Z, Bochnia T, Kepczynski M. Decomposition of microcystin-LR by Fenton oxidation Toxicon. 39 (2001) 1575-1578
    [11]乔瑞平, 李楠, 漆新华 等 UV/H_2O_2 催化氧化去除微囊藻毒素-LR 安全与环境学报 2005,2(5):46-49
    [12] Nadtochenko V, Kiwi J. Primary Photochemical Reactions in the Photo-Fenton System with Ferric Chloride. 1. A Case Study of Xylidine Oxidation as a Model Compound. Environ. Sci . Technol. 32(1998) 3273-3281
    [13] Bandara J, Morrison C, Kiwi J, et al., Degradation/decoloration of concentrated solutions of Orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents J. Photochem. Photobiol. A: Chem. 99(1996) 57-66
    [14] Maletzky , Bauer R. The photo-fenton method - degradation of nitrogen containing organic compounds. Chemosphere. 37 (1998) 899-909
    [15] Feitz A J, Guan J, Chattopadhyay G, eyal Photo-Fenton degradation of dichloromethane for gas phase treatment. Chemosphere. 48 (2002) 401–406
    [16] Tsuji K, Watanuki T, kondo F, et al. Stability of microcystins from cyanobacteria: Effect of UV light on decomposition and isomerization. Environ. Sci . Technol . 28(1994) 173-177
    [17]邓南圣,吴峰 环境光化学 化学工业出版社 2003 p102
    [18]Cooper W J, Lean D R S. Hydrogen peroxide concentration in a northern lake: photochemical formation and diel variability. Environ. Sci . Technol . 23(1989) 1425-1428
    [19] Bandala E, Mart?nez D, Mart?nez E, etal, Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon 43 (2004) 829–832
    [20]苑宝玲, 陈一萍, 李艳波等,Fenton 催化氧化降解藻毒素MC-LR的效能研究 环境科学学报, 2005,25(7):925-929
    [21] Cornish B J.P.A, Lawton L A, Robertson P K J. hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide . Applied Catalysis B:Environmental 2000(25):59-67
    [22]Takenaka S, Tanaka Y. Decomposition of cyanobacterial microcystins by iron(III) chloride . Chemosphere . 1995 30 (1) :1-8
    [23] 张乃东,郑威,彭永臻 褪色光度法测定Fenton体系中产生的羟自由基分析化学,2003,31(5):552-554
    [24] 陈伟,甘南琴,宋立荣. 微囊藻毒素在单波长紫外光照射下的光降解动态研究. 化学学报, 2004,62:142-147
    [25]苑宝玲, 陈一萍 ,郑雪琴等 高铁-光催化氧化协同去除藻毒素的研究. 环境科学 2004,25(9): 106-108
    [26]Yuan B L, Qu J H, Fu M L.etal Removal of cyanobacterial microcystin-LR by ferrate oxidation – coagulation. Toxicon. 2002 (40) 1129-1134
    [27]Mailhot G, Asif A, Bolte M., Degradation of sodium 4-dodecylbenzenesulphonate photoinduced by Fe (III) in aqueous solution. Chemosphere. 2000 41 (2):363-370
    [28] Stolzberg, R., Hume, D., Rapid formation of iminodiacetate from photochemical degradation of iron(III) nitrilotriacetate solutions. Environ. Sci. Technol.1975. 9: 654-656
    [29] Kari, F.G., Hilger, S., Canonica, S., Determination of the Reaction Quantum Yield for the Photochemical Degradation of Fe (III)-EDTA: Implications for the Environmental Fate of EDTA in Surface Waters Environ. Sci.Technol. 1995.29: 1008-1017
    [30]Yan F, Ozsoz1 M., Sadik O.A. Electrochemical and conformational studies of microcystin–LR . Analytica Chimica Acta 2000, 409:247–255
    [1]朱光灿, 吕锡武 藻毒素在传统净水工艺中的去除特性. 环境化学, 2002,21:584-589
    [2] Chow C W K, Drikas M, House J, et al. The impact of conventional water treatment processes on ce11s of the cyanobacterium Microcystis aeruginosa. Wat Res, 1999, 33:3253-3262
    [3] Cornish B.J.P.A, Lawton L A, Robertson P K J. Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl Catalysis B: Environmental, 2000, 25:59-67
    [4] Ollis D F, Pelizzetti E., Serpone N. Photocatalyzed destruction of water contaminants. Environ Sci Technol, 1991. 25, 1523-1529
    [5] Lee S, Nashida K, Otaki M, et al. Photocatalytic inactivation of phage QB by immobilized titanium dioxide mediated photocatalyst. Water Sci Technol 1997, 35:101~106.
    [6] 陈中颖, 余刚, 张彭义 碳黑改性 TiO_2 薄膜光催化降解有机污染物 科学通报, 2001, 46: 1961-1965
    [7] Lawton L A., Peter K.J. Robertson, Benjamin J.P.A. etal Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts.[J].Journal of Catalysis,2003,213:109-113
    [8]Feitz, A. J.; Waite, T. D.; Jones, G. J.;etal Kinetic Modeling of TiO_2-Catalyzed Photodegradation of Trace Levels of Microcystin-LR. Environ. Sci. Technol.; 2003; 37(3); 561-568.
    [9] Robertson P K J, Benjamin J.P.A. etal Processes influencing the destruction of Microcystin-LR by TiO_2 Photocatalysis. Journal of photochemistry and Photobiology A: Chemistry,1998,116 : 215-219
    [10]高洁,徐桂芹 光化学氧化技术去除水中有机污染物的试验研究.环境污染与防治, 2002,24(5):272-274
    [11]Angela G. Rincon, Cesar Pulgarin_, Nevenka Adler, etal. Interaction between E. coli inactivation and DBP-precursors -dihydroxybenzene isomers - in the photocatalytic process of drinking-water disinfection with TiO_2 . Journal of Photochemistry and Photobiology A: Chemistry,2001,139 : 233-241
    [12]Martin W, Cristina steinberg. Rates of Humic Substance Photosensitized Degradation of Microcystin-LR in Natural Waters.Environ. Sci. Technol. 2000, 34:3415-3419
    [13] Martin W , Cristina steinberg Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence.Wat. Res,1999,33( 5):1159-1164,
    [14]Robertson, P. K. J, Lawton, L. A. etal Destruction of cyanobacterial toxins by semiconductor photocatalysis. Chem. Soc. Commun,1997,(4):393-394.
    [15]Tsu-feng Chen, Ruey-an Doong, Photocatalytic degradation of parathion in aqueous TiO_2dispersion: the effect of hydrogen peroxide.Wat. Sci .Tech,1998, 37(8):187-194
    [16]Liu I, Lawton L A., Cornish B,J.P.A etal. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR.Journal of Photochemistry and Photobiology A: Chemistry,2002,148 :349-354
    [17]Cornish B J.P.A, Lawton L A., hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide.Applied Catalysis B:Environmental 2000,25:59-67
    [18]Lawton, L. A.; Robertson, P. K. J., etal Detoxification of Microcystins (Cyanobacterial Hepatotoxins) Using TiO_2 Photocatalytic Oxidation. Environment Sci& Technol,1999,33 (5):771-775
    [19] Shephard G. S, Stockenstrom S, Villiers D D, et al. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide Catalyst. Wat Res. 2002, 36:140-146
    [20] Qing D, Rabani J. Photosensitization of nanocrystalline TiO_2 films by anthocyanin dyes. J Photochem Photobiol A: Chem, 2002,148:17-24
    [21] Lawton L A, Edwards C, Codd A. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst. 1994, 119:1525-1530.
    [22] Tsuji K, Naito S, Kondo F, et al. Stability of Microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environ. Sci. Technol.1994, 28:173~177
    [23] 陈伟,甘南琴,宋立荣. 微囊藻毒素在单波长紫外光照射下的光降解动态研究. 化学学报, 2004,62:142-147
    [24] Tunesi S. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended TiO_2 ceramic membranes. J. Phys Chem. 1991,95: 3399-3405
    [25] McMurray T.A, Byrne J.A, Dunlop P.S.M, et al. Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO_2 films. Appl Catal A: General. 2004, 262: 105-110.
    [26] Zhu X L, Feng X G, Yuan C W, et al Photocatalytic degradation of pesticide pyridaben in suspension of TiO_2: identification of intermediates and degradation pathways. J. Mol. Catal. A: Chemical. 2004, 214: 293-300.
    [27] Robertson P K J, Lawton L A, Munch B, et al. Destruction of cyanobacterial toxins by semicoductor photocatalysis. Chem. Commun. 1997, 4: 393-394.
    [28]Vasudevan D, Stone A T. Adsorption of Catechols, 2-Aminophenols, and 1,2-Phenylenediamines at the Metal (Hydr) Oxide/Water Interface: Effect of Ring Substituents on the Adsorption onto TiO_2. Environ Sci Technol. 1996, 30: 1604-1613
    [29] Timothy N O, Robert T B. TiO_2 photocatalysis for Indoor Air Applications: Effects ofHumidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 1995, 29:1223-1231.
    [30] Xie Y B, Yuan C W. Calculation method of quantum efficiency to TiO_2 nanocrystal photocatalysis reaction. J Environ Sci. 2003, 14:70-75.
    [31]Harada K I, Ogawa K, Matsuura K, et al . Structural determination of geometrical isomer of microcystins LR and RR from cyanobacteria by two-dimensional NMR spectroscopic techniques. Chem Res Toxic, 1990,3:473-481
    [32]Kaya K., Sano T. A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chem. Res. Toxicol. 1998.11(3): 159-163
    [33]陈晓国,肖邦定,徐小清等 不同波段紫外光对于微囊藻毒素光降解的影响 中国环境科学 2004,24(1):1-5
    [34]Tsuji K., Watanuki T., Kondo F., Watanabe M F. et al., Stability of microcystins from cyanobacteria-11. Effect of UV light on decomposition and isomerization. Toxicon, 1995, 33(12): 1619-1631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700