慢病毒介导siRNA和细胞内抗病毒因子对HIV抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类免疫缺陷病毒(HIV)在全球蔓延,HIV感染已成为严重危害人类健康的疾病。高效抗逆转录病毒疗法能够显著地改善AIDS患者的症状,但需要终身用药,药物带来累积性毒性,一旦药物治疗失败就会产生耐药性病毒株。另一方面,现今还未找到一个完全有效的疫苗。随着对控制HIV机制的了解,很多研究者开始将注意力集中在基因治疗,将它作为单独的或者是辅助的治疗方式。
     RNA干扰技术通过靶向于结构蛋白或者是调节蛋白,已经有效地应用于HIV的基因治疗。由于siRNA在体内不稳定,很快就被降解,体外合成和质粒介导的RNA干扰持续时间较短,不适用于长期抑制基因表达。通过慢病毒载体表达编码siRNA的shRNA在转录水平下调HIV病毒基因从而抑制病毒复制成为基因治疗HIV一种重要的方式。将抗病毒基因导入到干细胞的方式对基因治疗达到长期治疗效果提供了希望。
     在筛选出针对HIV-1的tat、vpr和rev特异性siRNA的基础上,本研究分别构建了含有相应shRNA序列的重组慢病毒表达质粒,并对靶向基因的干扰效果进行了检测。在此基础上,在293T细胞中包装出含有相应shRNA序列的重组慢病毒并测定病毒滴度。将得到的重组慢病毒感染MT-4细胞,通过嘌呤霉素抗性筛选得到稳定表达siRNA的MT-4细胞系,进行HIV-1NL4-3毒株体外攻击试验,通过检测培养上清中的P24蛋白含量来比较siRNA体外抑制病毒效果。结果表明,靶向于vpr的shRNA可以在转录水平上有效地抑制vpr的表达,抑制率达到88.8%;靶向于tat的shRNA抑制率达到60.2%;稳定表达vprshRNA或tatshRNA的MT-4细胞系能够有效地抑制HIV的复制,短期内培养基中没有HIV的大量复制。
     基于HARRT治疗的经验,将多个抗HIV基因联合应用同样可能起到更好的抗病毒效果,因此本研究还构建了同时含有靶向于vpr和tat基因的双shRNA的重组慢病毒表达质粒,分别由人U6启动子和H1启动子控制表达;体外与含有vpr及tat基因的质粒共转染表明该重组表达质粒对vpr和tat基因在转录水平上的干扰效果分别达到89.2%和62.0%;将重组慢病毒质粒与病毒包装质粒pNL4-3共转染后,P24定量检测结果显示对HIV病毒包装的抑制率可以达到99.05%,比单独表达靶向于vpr的shRNA或靶向tat的shRNA的抑制率都要高;包装出重组慢病毒后感染MT-4细胞,同样筛选稳定表达siRNA的MT-4细胞系,HIVNL4-3病毒攻击实验表明该细胞系可以有效地抑制病毒的复制。
     此外,本研究还构建了同时含有基因改造的人源的Trim5a(R332P)和靶向于vpr基因的shRNA的重组慢病毒双表达质粒,分别由巨细胞病毒CMV启动子和U6启动子控制表达,两种抗HIV基因在HIV生命周期的不同阶段通过不同的机制去抑制病毒复制;共转染实验表明重组慢病毒表达质粒表达的vprshRNA可以在转录水平有效地抑制vpr基因的表达,可以达到84.05%,对HIV病毒包装的抑制率可以达到98.45%;Western blot结果表明改造的人源Trim5a(R332P)可以在细胞内表达,在TZM-BL细胞水平通过检测Luciferase表达水平表明人源的Trim5a(R332P)对HIV假病毒的抑制率可以达到63.30%;HIV NL4-3病毒攻击导入该重组慢病毒的阳性MT4细胞实验表明该阳性细胞系可以有效地抑制病毒的复制,证明含有Trim5a(R332P)和vprshRNA表达元件的联合应用具有明显地抗HIV病毒效果。
     含有siRNA的微粒子是通过细胞胞吐的方式将细胞内表达的siRNA包裹着细胞膜分泌到细胞外。细胞膜成分不仅可以提高siRNA的体外稳定性,而且由于生物膜成分的相似性可提高siRNA导入靶细胞的效率。为降低其免疫原性和提高亲和性,本研究选用低免疫原性的脐带间充质干细胞作为微粒子的制备宿主细胞。首先,通过重组慢病毒感染的方式将人端粒酶催化亚基(hTERT)导入细胞,提高间充质干细胞的分化增殖能力,并对传代后细胞的干细胞性进行检测。其次,导入含有靶向HIV-1的shRNA的重组慢病毒建立了能够持续产生细胞微粒子的间充质干细胞系。结果表明,筛选到的阳性hucMSCs克隆在基因组DNA和mRNA水平检测了hTERT基因的表达水平;该细胞系在体外已经持续培养105代,远远超过人脐带间充质干细胞的分裂增值界限;TRAP-PCR证实该细胞系恢复了端粒酶活性;流式细胞仪结果显示建立的hucMSCs-htert细胞表面有人间充质干细胞特异性表面标记,如CD29,CD44和CD105,不表达CD106、CD45、CD19和HLA-DR;hucMSCs-htert细胞在刺激成骨培养基中培养后,碱性磷酸酶染色表明细胞能够向成骨细胞进行分化,证明该细胞系仍然保持体外分化的潜能;核型分析表明该细胞具有46XY二倍体核型,在SCID小鼠体内不能形成肿瘤,表明该细胞还没有致瘤倾向,是安全的。并对细胞微粒子的制备、对靶向基因的抑制效果进行了初步研究,该细胞微粒可以用于HIV的基因治疗。
     综上所述,本研究采用慢病毒介导靶向于HIV-1调控基因的单个shRNA、双shRNA、经基因改造过的Trim5a(R332P)和vprshRNA组合的重组慢病毒载体,并且检测了它们对HIV的抑制效果。抗HIV重组慢病毒载体可以有效地感染人脐带造血干细胞,两种shRNA共同应用及不同抗HIV基因的联合应用为HIV的基因治疗提供了新的策略。另外成功地建立了永生化的人脐带间充质干细胞系,证明了外源表达人端粒酶催化亚基可以重构端粒酶的活性并能够增强细胞的增值活性;该细胞系维持了细胞的形态、细胞表面抗原和正常的二倍体细胞核型,在继代培养中仍保持了分化潜能,在SCID小鼠体内没有形成肿瘤,该细胞系为基因治疗、细胞治疗和组织工程提供了充足的细胞来源。该细胞系免疫原性非常低,被应用于制备含有靶向于HIV-1基因的成熟的siRNA的生物纳米微粒子,作为新型的HIV的基因治疗的一种方式。
With global spread of the human immunodeficiency virus, HIV infection hasbecome a serious hazard to human health. Although,highly active antiretroviralretroviral theray (HAART) have markedly changed the profile of progression to AIDSin HIV-infected individuals, they are not without significant problems and drawbacks,including the lifetime treatment, cumulative toxicities and viral resistance. So far, afully effective HIV vaccine was not available. With the increasing knowledge ofmechanisms that allow control of HIV infection, more and more investigators arefocusing their attention on gene therapy, either as a stand-alone approach or as anadjuvant to HAART.
     RNA interference have been effectively used to inhibit the replication of HIVrecently, by targeting the structure gene gag-pol, env and the regulatory proteinsincluding tat, vpr, rev. Exogenous siRNA transfected is not stable and knocking-downeffect is transient as the siRNA is gradually degraded or diluted by cell growth andcell division. The siRNA could be produced by expressing short hairpin (shRNA)precursor, which is exported to the cytoplasm and processed by the RNAi machinery.Expressing shRNA encoding siRNAs targeting viral sequences from the backbone ofviral vectors has been used as a form of genetic therapy for HIV-1and associatedinfection, which could inhibit HIV-1replication by down-regulating the viral gene atthe HIV transcription level.
     In the study, we constructed several recombinant lentiviral expression plasmidscontaining the shRNA targeting vpr、tat、 rev and vif genes and evaluated inhibitoneffects of the shRNA expressed on the targeted gene. Then the inhibitory effects onHIV-1production were detected by cotransfected with the packaging plasmidspNL4-3. The recombinant lentivirus containing the shRNA was packaged and titred.MT4cell was transduced with the recombinant virus and screened by FACs. Thetransduced MT4cells were further challenged with HIV-1strains. The result showedthat shRNA targeting vpr gene could efficiently inhibited the vpr expression onmRNA, about89.2%, whereas the tatshRNA could reach to60.2%agaist tat gene.The MT4transduced the vprshRNA and tatshRNA could inhibit the HIV-1replicationeffectively, but not the revshRNA.
     To improve the inhibition effect on HIV, the study constructed the bispecificlentiviral vector harboring vprshRNA and tat shRNA expression cassettes from U6promotor and H1promotor respectively, which were cotransfected with recombinantplasmid expressing the vpr and tat gene. The result showed that the bispecificlentiviral vector could inhibit the vpr and tat effectively,with ratio of89.2%and62% respectively. Cotransfected with pNL4-3in293T cell, the bispecific plasmids showedhigher efficacy in down regulating the HIV NL4-3strains packaging production thanthe recombinant plasmids expressing the single shRNA. MT4cell clone transducedwith recombinant lentiviral vectors were screened and challenged with HIV NL4-3.P24ELISA test showed that MT4transduced with the combinational lentiviral vectorcould inhibit virus replication efficiently in vitro.
     However, as HIV-1is prone to generating escape mutants, using a singleanti-HIV construct would not be adequate to afford long range viral protection.Combination of therapeutic genes targeting different viral products and steps in theviral life cycle was consider as an alternative effectively solution. Here, we reported anovel expression construct into the backbone of a replication defective lentiviralvector, encoding the Trim5ahumutant and short hairpin RNA targeting HIV-1vpr gene,which were expressed under control of the CMV promoter and U6promoter,respectively. Both of the two anti-HIV genes could block the HIV infection andinhibit replication by a distinct mechanism. Co-transfection assays in293T cellsshowed that the vprshRNA in the combination vector could knock down vprexpression with ratio of84.05%and inhibit the HIV-1NL4-3strain productioneffectively with ratio of98.45%. The western blotting showed that the TRIM5ahumutant could be expressed highly in transduced cells. Luciferase assay in Tzm-bl cellsstably expressing the TRIM5ahu showed that the ectopic protein could inhibitpseudotype HIV effectively with ratio of63.30%. MT4cell tranduced with thecombination lentiviral vector were challenged with HIV-1NL4-3. P24ELISA testshowed that MT-4transduced the combination vector could inhibit virus replicationefficiently for long time. These results suggested that combination of TRIM5ahumutant and shRNA targeting HIV-1vpr gene could lead to an effective gene therapyfor the HIV-AIDS control.
     Microvesicles as vesicles are released from cells with donor cells’ ligand andlipids which could serve as delivery vehicle transporting proteins, mRNA and miRNA.Use of microvesicles as siRNA carrier may be a key step toward clinical applicationof siRNA. Human umbilical cord is an alternative source of adult stem cells with lowimmunogenicity, which do not trigger an immense immune reaction in unrelateddonor transplantation. However, hMSCs have a limited life, gradually lose theirdifferentiation potential after several passages and will be senescent and die, whichrestricts the scientific and clinical application. Ectopic expression of humantelomerase reverse transcriptase (hTERT) extended life-span in certain cell types andpotentially immortalize them. In this study, we constructed a recombinant lentiviralvector including htert gene to infect the hucMSCs at PD2. Then hucMSCs transducedwith htert was screened by drug resistance and underwent a total of approximately105population doublings so far and continued to proliferate further. PCR amplified from genomic DNA and quantitative PCR manifested the ectopic hTERT has beenintegrated into the genomic DNA and expressed. TRAP PCR was used to determinewhether the exogenous hTERT gene affected the telomerase activity of the hucMSCs,which showed that the telomerase activity recovered in hucMSCs-hTERT cells.Moreover, our study showed that the established hucMSC-TERT were stronglypositive for the crucial markers of hMSCs, such as CD29, CD44and CD105andnegative for CD106, CD45, CD19and HLA-DR. When the hucMSCs-htert werecultured in osteogenic stimulatory medium, the cell could form the osteoblast,demonstrating the hucMSC-htert still maintain the differentiation potential. We alsoassessed the capacity of the immortalized hucMSCs-hTERT to produce heterologousproteins in vitro. The hucMSCs-htert maintained normal cell characteristics inmorphology, phenotype, karyotype and differentiation potential without malignanttransformation. The hucMSCs-htert cell line has the potential as a cell source for genetherapy as well as transplantation.The established hucMSCs-htert cell was transducedwith recombinant lentiviral vectors containing shRNA targeting the HIV-1and cellswere screened. The microvesicles were isolated and detected with quatitative PCR.The inhibition of the target gene with the microvesicles was studied. Themicrovesicles derived from hucMSCs containing the siRNA targeting HIV-1withoutimmunogenicity would be a novel therapy for AIDS-HIV.
     In summary, we constructed recombinant lentiviral vetors containing singleshRNA targeting the regutory protein of HIV-1, bispecific lentiviral vector containingvpr and tatshRNA and combinational lentiviral vector containing the human TRIM5amutant and shRNA targeting vpr gene and evaluated their inhibitory effect on HIV-1.The recombinant lentivirus would be used to infect hemopoietic stem cell for genetherapy on HIV. Combination of therapeutic genes targeting different viral productsand steps was considered as an effective gene therapy for the HIV-AIDS control. Then,we have successfully immortalized human umbilical cord derived MSCs, whichdemonstrated ectopic expression of hTERT in hucMSCs could reconstitute theirtelomerase activity and promote their proliferative ability. The establishedhucMSCs-htert cell maintained stem cell markers, normal karyotype anddifferentiation potential without any tumorigenesis in SCID mice. The establishedhucMSCs-htert could be a potential cell source for transplantation and gene therapy.The cells will be used in producing the micorvesicles containing siRNA targeting theHIV-1for their low immunogenicity, which could be used in gene therapy on HIV.
引文
[1] VOGT M, BETTEX J D, LUTHY R.[Acquired Immunodeficiency Syndrome (Aids). A2-Year Review][J]. Dtsch Med Wochenschr,1983,108(50):1927-1933.
    [2] BAYER W L, RABORAR A C, SHERMAN L A. Acquired Immune Deficiency Syndrome(Aids)[J]. Mo Med,1983,80(12):756-758.
    [3] GALLO R C, SARIN P S, GELMANN E P, et al. Isolation of Human T-Cell Leukemia Virusin Acquired Immune Deficiency Syndrome (Aids)[J]. Science,1983,220(4599):865-867.
    [4] MONTAGNIER L, CHERMANN J C, BARRE-SINOUSSI F, et al. LymphadenopathyAssociated Virus and Its Etiological Role in Aids [J]. Princess Takamatsu Symp,1984,15319-331.
    [5] BARRE-SINOUSSI F, CHERMANN J C, REY F, et al. Isolation of a T-LymphotropicRetrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (Aids)[J].Science,1983,220(4599):868-871.
    [6] DEAN G L, EDWARDS S G, IVES N J, et al. Treatment of Tuberculosis in Hiv-InfectedPersons in the Era of Highly Active Antiretroviral Therapy [J]. AIDS,2002,16(1):75-83.
    [7] SHAFER R W, VUITTON D A. Highly Active Antiretroviral Therapy (Haart) for theTreatment of Infection with Human Immunodeficiency Virus Type1[J]. BiomedPharmacother,1999,53(2):73-86.
    [8] Anti-Hiv Agents. Gene Therapy [J]. TreatmentUpdate,2009,21(3):6.
    [9] NAZARI R, JOSHI S. Hiv-1Gene Therapy at Pre-Integration and Provirus DNA Levels [J].Curr Gene Ther,2009,9(1):20-25.
    [10] TSYGANKOV A Y. Current Developments in Anti-Hiv/Aids Gene Therapy [J]. Curr OpinInvestig Drugs,2009,10(2):137-149.
    [11] CHUNG J, ROSSI J J, JUNG U. Current Progress and Challenges in Hiv Gene Therapy [J].Future Virol,2011,6(11):1319-1328.
    [12] HUTTER G, NOWAK D, MOSSNER M, et al. Long-Term Control of Hiv by Ccr5Delta32/Delta32Stem-Cell Transplantation [J]. N Engl J Med,2009,360(7):692-698.
    [13] YOUNG J, TANG Z, YU Q, et al. Selective Killing of Hiv-1-Positive Macrophages and TCells by the Rev-Dependent Lentivirus Carrying Anthrolysin O from Bacillus Anthracis [J].Retrovirology,2008,536.
    [14] HUELSMANN P M, HOFMANN A D, KNOEPFEL S A, et al. A Suicide Gene ApproachUsing the Human Pro-Apoptotic Protein Tbid Inhibits Hiv-1Replication [J]. BMCBiotechnol,2011,114.
    [15] ANDERSON J, AKKINA R. Cxcr4and Ccr5Shrna Transgenic Cd34+Cell DerivedMacrophages Are Functionally Normal and Resist Hiv-1Infection [J]. Retrovirology,2005,253.
    [16] MICHIENZI A, CASTANOTTO D, LEE N, et al. Rna-Mediated Inhibition of Hiv in a GeneTherapy Setting [J]. Ann N Y Acad Sci,2003,100263-71.
    [17] NGOK F K, MITSUYASU R T, MACPHERSON J L, et al. Clinical Gene Therapy ResearchUtilizing Ribozymes: Application to the Treatment of Hiv/Aids [J]. Methods Mol Biol,2004,252581-598.
    [18] MACPHERSON J L, BOYD M P, ARNDT A J, et al. Long-Term Survival and ConcomitantGene Expression of Ribozyme-Transduced Cd4+T-Lymphocytes in Hiv-Infected Patients [J].J Gene Med,2005,7(5):552-564.
    [19] BOUTIMAH-HAMOUDI F, LEFORESTIER E, SENAMAUD-BEAUFORT C, et al.Cellular Antisense Activity of Peptide Nucleic Acid (Pnas) Targeted to Hiv-1PolypurineTract (Ppt) Containing Rna [J]. Nucleic Acids Res,2007,35(12):3907-3917.
    [20] MUKHERJEE R, PLESA G, SHERRILL-MIX S, et al. Hiv Sequence Variation Associatedwith Env Antisense Adoptive T-Cell Therapy in the Hnsg Mouse Model [J]. Mol Ther,2010,18(4):803-811.
    [21] XING H C, XU X Y, LIU Z, et al. Down-Regulation of Cxcr4Expression in Mt4Cells by aRecombinant Vector Expressing Antisense Rna to Cxcr4and Its Potential Anti-Hiv-1Effect[J]. Jpn J Infect Dis,2004,57(3):91-96.
    [22] LEVINE B L, HUMEAU L M, BOYER J, et al. Gene Transfer in Humans Using aConditionally Replicating Lentiviral Vector [J]. Proc Natl Acad Sci U S A,2006,103(46):17372-17377.
    [23] SULLENGER B A, GALLARDO H F, UNGERS G E, et al. Overexpression of TarSequences Renders Cells Resistant to Human Immunodeficiency Virus Replication [J]. Cell,1990,63(3):601-608.
    [24] LI M J, KIM J, LI S, et al. Long-Term Inhibition of Hiv-1Infection in PrimaryHematopoietic Cells by Lentiviral Vector Delivery of a Triple Combination of Anti-HivShrna, Anti-Ccr5Ribozyme, and a Nucleolar-Localizing Tar Decoy [J]. Mol Ther,2005,12(5):900-909.
    [25] ANDERSON J S, JAVIEN J, NOLTA J A, et al. Preintegration Hiv-1Inhibition by aCombination Lentiviral Vector Containing a Chimeric Trim5Alpha Protein, a Ccr5Shrna,and a Tar Decoy [J]. Mol Ther,2009,17(12):2103-2114.
    [26] DITZLER M A, BOSE D, SHKRIABAI N, et al. Broad-Spectrum Aptamer Inhibitors of HivReverse Transcriptase Closely Mimic Natural Substrates [J]. Nucleic Acids Res,2011,39(18):8237-8247.
    [27] FAURE-PERRAUD A, METIFIOT M, REIGADAS S, et al. The Guanine-QuadruplexAptamer93del Inhibits Hiv-1Replication Ex Vivo by Interfering with Viral Entry, ReverseTranscription and Integration [J]. Antivir Ther,2011,16(3):383-394.
    [28] KELLEY S, BORODA S, MUSIER-FORSYTH K, et al. Hiv-Integrase Aptamer Folds into aParallel Quadruplex: A Thermodynamic Study [J]. Biophys Chem,2011,155(2-3):82-88.
    [29] NEFF C P, ZHOU J, REMLING L, et al. An Aptamer-Sirna Chimera Suppresses Hiv-1ViralLoads and Protects from Helper Cd4(+) T Cell Decline in Humanized Mice [J]. Sci TranslMed,2011,3(66):66ra66.
    [30] ZHOU J, LI H, LI S, et al. Novel Dual Inhibitory Function Aptamer-Sirna Delivery Systemfor Hiv-1Therapy [J]. Mol Ther,2008,16(8):1481-1489.
    [31] ZHOU J, ROSSI J J. Aptamer-Targeted Rnai for Hiv-1Therapy [J]. Methods Mol Biol,2011,721355-371.
    [32] JACQUE J M, TRIQUES K, STEVENSON M. Modulation of Hiv-1Replication by RnaInterference [J]. Nature,2002,418(6896):435-438.
    [33] LEE N S, DOHJIMA T, BAUER G, et al. Expression of Small Interfering Rnas Targetedagainst Hiv-1Rev Transcripts in Human Cells [J]. Nat Biotechnol,2002,20(5):500-505.
    [34] TER BRAKE O, KONSTANTINOVA P, CEYLAN M, et al. Silencing of Hiv-1with RnaInterference: A Multiple Shrna Approach [J]. Mol Ther,2006,14(6):883-892.
    [35] SCHOPMAN N C, TER BRAKE O, BERKHOUT B. Anticipating and Blocking Hiv-1Escape by Second Generation Antiviral Shrnas [J]. Retrovirology,2010,752.
    [36] LIU Y P, HAASNOOT J, TER BRAKE O, et al. Inhibition of Hiv-1by Multiple SirnasExpressed from a Single Microrna Polycistron [J]. Nucleic Acids Res,2008,36(9):2811-2824.
    [37] SIMMONS G, CLAPHAM P R, PICARD L, et al. Potent Inhibition of Hiv-1Infectivity inMacrophages and Lymphocytes by a Novel Ccr5Antagonist [J]. Science,1997,276(5310):276-279.
    [38] CHRIST F, DEBYSER Z. The Ledgf/P75Integrase Interaction, a Novel Target for Anti-HivTherapy [J]. Virology,2013,435(1):102-109.
    [39] WOFFENDIN C, RANGA U, YANG Z, et al. Expression of a Protective Gene-ProlongsSurvival of T Cells in Human Immunodeficiency Virus-Infected Patients [J]. Proc Natl AcadSci U S A,1996,93(7):2889-2894.
    [40] LOBATO M N, RABBITTS T H. Intracellular Antibodies as Specific Reagents forFunctional Ablation: Future Therapeutic Molecules [J]. Curr Mol Med,2004,4(5):519-528.
    [41] SCHROERS R, DAVIS C M, WAGNER H J, et al. Lentiviral Transduction of HumanT-Lymphocytes with a Rantes Intrakine Inhibits Human Immunodeficiency Virus Type1Infection [J]. Gene Ther,2002,9(13):889-897.
    [42] EGELHOFER M, BRANDENBURG G, MARTINIUS H, et al. Inhibition of HumanImmunodeficiency Virus Type1Entry in Cells Expressing Gp41-Derived Peptides [J]. J Virol,2004,78(2):568-575.
    [43] NAKAYAMA E E, SHIODA T. Anti-Retroviral Activity of Trim5Alpha [J]. Rev Med Virol,2010,20(2):77-92.
    [44] KRATOVAC Z, VIRGEN C A, BIBOLLET-RUCHE F, et al. Primate Lentivirus CapsidSensitivity to Trim5Proteins [J]. J Virol,2008,82(13):6772-6777.
    [45] STREMLAU M, OWENS C M, PERRON M J, et al. The Cytoplasmic Body ComponentTrim5alpha Restricts Hiv-1Infection in Old World Monkeys [J]. Nature,2004,427(6977):848-853.
    [46] LI Y, LI X, STREMLAU M, et al. Removal of Arginine332Allows Human Trim5alpha toBind Human Immunodeficiency Virus Capsids and to Restrict Infection [J]. J Virol,2006,80(14):6738-6744.
    [47] BALAZS A B, CHEN J, HONG C M, et al. Antibody-Based Protection against HivInfection by Vectored Immunoprophylaxis [J]. Nature,2012,481(7379):81-84.
    [48] KITCHEN S G, SHIMIZU S, AN D S. Stem Cell-Based Anti-Hiv Gene Therapy [J].Virology,2011,411(2):260-272.
    [49] MICHALLET M, PHILIP T, PHILIP I, et al. Transplantation with Selected AutologousPeripheral Blood Cd34+Thy1+Hematopoietic Stem Cells (Hscs) in Multiple Myeloma:Impact of Hsc Dose on Engraftment, Safety, and Immune Reconstitution [J]. Exp Hematol,2000,28(7):858-870.
    [50] MILONE G, TORNELLO A, LEOTTA S, et al. Cd34+Selected Haematopoietic Stem Cell(Hsc) Not Preceded by Any Immunosuppressive Therapy as Effective Treatment for GraftFailure [J]. Bone Marrow Transplant,2005,35(5):521-522; author reply522.
    [51] BARTOLOVIC K, BALABANOV S, BERNER B, et al. Clonal Heterogeneity in GrowthKinetics of Cd34+Cd38-Human Cord Blood Cells in Vitro Is Correlated with GeneExpression Pattern and Telomere Length [J]. Stem Cells,2005,23(7):946-957.
    [52] BAUER G, VALDEZ P, KEARNS K, et al. Inhibition of Human Immunodeficiency Virus-1(Hiv-1) Replication after Transduction of Granulocyte Colony-Stimulating Factor-MobilizedCd34+Cells from Hiv-1-Infected Donors Using Retroviral Vectors Containing Anti-Hiv-1Genes [J]. Blood,1997,89(7):2259-2267.
    [53] AN D S, QIN F X, AUYEUNG V C, et al. Optimization and Functional Effects of StableShort Hairpin Rna Expression in Primary Human Lymphocytes Via Lentiviral Vectors [J].Mol Ther,2006,14(4):494-504.
    [54] MITSUYASU R T, MERIGAN T C, CARR A, et al. Phase2Gene Therapy Trial of anAnti-Hiv Ribozyme in Autologous Cd34+Cells [J]. Nat Med,2009,15(3):285-292.
    [55] ALLERS K, HUTTER G, HOFMANN J, et al. Evidence for the Cure of Hiv Infection byCcr5delta32/Delta32Stem Cell Transplantation [J]. Blood,2011,117(10):2791-2799.
    [56] TER BRAKE O, WESTERINK J T, BERKHOUT B. Lentiviral Vector Engineering forAnti-Hiv Rnai Gene Therapy [J]. Methods Mol Biol,2010,614201-213.
    [57] VANDENDRIESSCHE T, NALDINI L, COLLEN D, et al. Oncoretroviral and LentiviralVector-Mediated Gene Therapy [J]. Methods Enzymol,2002,346573-589.
    [58] LEMIALE F, ASEFA B, YE D, et al. An Hiv-Based Lentiviral Vector as Hiv VaccineCandidate: Immunogenic Characterization [J]. Vaccine,2010,28(8):1952-1961.
    [59] BOBADILLA S, SUNSERI N, LANDAU N R. Efficient Transduction of Myeloid Cells byan Hiv-1-Derived Lentiviral Vector That Packages the Vpx Accessory Protein [J]. Gene Ther,2012.
    [60] CHANDE A G, RAINA S, DHAMNE H, et al. Multiple Platforms of a Hiv-2DerivedLentiviral Vector for Expanded Utility [J]. Plasmid,2013,69(1):90-95.
    [61] MICHELINI Z, NEGRI D R, BARONCELLI S, et al. Development and Use of Siv-BasedIntegrase Defective Lentiviral Vector for Immunization [J]. Vaccine,2009,27(34):4622-4629.
    [62] CHEN G, WANG S, XIONG K, et al. Construction and Characterization of a Chimeric Virus(Biv/Hiv-1) Carrying the Bovine Immunodeficiency Virus Gag-Pol Gene [J]. AIDS,2002,16(1):123-125.
    [63] XU Y N, UHM S J, KOO B C, et al. Production of Transgenic Korean Native CattleExpressing Enhanced Green Fluorescent Protein Using a Fiv-Based Lentiviral VectorInjected into Mii Oocytes [J]. J Genet Genomics,2013,40(1):37-43.
    [64] RAMEZANI A, HAWLEY R G. Generation of Hiv-1-Based Lentiviral Vector Particles [J].Curr Protoc Mol Biol,2002, Chapter16Unit1622.
    [65] WIEDERSCHAIN D, WEE S, CHEN L, et al. Single-Vector Inducible Lentiviral RnaiSystem for Oncology Target Validation [J]. Cell Cycle,2009,8(3):498-504.
    [66] BAI J, LI J, MAO Q. Construction of a Single Lentiviral Vector ContainingTetracycline-Inducible Alb-Upa for Transduction of Upa Expression in Murine Hepatocytes[J]. PLoS One,2013,8(4):e61412.
    [67] BEARD B C, DICKERSON D, BEEBE K, et al. Comparison of Hiv-Derived Lentiviral andMlv-Based Gammaretroviral Vector Integration Sites in Primate Repopulating Cells [J]. MolTher,2007,15(7):1356-1365.
    [68] PERSONS D A. Lentiviral Vector Gene Therapy: Effective and Safe?[J]. Mol Ther,2010,18(5):861-862.
    [69] SCARAMUZZA S, BIASCO L, RIPAMONTI A, et al. Preclinical Safety and Efficacy ofHuman Cd34(+) Cells Transduced with Lentiviral Vector for the Treatment ofWiskott-Aldrich Syndrome [J]. Mol Ther,2013,21(1):175-184.
    [70] VAN DOMMELEN S M, VADER P, LAKHAL S, et al. Microvesicles and Exosomes:Opportunities for Cell-Derived Membrane Vesicles in Drug Delivery [J]. J Control Release,2012,161(2):635-644.
    [71] TRAMS E G, LAUTER C J, SALEM N, et al. Exfoliation of Membrane Ecto-Enzymes inthe Form of Micro-Vesicles [J]. Biochimica Et Biophysica Acta,1981,645(1):63-70.
    [72] MATHIVANAN S, SIMPSON R J. Exocarta: A Compendium of Exosomal Proteins and Rna[J]. Proteomics,2009,9(21):4997-5000.
    [73] VALADI H, EKSTROM K, BOSSIOS A, et al. Exosome-Mediated Transfer of Mrnas andMicrornas Is a Novel Mechanism of Genetic Exchange between Cells [J]. Nature CellBiology,2007,9(6):654-U672.
    [74] MATHIVANAN S, JI H, SIMPSON R J. Exosomes: Extracellular Organelles Important inIntercellular Communication [J]. Journal of Proteomics,2010,73(10):1907-1920.
    [75] COCUCCI E, RACCHETTI G, MELDOLESI J. Shedding Microvesicles: Artefacts NoMore [J]. Trends in Cell Biology,2009,19(2):43-51.
    [76] THERY C, OSTROWSKI M, SEGURA E. Membrane Vesicles as Conveyors of ImmuneResponses [J]. Nature Reviews Immunology,2009,9(8):581-593.
    [77] JANOWSKA-WIECZOREK A, WYSOCZYNSKI M, KIJOWSKI J, et al. MicrovesiclesDerived from Activated Platelets Induce Metastasis and Angiogenesis in Lung Cancer [J].International Journal of Cancer,2005,113(5):752-760.
    [78] HONG B S, CHO J H, KIM H, et al. Colorectal Cancer Cell-Derived Microvesicles AreEnriched in Cell Cycle-Related Mrnas That Promote Proliferation of Endothelial Cells [J].Bmc Genomics,2009,10.
    [79] SKOG J, WURDINGER T, VAN RIJN S, et al. Glioblastoma Microvesicles Transport Rnaand Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers [J]. NatureCell Biology,2008,10(12):1470-U1209.
    [80] RAPOSO G, NIJMAN H W, STOORVOGEL W, et al. B Lymphocytes SecreteAntigen-Presenting Vesicles [J]. J Exp Med,1996,183(3):1161-1172.
    [81] THERY C, REGNAULT A, GARIN J, et al. Molecular Characterization of DendriticCell-Derived Exosomes. Selective Accumulation of the Heat Shock Protein Hsc73[J]. J CellBiol,1999,147(3):599-610.
    [82] BACH R R. Initiation of Coagulation by Tissue Factor [J]. CRC Crit Rev Biochem,1988,23(4):339-368.
    [83] SIMPSON R J, JENSEN S S, LIM J W E. Proteomic Profiling of Exosomes: CurrentPerspectives [J]. Proteomics,2008,8(19):4083-4099.
    [84] SUN D M, ZHUANG X Y, XIANG X Y, et al. A Novel Nanoparticle Drug Delivery System:The Anti-Inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes[J]. Molecular Therapy,2010,18(9):1606-1614.
    [85] ALVAREZ-ERVITI L, SEOW Y, YIN H, et al. Delivery of Sirna to the Mouse Brain bySystemic Injection of Targeted Exosomes [J]. Nat Biotechnol,2011,29(4):341-345.
    [86] YANG S, HUANG S, FENG C, et al. Umbilical Cord-Derived Mesenchymal Stem Cells:Strategies, Challenges, and Potential for Cutaneous Regeneration [J]. Front Med,2012,6(1):41-47.
    [87] PITTENGER M F, MACKAY A M, BECK S C, et al. Multilineage Potential of AdultHuman Mesenchymal Stem Cells [J]. Science,1999,284(5411):143-147.
    [88] OZAWA K, SATO K, OH I, et al. Cell and Gene Therapy Using Mesenchymal Stem Cells(Mscs)[J]. J Autoimmun,2008,30(3):121-127.
    [89] SHAH K. Mesenchymal Stem Cells Engineered for Cancer Therapy [J]. Adv Drug DelivRev,2012,64(8):739-748.
    [90] DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal Criteria for DefiningMultipotent Mesenchymal Stromal Cells. The International Society for Cellular TherapyPosition Statement [J]. Cytotherapy,2006,8(4):315-317.
    [91] BEAUSEJOUR C. Bone Marrow-Derived Cells: The Influence of Aging and CellularSenescence [J]. Handb Exp Pharmacol,2007,(180):67-88.
    [92] BONAB M M, ALIMOGHADDAM K, TALEBIAN F, et al. Aging of Mesenchymal StemCell in Vitro [J]. BMC Cell Biol,2006,714.
    [93] TROYER D L, WEISS M L. Wharton's Jelly-Derived Cells Are a Primitive Stromal CellPopulation [J]. Stem Cells,2008,26(3):591-599.
    [94] ROMANOV Y A, SVINTSITSKAYA V A, SMIRNOV V N. Searching for AlternativeSources of Postnatal Human Mesenchymal Stem Cells: Candidate Msc-Like Cells fromUmbilical Cord [J]. Stem Cells,2003,21(1):105-110.
    [95] WOODBURY D, SCHWARZ E J, PROCKOP D J, et al. Adult Rat and Human BoneMarrow Stromal Cells Differentiate into Neurons [J]. J Neurosci Res,2000,61(4):364-370.
    [96] JEONG J A, GANG E J, HONG S H, et al. Rapid Neural Differentiation of Human CordBlood-Derived Mesenchymal Stem Cells [J]. Neuroreport,2004,15(11):1731-1734.
    [97] LIU Y, BOHR V A, LANSDORP P. Telomere, Telomerase and Aging [J]. Mech Ageing Dev,2008,129(1-2):1-2.
    [98] BLACKBURN E H. Telomere States and Cell Fates [J]. Nature,2000,408(6808):53-56.
    [99] GORDON K E, PARKINSON E K. Analysis of Telomerase Activity and Telomere Functionin Cancer [J]. Methods Mol Biol,2004,281333-348.
    [100] HIYAMA E, HIYAMA K. Telomere and Telomerase in Stem Cells [J]. Br J Cancer,2007,96(7):1020-1024.
    [101] BODNAR A G, OUELLETTE M, FROLKIS M, et al. Extension of Life-Span byIntroduction of Telomerase into Normal Human Cells [J]. Science,1998,279(5349):349-352.
    [102] MEYERSON M. Telomerase Enzyme Activation and Human Cell Immortalization [J].Toxicol Lett,1998,102-10341-45.
    [103] LUITEN R M, PENE J, YSSEL H, et al. Ectopic Htert Expression Extends the Life Spanof Human Cd4+Helper and Regulatory T-Cell Clones and Confers Resistance to OxidativeStress-Induced Apoptosis [J]. Blood,2003,101(11):4512-4519.
    [104] SIMONSEN J L, ROSADA C, SERAKINCI N, et al. Telomerase Expression Extends theProliferative Life-Span and Maintains the Osteogenic Potential of Human Bone MarrowStromal Cells [J]. Nat Biotechnol,2002,20(6):592-596.
    [105] MORI T, KIYONO T, IMABAYASHI H, et al. Combination of Htert and Bmi-1, E6, or E7Induces Prolongation of the Life Span of Bone Marrow Stromal Cells from an Elderly Donorwithout Affecting Their Neurogenic Potential [J]. Mol Cell Biol,2005,25(12):5183-5195.
    [106] TSAI C C, CHEN C L, LIU H C, et al. Overexpression of Htert Increases Stem-LikeProperties and Decreases Spontaneous Differentiation in Human Mesenchymal Stem CellLines [J]. J Biomed Sci,2010,1764.
    [107] LI M, ROSSI J J. Lentiviral Vector Delivery of Sirna and Shrna Encoding Genes intoCultured and Primary Hematopoietic Cells [J]. Methods Mol Biol,2008,433287-299.
    [108] HANNON G J, ROSSI J J. Unlocking the Potential of the Human Genome with RnaInterference [J]. Nature,2004,431(7006):371-378.
    [109] MARTINEZ M A, CLOTET B, ESTE J A. Rna Interference of Hiv Replication [J]. TrendsImmunol,2002,23(12):559-561.
    [110] TER BRAKE O, T HOOFT K, LIU Y P, et al. Lentiviral Vector Design for Multiple ShrnaExpression and Durable Hiv-1Inhibition [J]. Mol Ther,2008,16(3):557-564.
    [111] THIEU K P, MORROW M P, SHEDLOCK D J, et al. Hiv-1Vpr: Regulator of ViralSurvival [J]. Curr HIV Res,2009,7(2):153-162.
    [112] LIOU L Y, HERRMANN C H, RICE A P. Hiv-1Infection and Regulation of Tat Functionin Macrophages [J]. Int J Biochem Cell Biol,2004,36(9):1767-1775.
    [113] WESTERHOUT E M, OOMS M, VINK M, et al. Hiv-1Can Escape from Rna Interferenceby Evolving an Alternative Structure in Its Rna Genome [J]. Nucleic Acids Res,2005,33(2):796-804.
    [114] ROSSI J J, JUNE C H, KOHN D B. Genetic Therapies against Hiv [J]. Nat Biotechnol,2007,25(12):1444-1454.
    [115] SEBASTIAN S, LUBAN J. Trim5alpha Selectively Binds a Restriction-SensitiveRetroviral Capsid [J]. Retrovirology,2005,240.
    [116] YAP M W, NISOLE S, STOYE J P. A Single Amino Acid Change in the Spry Domain ofHuman Trim5alpha Leads to Hiv-1Restriction [J]. Curr Biol,2005,15(1):73-78.
    [117] HARLEY C B, FUTCHER A B, GREIDER C W. Telomeres Shorten During Ageing ofHuman Fibroblasts [J]. Nature,1990,345(6274):458-460.
    [118] THOMAS M, SUWA T, YANG L, et al. Cooperation of Htert, Sv40T Antigen andOncogenic Ras in Tumorigenesis: A Cell Transplantation Model Using BovineAdrenocortical Cells [J]. Neoplasia,2002,4(6):493-500.
    [119] JIANG X R, JIMENEZ G, CHANG E, et al. Telomerase Expression in Human SomaticCells Does Not Induce Changes Associated with a Transformed Phenotype [J]. Nat Genet,1999,21(1):111-114.
    [120] SEOW Y, WOOD M J. Biological Gene Delivery Vehicles: Beyond Viral Vectors [J].Molecular Therapy,2009,17(5):767-777.
    [121] HORNUNG V, BAUERNFEIND F, HALLE A, et al. Silica Crystals and Aluminum SaltsActivate the Nalp3Inflammasome through Phagosomal Destabilization [J]. Nat Immunol,2008,9(8):847-856.
    [122] KUMAR P, WU H Q, MCBRIDE J L, et al. Transvascular Delivery of Small InterferingRna to the Central Nervous System [J]. Nature,2007,448(7149):39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700