废塑料资源化技术评估与潜在环境影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于塑料的难降解性和使用量的逐年增大,废塑料对环境的潜在影响越来越严重。但是,废塑料作为一种资源可以加以资源化回收利用。近年来,国内外已开发出很多种废塑料资源化技术,为合理的发展废塑料的资源化产业,需要采用科学的方法从经济、社会和环境等方面对这些资源化技术进行评估,确定废塑料资源化技术的优先性,其中废塑料资源化过程中对环境的潜在影响需要进行生命周期分析。基于此,本文研究了废塑料资源化技术的评估方法,并对几种废塑料典型资源化技术进行了生命周期分析。
     本文综合分析了废塑料资源化技术对经济、社会和环境三个方面的影响,构建了三级评价指标,通过层次分析确定了各级指标的权重,采用德尔菲法赋值给每个指标。采用该评价体系分别对四种废塑料资源化技术进行了评估,结果表明,“直接再生”是废聚丙烯、废聚乙烯、废聚氯乙烯三种废塑料的“最优先”推荐的资源化技术,“共焦化”是废聚苯乙烯最优先推荐的资源化技术。评价结果表明,废塑料资源化过程中对环境的潜在影响不容忽视,需要引起足够的重视。
     本文较为系统地研究了废塑料资源化过程中对环境潜在影响的评价方法,确定了废塑料资源化生命周期评价模型的各项参数,包括:废塑料资源化的环境影响因子的特征化;废塑料资源化生命周期评价标准化基准值;环境负荷权重因子等。在此基础上,构建了可定量分析废塑料资源化过程中对环境的潜在影响的生命周期评价方法,并采用不确定性分析的方式对数据质量进行了检查,评价了四种废塑料资源化过程中对环境的潜在影响。
     研究结果表明,废塑料“直接再生”资源化技术中,“干燥阶段”对环境的潜在影响最大,是污染控制的重点环节,对环境潜在影响类型主要为“酸化”、“烟尘&粉尘”和“全球变暖”,三项占总环境潜在影响负荷的89.5%;废塑料的“催化裂解”资源化技术对环境的潜在影响类型主要是“臭氧耗竭”、“全球变暖”和“酸化”,产污的重点环节是“催化改质”阶段;废塑料“氢化裂解”资源化技术对环境的潜在影响类型主要为“全球变暖”、“烟尘&粉尘”,产污的重点环节是“氢化裂解”阶段;废塑料“共焦化”资源化技术的“入炉炼焦”阶段对环境的潜在影响最大,占总环境影响的93.5%,是污染控制的重点环节,该技术对环境的潜在影响类型主要是“酸化”、“烟尘&粉尘”和“全球变暖”影响。废塑料垃圾衍生燃料焚烧发电资源化技术的“锅炉焚烧”环节占总环境影响潜值99.6%,是污染控制的重点环节,该技术对环境的影响类型主要为“全球变暖”和“酸化”。废聚氯乙烯“高温焚烧”和“真空裂解”过程中,对环境的影响类型主要为固体废物,其环境影响负荷占总环境影响负荷分别为99.8%和99.6%,污染控制的重点环节分别是焚烧单元和裂解单元。
     本文从废塑料资源化技术产业化、废塑料资源化技术的环境管理、废塑料资源化技术的经济政策和废塑料资源化技术的中远期发展等方面提出了发展策略和建议。
Because of the difficulty of degradable, the waste plastics become an increasinglyprominent environmental problem. On the other hand, the waste plastics is a kind ofrecycling resources. In recent years, the waste plastic recycling methods had developedrapidly in the world. It is necessary to use scientific methods to carry out assessment forthese waste plastic recycling methods. For considering the environmental potentialimpact of the plastic recycling process, life cycle assessment is a good choice forworking. This paper focus on evaluation method and life cycle assessment of wasteplastic recycling technology.
     In this paper, considering the effect of waste plastic recycling technology in threeaspects of economy, society and environment, we established the waste plastic recyclingtechnology three levels assessment method system based on the analytic hierarchyprocess and Delphi method. The first job is to establish an index system andcomprehensivly consider the weight of the third level indexes for waste plastic recyclingtechnology evaluation by the analytic hierarchy process. The next, gives the resourceoptimization scheme of the four main categories of waste plastics through the Delphimethod. Through the established evaluation method, found that “direct regeneration” isthe waste polypropylene, waste polyethylene, waste polyvinyl chloride of three kinds ofwaste plastics “top priority” recommended resource technology; for the wastepolystyrene, because of its special physical and chemical properties,"co-carbonization"will be the future priority resource technology. The evaluation results show that, theprocess of waste plastic recycling in the potential impact on the environment can not beignored, need to cause enough attention.
     The potential impacts of the plastics recycling process on the environment weresystematic researched in this paper. The parameters of the existing model wereimproved by confirming the environmental impact classification factors, the equivalentcoefficient and the weighting factor. On this basis, results uncertainty and potentialimpact of four kinds of waste plastics recycling technology of typical process on theenvironment were analyzed quantitatively.
     The evaluation results show that, in the “direct regeneration” approach, the mainenvironmental impacts (89.5%of the total environmental impacts) of the wastepolypropylene direct regeneration recycling technology were “acidification”,“dust” and“global warming”. The “dry stage” of the direct regeneration was the key link ofpollution control. In the “catalytic cracking” approach, the main environmental impactsof the catalytic cracking were “ozone depletion”,“global warming” and “acidification”.The “catalytic reforming stage” of the process was the key link of pollution control. Inthe “hydrocracking” process, the main environmental impacts of the hydrocracking were “global warming”,“dust”,“ozone depletion” and “acidification”. The“hydrocracking stage” of the process was the key link of pollution control. For“co-carbonization” process, the “coking stage” of the process was the key link ofpollution control and93.5%of the total environmental impacts of “co-carbonization”were “global warming”,“dust” and “acidification”. For “refuse derived fuel (RDF)”technology, the “combustion stage” of the process was the key link of pollution controland99.6%of the total environmental impacts of “RDF” technology were “globalwarming” and “acidification”. In the “incineration” and “vacuum pyrolysis” approachof the waste polyvinylchloride, the main environmental impacts were solid waste andconstitute99.8%and99.6%of the total environmental impacts respectively. The“combustion stage” of the “incineration” process was the key link of pollution control.For “vacuum pyrolysis” technology, the key link was “pyrolysis stage”.
     From technological development, economic development, environmentalmanagement and long term future development viewpoint, some policy suggestions areput forward for waste plastic recycling technology.
引文
[1] Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solidwaste (PSW): A review[J]. Waste Management,2009,29(10):2625-2643.
    [2]赵磊,王中慧,陈德珍,等.杂质对废塑料裂解产物及污染物排放的影响[J].环境科学,2012,33(1):329-336.
    [3]安杰,朱向学,李秀杰,等.废塑料在改性ZSM-5上裂解转化生产车用液体燃料[J].化工进展,2012,31:448-452.
    [4]朱向学,安杰,王玉忠,等.废塑料裂解转化生产车用燃料研究进展[J].化工进展,2012,31:398-401.
    [5]张建良,刘伟剑,任山,等.废塑料的添加比例对煤粉燃烧的影响[J].过程工程学报,2012,12(5):810-815.
    [6]柴国梁.探讨废塑料的市场现状与发展趋势(上)[J].上海化工,2008,33(1):39-41.
    [7]石耀华,马晓波,陈德珍,等.升温速率对废塑料热解过程的影响[J].节能技术,2011,29(167):199-203.
    [8]唐赛珍,陶欣.可降解塑料在减轻资源,环境压力及实施可持续发展中的作用[J].新材料产业,2011(6):33-38.
    [9]刘焕志,陈鸿伟,张郑磊,等.粉煤灰催化热裂解聚丙烯废塑料[J].化工环保,2010,30(4):336-339.
    [10]Nchare M, Shen B, Jiao L. Studies on co-processing vacuum residue oil withplastics using thermogravimetric analysis[J]. Petroleum Science and Technology,2009,27(6):588-596.
    [11]Ali M, Siddiqui M. Thermal and catalytic decomposition behavior of PVC mixedplastic waste with petroleum residue[J]. J Anal Appl Pyrol,2005,74:282-289.
    [12]张建云,王国庆,刘九夫,等.气候变化权威报告-IPCC报告[J].中国水利,2008,2:37-40.
    [13]Ahmaruzzaman M, Sharma D K. Non-isothermal kinetic studies on co-processingof vacuum residue, plastics, coal and petrocrop[J]. J Anal Appl Pyrolysis,2005,73:263-275.
    [14]Mominou N, Shen B, Xu J. Increasing liquid yield and diesel fraction in delayedcoking process: Mechanism of liquid formation[J]. China Petroleum Processing andPetrochemical Technology,2007(3):23-27.
    [15]Shen B, Zou Y, Zhou X. Oil and Gas Transportation Experiments Manual[M].Petroleum Processing Research Center, ECUST,2005.
    [16]Perugini F, Mastellone M L, Arena U. A life cycle assessment of mechanical andfeedstock recycling options for management of plastic packaging wastes[J].Environmental Progress,2005,24(2):137-154.
    [17]Arena U, Mastellone M L, Perugini F. Life cycle assessment of a plastic packagingrecycling system[J]. The international journal of life cycle assessment,2003,8(2):92-98.
    [18]Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solidwaste (PSW): A review[J]. Waste Management,2009,29(10):2625-2643.
    [19]徐炽焕.国外废塑料的再循环[J].合成树脂及塑料,1996,13(4):60-62.
    [20]张效林,王汝敏,王志彤,等.废旧塑料在复合材料领域中回用技术的研究进展[J].材料导报,2011,25(15):92-95.
    [21]钱伯章.国外废旧塑料回收利用市场探析[N].中国包装报.2013-03-13(002)
    [22]马占峰.中国塑料再生产业的现状及发展[J].塑料制造.2006,10:12-16.
    [23]马占峰.废旧塑料循环应用遭遇成长烦恼[J].中国包装工业,2006,10:64-64.
    [24]唐赛珍.我国塑料废弃物资源化现状及前景[J].新材料产业,2011,10:62-67.
    [25]岳名正.废旧塑料的分离技术[J].塑料科技,1990,(2):30-34.
    [26]La Mantia FP. Recycling of PVC&Mixed Plastic Waste[M]. Chem. Tec.Publishing,1996.
    [27]Miskolczi N, Bartha L, Deak G, et al. Thermal degradation of municipal plasticwaste for production of fuel-like hydrocarbons[J]. Polymer Degradation andStability,2004,86(2):357-366.
    [28]王海南,黄春保.利用废塑料热解-催化改质制备汽油的研究[J].黄冈师范学院学报,2003,23(6):61-64.
    [29]李国辉,陈晖,胡杰南.废塑料裂解制液体燃料和化学品技术开发进展[J].化学进展,1996,8(2):162-172.
    [30]常杰云.废塑料处理技术在环境保护方面的进展[J].化工技术与开发,2007,36(12):41-44.
    [31]Sullivan H W, Mack W A. Polymeric compositions and methods for makingconstruction materials from them: U.S. Patent5,886,078[P].1999-3-23.
    [32]王娟.利用废聚苯乙烯泡沫塑料制取涂料的研究[J].城市环境与城市生态,2003,16(2):48-49.
    [33]Xupeng G. Preparation of Antirusting Paint by Waste Polystyrene [J]. Paint&Coatings Industry,2000,2:27-28.
    [34]Zhi L, Yu J, Bing F Y. Study on the paints prepared by use of recycled wastepolystyrene foams [J]. Modern Paint and Finishing,2005,2:26-29.
    [35]魏炳举.环保阻燃剂溴化聚苯乙烯的合成研究[J].盐业与化工,2009:20-22.
    [36]张发余,姚淑霞.利用废旧塑料生产油漆工艺[J].沈阳工业学院学报,1999,18(1):93-94.
    [37]刘贤响,尹笃林.废塑料裂解制燃料的研究进展[J].化工进展,2008,27(3):348-351
    [38]牛满志,王万森.废聚苯乙烯裂解制备低聚苯乙烯及苯乙烯单体[J].河南化工,1996(6):12-14.
    [39]余广炜,廖洪强,钱凯,等.首钢废塑料处理新工艺的研究进展[J].钢铁,2007,42(9):81-84.
    [40]陈洁,孟峭,刘毅.国外垃圾衍生燃料(RDF)技术发展状况[J].中国城市环境卫生,2011(1):34-39.
    [41]王颖.高炉喷吹废塑料的先进技术[J].冶金设备管理与维修,2012,30(3):53-57.
    [42]贾有青.关于PVC塑料再生循环的探析[J].上海塑料,2005(4):32-34.
    [43]陈占勋.废旧高分子材料资源及综合利用[M],北京:化学工业出版社,1997,225.
    [44]印崧,刘伟伟,刘微,等.生物柴油的燃烧特性及其排放标准[J].林业机械与木工设备,2008(4):49-51.
    [45]Wang X Y, Wang X X. The analyses and settlements of the pollutants in the huegas from the catalytic cracking of the wasted plastic[J]. Industrial Safety andEnvironmental Protection.2011,37(9):29-30.
    [46]Pierce D E, King D B, Sadler G D. Analysis of contaminants in recycledpoly(ethylene terephtalate) by thermal-extraction gas chromatography-massspectroscopy. In: Rader C P. et al.(Eds.). Plastics, rubber and paper recycling: apragmatic approach[M]. Washington: American Chemical Society,1995.458-471.
    [47]李法鸿,袁兴中,陈晓青.废塑料混合物分段热裂解的研究[J].石油炼制与化工,2001,32(5):51-54.
    [48]Serrano D P, Aguado J, Rodríguez J M, et al. An investigation into the catalyticcracking of LDPE using Py–GC/MS[J]. Journal of analytical and applied pyrolysis,2005,74(1):370-378.
    [49]Sharypov V I, Marin N, Beregovtsova N G, et al. Co-pyrolysis of wood biomassand synthetic polymer mixtures. Part I: influence of experimental conditions on theevolution of solids, liquids and gases[J]. Journal of Analytical and applied Pyrolysis,2002,64(1):15-28.
    [50]曹玉亭,张锦赓.废旧塑料的再生利用[J].当代化工,2011,40(2):190-192.
    [51]熊英,陈光顺,郭少云.聚氯乙烯增韧改性研究进展[J].聚氯乙烯,2004,13(2):1-6.
    [52]郝晶,宋琳珩.聚氯乙烯[J].氯碱工业文摘,2007,(1):25-62.
    [53]王孚懋,程美良.城市生活垃圾处置过程中环境污染防治[J].城市环境与城市生态,2002,15(4):7-9.
    [54]石振武,赵敏.运用层次分析法确定指标的权值[J].科技和产业,2008,8(2):23-25.
    [55]周兴. AHP法在广西生态环境综合评价中的应用[J].广西师范学院学报(自然科学版),2003,20(3):8-15.
    [56]常建娥,蒋太立.层次分析法确定权重的研究.武汉理工大学学报(信息与管理工程版),2007,29(1):153-156.
    [57]谢承华. AHP及其应用.兰州商学院学报,2001,2:79-82.
    [58]徐晓敏.层次分析法的运用.统计与决策,2008,1:156-158.
    [59]Saaty T L, Vargas L G. Models, methods, concepts&applications of the analytichierarchy process. Springer,2012.
    [60]王国华,梁樑.专家判断信息的提取及一致性调整.系统工程理论方法应用,2001,10(1):68-71.
    [61]梁樑,熊立,王国华.一种群决策中确定专家判断可信度的改进方法[J].系统工程,2004,22(6):8-15.
    [62]范春彦,韩晓明,汤伟华. AHP中专家判断信息的提取及指标权重的综合确定法[J].空军工程大学学报(自然科学版),2003,4(1):65-67.
    [63]梁樑,王建平.专家判断矩阵的一致性调整[J].微电子学与计算机,1994,11(2):40-43.
    [64]孙根寿.用肯德尔和谐系数法检验评委的评估技术[J].西北师范大学学报(自然科学版),1994,1:110-112.
    [65]刘艳锋.肯德尔和谐系数的实际运用[J].河南机电高等专科学校学报,2006,14(1):41-42.
    [66]刘艳锋.利用肯德尔和谐系数检验测量结果的可信度[J].新乡教育学院学报,2006,19(2):95-96.
    [67]黄发荣.聚苯乙烯的热裂解研究[J].中国塑料,1998,12(1):95-101.
    [68]马沛生,樊丽华,侯彩霞.超临界水降解聚苯乙烯及其混合塑料[J].高分子材料科学与工程,2005,21(1):268-271.
    [69]杨震,江勇,王世明,等.废聚苯乙烯塑料热降解回收苯乙烯单体的研究[J].环境科学,1997,18(2):43-45.
    [70]孟季茹,梁国正,赵磊,等.聚丙烯增韧改性研究的最新进展[J].塑料科技,2000,1:41-49.
    [71]赵敏.改性聚丙烯新材料[M].化学工业出版社材料科学与工程出版中心,2002.
    [72]洪定一.聚丙烯原理,工艺与技术[M].中国石化出版社,2002.
    [73]张玉川.聚乙烯管材的发展前景[J].中国塑料,2000,14(2):1-11.
    [74]王佩璋,王兰,吕立成.木粉填充废旧聚乙烯的改性研究[J].塑料,2002,31(1):41-42.
    [75]桂祖桐.聚乙烯树脂及其应用[M].化学工业出版社,2002.
    [76]邓南圣,王小兵.生命周期分析[M].化学工业出版社,2003.
    [77]樊庆锌,敖红光,孟超.生命周期分析[J].环境科学与管理,2007,32(6):177-180.
    [78]杨建新,徐成,王如松,等.产品生命周期分析方法及应用[M].气象出版社,2002.
    [79]王寿兵,杨建新.生命周期分析方法及其进展[J].上海环境科学,1998,17(11):7-10.
    [80]王寿兵,胡聃.生命周期分析及其在环境管理中的应用[J].中国环境科学,1999,19(1):77-80.
    [81]Marsmann M. The ISO14040family[J]. The International Journal of Life CycleAssessment,2000,5(6):317-318.
    [82]杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J].环境科学学报,2001,21(2):234-237.
    [83]杨建新,王寿兵.生命周期清单分析中的分配方法[J].中国环境科学,1999,19(3):285-288.
    [84]姜金龙,吴玉萍,马军,等.生命周期分析的技术框架及研究进展[J].兰州理工大学学报,2005,31(4):23-26.
    [85]Rice G, Clift R, Burns R. Comparison of currently available european LCAsoftware[J]. The International Journal of Life Cycle Assessment,1997,2(1):53-59.
    [86]杨建新,王如松.生命周期分析的回顾与展望[J].环境科学进展.1998,6(2):23-24.
    [87]Xin M, Dong Y, Cai Y, et al. Study on thermolysis and burning of the maincombustible components of city refuse[J]. Cement Engineering.2010,1:66-71
    [88]American Chemistry Council. Environmental and Economic Analysis of EmergingPlastics Conversion Technologies: Final Project Report of RTI International[D].Washington: ACC,2012:1-65.
    [89]于利伟.基于目标距离原理的产品生命周期影响评价方法研究[D].山东大学,2009.
    [90]Weidema B P, Bauer C, Hischier R, et al. Overview and methodology. Data qualityguideline for the ecoinvent database version3.[R]. Ecoinvent Report1St. Gallen:The Ecoinvent Centre.2013:76-84.
    [91]黄娜,王洪涛,范辞冬,等.基于不确定度和敏感度分析的LCA数据质量评估与控制方法[J].环境科学学报,2012,32(6):1529-1536.
    [92]李随成,陈敬东,赵海刚.定性决策指标体系评价研究[J].系统工程理论与实践,2001,9(9):22-28.
    [93]Dvortsov V L, Solomon S. Response of the stratospheric temperatures and ozone topast and future increases in stratospheric humidity[J]. Journal of GeophysicalResearch: Atmospheres (1984–2012),2001,106(D7):7505-7514.
    [94]Heijungs R. Environmental life-cycle assessment of products: guide andbackgrounds. Centre of Environmental Science, Leiden.1992.
    [95]Derwent R G, Jenkin M E, Saunders S M. Photochemical ozone creation potentialsfor a large number of reactive hydrocarbons under European conditions[J].Atmospheric Environment,1996,30(2):181-199.
    [96]Zhang J, Smith K R, Ma Y, et al. Greenhouse gases and other airborne pollutantsfrom household stoves in China: a database for emission factors[J]. AtmosphericEnvironment,2000,34(26):4537-4549.
    [97]王震,孙德智,桂凌.废塑料能源回收过程的生命周期分析[J].环境科学与技术,2010,33:408-409.
    [98]李百顺.高聚物挤出造粒形式和原理[J].塑料科技,1998,127:37-41.
    [99]第一次全国污染源普查资料编纂委员会.污染源普查产排污系数手册(第一版)[M].北京:中国环境科学出版社,2011.
    [100]Heijungs R, Guinee J B, Huppes G, et al. Environmental Life Cycle Assessment ofproducts. Guide and Backgrounds. Center of Environmental Science-LeidenUniversity(CML), the Netherlands,1992.
    [101]UNEP/SETAC Life Cycle Iniative. Life Cycle Inventory programme: Draft FinalReport of the LCI Definiti on Study.2003.
    [102]戴宏民,戴佩华. LCA数据清单分析研究[J].中国包装,2005,23(4):53-55.
    [103]Li D, Li W, Li B. CO-Carbonization of Coking-Coal with Different WastePlastics[J]. Journal of Fuel Chemistry and Technology,2001,29(1):19-23.
    [104]Qin Y F, Bai Y, Wang X, et al. Distribution characters of municipal solid waste inChaoyang District of Beijing [J]. Journal of Environmental Engineering.2009,3(8):1498-1502.
    [105]United Nations Environment Programme. Converting Waste Plastics Into aResource: Assessment Guidelines of UNEP[M]. DTIE. Osaka: UNEP DTIE,2009:1-64.
    [106]Ma W, Yang X, Chen C, et al. Comparative Analysis of MSW-OriginatedChlorine Content and Chlorine Species[J]. Journal of Tianjin University.2011,44(1):7-11.
    [107]He Q, Peng F, Zhu S, et al. Life cycle assessment of municipal solid wastedisposal techniques in Chongqing City[J]. Environment and Ecology in the ThreeGorges.2010,3(1):36-40.
    [108]Wei B, Wang J, Tahara K, et al. Life cycle assessment on disposal methods ofmunicipal solid waste in Suzhou. China Population[J]. Resources andEnvironment.2009,19(2):93-97.
    [109]Bekri-Abbes I, Bayoudh S, Baklouti M. The removal of hardness of water usingsulfonated waste plastic[J]. Desalination.2008,222:81-86.
    [110]Miranda R, Yang J, Roy C, et al. Vacuum pyrolysis of commingled plasticscontaining PVC I. Kinetic study. Polymer Degradation and Stability,2001,72(3):469-491.
    [111]Miranda R, Pakdel H, Roy C, et al. Vacuum pyrolysis of commingled plasticscontaining PVC II. Product analysis. Polymer degradation and stability,2001,73(1):47-67.
    [112]Li S Y, Bie R S, Wang H. Experimental study on the emission and removal of HClfrom incineration of chlorinated waste water in fluidized bed. Proceedings of theCSEE,2006,26(1):40-44.
    [113]Hellweg S. Time-and site-dependent life cycle assessment of thermal wastetreatment processes. The International Journal of Life Cycle Assessment,2001,6(1):46-46.
    [114]Doka G. Life Cycle Inventories of Waste Treatment Services. Ecoinvent ReportNo.13,2003, Part I:1-84.
    [115]Doka G. Life Cycle Inventories of Waste Treatment Services. Ecoinvent ReportNo.13,2007, Part II:1-104.
    [116]Gu T, Cao H D, Hu X S. Influence of Urban Refuse Incinerator Structure uponCombustion and Research on Its Type Selection of the Grate and Furnace. PowerEngineering,2003,23(1):2186-2197.
    [117]American Chemistry Council. Environmental and Economic Analysis of EmergingPlastics Conversion Technologies. Washington,2012,1-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700