高速铁路风屏障防风效果及其自身风荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车高速化与轻量化的发展,强横风作用下列车的安全性问题越来越突出。在线路一侧或两侧设置风屏障,为列车创造一个相对低风速的局部环境,是提高列车横风安全性的有效措施。围绕铁路风屏障的防风效果及其自身风荷载,采用理论分析、风洞试验及数值模拟的方法,进行了如下研究:
     首先,通过风洞试验,研究了圆孔式风屏障缩尺模型中孔径的合理取值,对比了风屏障开孔形式以及圆孔式风屏障与格栅式风屏障的相似性。在同一网格条件下,采用CFD方法研究了风屏障的直接模拟方法和多孔介质方法,并与风洞试验结果进行了对比。在风洞试验基础上,进一步对车辆的雷诺数效应、风场分布、车辆风荷载及车辆动态响应等方面进行了研究。车辆雷诺数效应方面,结合数值模拟方法得到了车辆气动力系数随雷诺数变化的曲线,除雷诺数突变区域和过渡区域外,阻力系数满足指数律,并进一步分析了车辆的升阻比与车顶的流动状态关系。风场分布方面,测试了轨道上方的风压系数剖面,分析了气动机理。车辆风荷载方面,分析了风屏障高度与透风率、车辆位置、双车交会及线路构造形式等因素的影响,讨论了铁路风屏障的升力机理,即气流绕过一定高度的风屏障后,减小了轨道上方的平均风速,同时会加速并形成强剪切层,当其经过曲线车顶时,增加了车顶的局部雷诺数,使得风屏障对车顶和车底的防风效果有一定差异,导致车辆升阻比增加,并有可能增加升力系数。车辆动态响应方面,采用风-车-桥耦合振动分析方法,对比了设置风屏障时车辆的动态响应。
     其次,提出了横向风作用下高速运动车辆气动力系数的理论关系式,分析了理论关系式中各项系数的物理意义,通过文献中的试验数据验证了其可靠性。基于风屏障阻力机理及Baker假定,结合上述理论关系式,提出了设置风屏障时运动车辆气动特性的近似计算公式,采用CFD对其进行了验证。在此基础上,提出了沿平地路基运行的尾车的附加气动作用计算公式,在多种透风率风屏障情况下进行CFD验证,并进一步研究了线路构造形式的影响。
     再次,通过风洞试验,研究了不同高度、不同透风率、不同线路构造形式情况下,风屏障在横向风作用下的自身风荷载。完善了列车风作用下风屏障风荷载峰值随距离变化的经验公式,采用数值模拟方法对其进行了验证,并讨论了风屏障位置、透风率及车速等因素的影响。为决定是否在风屏障性的综合评价中考虑瞬态风荷载的影响,针对实际工程,建立了风屏障的有限元模型,分析了列车风作用下风屏障的疲劳特性。
     最后,根据车辆气动力系数的含义以及风洞试验结果,提出以单车时的气动力系数衡量车辆的风载突变效应。分别以车辆的风荷载突变量及车辆的动态响应为输入指标,在输出指标相同情况下,采用数据包络法(DEA)对风屏障性能进行了综合评价,并讨论了车辆风荷载指标与车辆响应指标间的一致性。
     结果表明:横风作用下运动列车的气动特性由运动项、静止项及边界项组成,设置风屏障具有相似的规律。风屏障的防风作用是阻力机理与升力机理联合作用的结果,以阻力机理为基础的近似计算方法在预测车辆的侧向阻力系数时效果较好,升力系数和侧滚力矩系数稍差。线路构造形式对轨道上方的风场分布、静止车辆风荷载、运动车辆风荷载、车辆走行性及横风作用下的风屏障风荷载的影响较大。列车风作用下,风屏障的瞬态风荷载随距离的增加而迅速减小,实际风屏障的应力幅较小。综合评价结果表明,平地路基上风屏障透风率为0%、高度为2.95m(轨面以上高度为2.05m)时防风效果较好,车辆风载突变效应和车辆响应指标间的一致性较好。
With the development of high-speed and light-weight of trains, the security of the train becomes a problem of increasing concern. In order to create a local environment which has a relatively lower wind speed for trains, the wind barriers either one side or both sides are installed on the railway, which is an effective measurement to protect the trains from the strong cross wind. Therefore, in this study, the method of theory analysis, wind tunnel tests and numerical simulations are used to investigate the protection effects of railway wind barrier and its wind loads.
     Firstly, the wind tunnel tests are conducted to investigate the reasonable aperture of circle-hole wind barrier in scaled model, and study the similarity between circle-hole wind barriers with grid wind barriers. Under the condition of the same grid, the wind barriers are simulated by the boundary of wall and porous jump in FLUENT, and compare to the results of wind tunnel tests. Based on wind tunnel tests, the effects of Reynolds number of vehicles, wind field distribution, vehicle wind loads, and vehicle dynamic responses are studied. In the aspect of the vehicle Reynolds number, the curves of the aerodynamic force coefficients to Re are obtained by the numerical simulation method, and it shows that the drag coefficient satisfies the exponential law except for the sudden change region and transition region; furthermore, the relationship between the lift-drag ratio of vehicle and the flow pattern of the vehicle roof are discussed. In the aspect of wind field distribution, the profiles of wind pressure coefficient above track are measured by wind tunnel tests, and the aerodynamic mechanism is analyzed. In the aspect of vehicle wind loads, the height and porosity of wind barriers, track positions, and two trains meeting each other et al. are discussed, and the lift mechanism of railway wind barrier is proposed, i.e. after the airflow bypassing the wind barriers with certain height, the accelerated airflow (strong shear layer) will act on the roof of the vehicle, consequently, increase the local Reynolds number of vehicle roof, and lead to some differences of protection effect of wind barriers between the vehicle roof and bottom, which increase the lift-drag ratio of vehicle, and also may be increased the lift coefficient. In the aspect of vehicle dynamic responses, the coupled vibrations of wind-vehicle-bridge system method are adopted to calculate the dynamic responses when the wind barriers installed on the railway.
     Secondly, a theoretical relationship of moving vehicle aerodynamic force coefficient under the cross wind is proposed, and the physical meanings of theoretical relationship are analyzed; meanwhile, the reliability is verified by the experimental data in literature. In terms of the wind barrier drag mechanism, Baker's hypothesis and the theoretical relationship, an approximate calculation formula of moving vehicle aerodynamic characteristics when the wind barriers are installed on one side is proposed, and it be verified by CFD. On this basis, a formula of additional aerodynamic force effect is suggested, which is only suitable for the last vehicle running on the ground roadbed, and it be verified by CFD in the multiple wind barrier cases. Further, the applicability of theoretical relationship, the approximate calculation formula, and the additional aerodynamic action in the different line structure forms are studied by CFD method.
     Thirdly, the cross wind loads of wind barriers are measured by wind tunnel tests, and the effect of height, porosity, and line structure forms are discussed. Furthermore, under the action of train-induced wind, the empirical fitting formula of the peak drag coefficients for wind barrier changed with distance is proposed, which is verified by numerical simulation method, the effects of distance, porosity, and vehicle speeds on the drag coefficient of wind barrier are discussed respectively. A finite element model of wind barrier is used to analyze the stress distribution, and the fatigue characteristics of wind barrier under the action of train-induced wind are further analyzed to determine whether the transient wind load will be considered as an evaluation index.
     Finally, in terms of the definition of vehicle aerodynamic force coefficients and the results of wind tunnel tests, it is presented that the effect of sudden change of vehicle wind loads can be measured by aerodynamic force coefficients of the single train. Because of the output indexes are the same, the magnitudes of sudden change of vehicle wind loads, and the vehicle dynamic responses are considered as the input indexes, respectively, and the method of DEA (Data Envelopment Analysis) is used to evaluate the performance of wind barrier. According to the evaluation results of wind load and vehicle response, the consistency between the index of wind loads and the index of responses are discussed.
     The results demonstrated as follows:the aerodynamic characteristics of moving vehicles under the cross wind were consisted of the movement item, static item, and boundary item, When the wind barrier installed the railway, the aerodynamic characteristic is also satisfied this theoretical relationship. The protection effect of wind barrier was the result of the combination effects of drag mechanism and lift mechanism, the lateral drag coefficient when the wind barrier installed on the railway could be better estimated by the approximate calculation method based on the drag mechanism, but the lift coefficient and side roll moment coefficient were somewhat less compared with CFD. The line structure forms had significantly effect on the wind field distribution, wind load of static vehicle and moving vehicle, and wind load of wind barrier under the cross wind. Under the action of train-induced wind, the transient wind loads of wind barrier decreased rapidly with the increasing of wind barrier distance, which led to a smaller stress range for the practical wind barrier. When the porosity is0%, the height is2.05m (the height above the track plane), the protection effect of wind barriers installed on ground roadbed was better, and the sudden change of vehicle wind loads was in good agreement with the vehicle response index.
引文
[1]Suzuki M, Tanemoto K, Maeda A T. Aerodynamic characteristics of train/vehicles under cross winds [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(91):209-218.
    [2]Fujii T, Maeda T, Ishida H. Wind-induced Accidents of Train/Vehicles and Their Measure in Japan[J].1999,40(1):50-55.
    [3]金学松,郭俊,肖新标,等.高速列车安全运行研究的关键科学问题[J].工程力学,2009,26(Sup.Ⅱ):8-22.
    [4]葛盛昌,蒋富强.兰新铁路强风地区风沙成因及挡风墙防风效果分析[J].铁道工程学报,2009,128(5):1-4.
    [5]王厚雄,高注,王蜀东,等.挡风墙高度的研究[J].中国铁道科学,1990,11(1):14-23.
    [6]葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究[J].铁道技术监督,2006,34(4):9-11.
    [7]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [8]马淑红,马志福.瞬时最大风速对京津城际CRH3动车组行车安全影响[J].中国科技信息,2008(21):285-286.
    [9]张强,杨贤为,张永山,等.京沪沿线强降水频率及大风频率分布特征[J].气象科技,2003,31(1):45-49.
    [10]Matschke G, Schulte-Werning B. Measures and strategies to mimimise the effect of strong cross winds on high speed trains:Proceedings of the WCRR World Congress of Railway Research, Florence.,Italy,1997[C].
    [11]日比野有,蔡千华.铁道车辆临界倾覆风速静态解析式的验证[J].国外铁道车辆,2011,48(3):29-35.
    [12]Cai C S, Chen S R. Framework of vehicle-bridge-wind dynamic analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(7-8):579-607.
    [13]Xu Y L, Guo W H. Dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent wind[J]. Engineering Structures,2003,25(4):473-486.
    [14]王厚雄,尹永顺,高注.车顶外形对车辆气动横向稳定性等气动特性的影响[J].空气动力学学报,1993,11(1):98-102.
    [15]Baker C J, Jones J, Lopez Calleja F, et al. Measurements of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(7-8):547-563.
    [16]Sanquer S, Barre C, de Virel M D, et al. Effect of cross winds on high-speed trains:Development of a new experimental methodology [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004,92(7-8):535-545.
    [17]Cheli F, Corradi R, Rocchi D, et al. Wind tunnel tests on train scale models to investigate the effect of infrastructure scenario[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010,98(6-7):353-362.
    [18]高广军,苗秀娟.强横风下青藏线客车在不同高度桥梁上的气动性能分析[J].中南大学学报(自然科学版),2010,41(1):376-380.
    [19]Baker C J. Train aerodynamic force and moment from moving model experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,24(3):227-251.
    [20]Robinson C G, Baker C J. Effect of atmospheric turbulence on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,34(3):251-272.
    [21]Baker C J, Brockie N J. Wind tunnel tests to obtain train aerodynamic drag coefficients. Reynolds number and ground simulation effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1991,38(1):23-28.
    [22]Baker C J, Dalley S J, Johnson T, et al. The slipstream and wake of a high-speed train,2001 [C]. Professional Engineering Publishing Ltd.
    [23]Baker C J, Sterling M. Aerodynamic forces on multiple unit trains in cross winds[J]. Journal of Fluids Engineering, Transactions of the ASME,2009,131(10):1-14.
    [24]Chiu T W. Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an integrated two-and three-dimensional source/vortex panel method[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,57(1):19-39.
    [25]林荣生,胡竞嵘,王厚雄,等.用风洞试验测定车辆的横风气动特性[J].铁道学报,1984,6(1):104-108.
    [26]李永乐,廖海黎,强士中.车桥系统气动特性的节段模型风洞实验研究[J].铁道学报,2004,26(3):71-75.
    [27]李永乐,周昱,葛世平,等.主梁断面形状对车-桥系统气动特性影响的风洞试验研究[J].土木工程学报,2012,45(7):127-133.
    [28]李永乐,胡朋,张明金,等.侧向风作用下车-桥系统的气动特性——移动车辆模型风洞试验系统[J].西南交通大学学报,2012,47(1):50-56.
    [29]李永乐,胡朋,张明金,等.侧向风作用下车-桥系统的气动特性——基于风洞试验的参数研究[J].西南交通大学学报,2012,47(2):210-217.
    [30]李永乐,胡朋,张明金,等.风—车—桥系统车辆风荷载突变效应风洞试验研究[J].空气动力学学报,2011,29(5):548-554.
    [31]田红旗.风环境下的列车空气阻力特性研究[J].中国铁道科学,2008,29(5):108-112.
    [32]张雷,杨明智.受电弓设备对列车气动特性影响的风洞试验[J].中南大学学报(自然科学版),2011,42(12):3894-3898.
    [33]Khier W, Breuer M, Durst F. Flow structure around trains under side wind conditions:A numerical study[J]. Computers and Fluids,2000,29(2):179-195.
    [34]Hemida H, Krajnovic S. LES study of the influence of a train-nose shape on the flow structures under cross-wind conditions[J]. Journal of Fluids Engineering, Transactions of the ASME, 2008,130(9):1-12.
    [35]Hemida H, Krajnovic S. LES study of the influence of the nose shape and yaw angles on flow structures around trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010,98(1):34-46.
    [36]张小钢,刘应清.具有地面效应的高速列车湍流绕流数值模拟研究[J].西南交通大学学报,1997,32(2):30-33.
    [37]毛军,郗艳红,杨国伟.侧风风场特征对高速列车气动性能作用的研究[J].铁道学报,2011,33(4):22-30.
    [38]Wang C, Wu S, Wen B. Effects of the wheels on train's aerodynamic characteristics under cross wind conditions:2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24,2010-August 26,2010, Changchun, China,2010[C]. IEEE Computer Society.
    [39]张淼,熊红兵.高速列车部件对整车气动力的影响分析[J].制造业自动化,2011,33(2):202-204.
    [40]郗艳红.横风作用下的高速列车气动特性及运行安全性研究[D].北京交通大学,2012.
    [41]黄志祥,陈立,蒋科林.高速列车减小空气阻力措施的风洞试验研究[J].铁道学报,2012,34(4):16-21.
    [42]郑循皓,张继业,张卫华.高速列车转向架空气阻力的数值模拟[J].交通运输工程学报,2011,11(2):45-51.
    [43]陈艾荣,王达磊,庞加斌.跨海长桥风致行车安全研究[J].桥梁建设,2006(3):1-4.
    [44]Guan D X, Zhang Y S, Zhu T Y. A wind-tunnel study of windbreak drag[J]. Agricultural and forest meteorology,2003,118(1-2):75-84.
    [45]Schwartz R C, Fryrear D W, Harris B L, et al. Mean flow and shear-stress distributions as influenced by vegetative windbreak structure [J]. Agricultural and forest meteorology, 1995,75(1-3):1-22.
    [46]Brenner A J, Jarvis P G, J V R. Windbreak-crop interactions in the sahel.2. growth-response of millet in shelter[J]. Agricultural and forest meteorology,1995,75(4):235-262.
    [47]陈建华,詹水芬.港口散货堆场防风网防尘技术研究和应用[J].珠江水运,2008(3):44-46.
    [48]林官明,叶文虎.防风网泄流区湍流的子波分析[J].北京大学学报(自然科学版),2003,39(5):732-735.
    [49]Counihan J, Hunt J C R, Jackson P S. Wakes behind two-dimensional surface obstacles in turbulent boundary layers [J]. Journal of Fluid Mechanics,1974,64(03).
    [50]Koo J K, James D F. Fluid flow around and through a screen[J]. Journal of Fluid Mechanics, 1973,30:513-538.
    [51]Kiya M, Arie M, Koshikawa K. An analysis of uniform shear flow past a porous plate attached to a plane surface[J]. Journal of Fluids Engineering,1980,102:160-165.
    [52]刘志,王献孚.通过防风网流动数值模拟[J].交通环保,1990,11(6):1-3.
    [53]程建生,袁辉,缪国平,等.波浪在圆弧型浮式多孔介质防波堤绕射的解析[J].解放军理工大学学报(自然科学版),2010,11(5):551-556.
    [54]Richardson G M, Richards P J. Full-scale measurements of the effect of a porous windbreak on wind spectra[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:611-619.
    [55]Wilson J D. A field study of the mean pressure about a windbreak[J]. Boundary-layer meteorology, 1997,85(3):327-358.
    [56]王厚雄,王蜀东,高注,等.防风工程对风特性及铁道车辆横风气动特性的影响[J].空气动力学学报,1990,8(4):430-436.
    [57]尹永顺.风区铁路挡风墙合理高度的研究[J].路基工程,1990(06).
    [58]鲁寨军,田红旗.大风环境下YW_(25G)型客车横向振动偏移量研究[J].铁道科学与工程学报,2011,8(3):57-61.
    [59]李红艳,陈治亚,赵钢,等.大风环境下P_(62K)型空棚车横向振动偏移量试验研究[J].铁道科学与工程学报,2011,8(6):98-102.
    [60]熊小慧,梁习锋,高广军,等.兰州-新疆线强侧风作用下车辆的气动特性[J].中南大学学报(自然科学版),2006,37(6):1183-1188.
    [61]Papesch A J G. Model study of windbreaks on railway on bridge[J]. New Zealand Engineering, 1972,27(4):132-139.
    [62]Coleman S A, Baker C J. Reduction of accident risk for high sided road vehicles in cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,44(pt 4):2685-2695.
    [63]Charuvisit S, Kimura K, Fujino Y. Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(7-8):609-639.
    [64]Yeh C P, Tsai C H, Yang R J. An investigation into the sheltering performance of porous windbreaks under various wind directions[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010,98(10-11):520-532.
    [65]Kwon S D, Kim D H, Lee S H, et al. Design criteria of wind barriers for traffic. Part 1:wind barrier performance[J]. Wind and structures,2011,14(1):55-70.
    [66]Kim D H, Kwon S D, Lee I K, et al. Design criteria of wind barriers for traffic. Part 2:decision making process[J]. Wind and structures,2011,14(1):71-80.
    [67]Lee S J, Kim H B. Laboratory measurements of velocity and turbulence field behind porous fences[J]. Journal of wind engineering and industrial aerodynamics,1999,80(3):311-326.
    [68]Dong Z B, Luo W Y, Qian G Q, et al. A wind tunnel simulation of the turbulence fields behind upright porous wind fences[J]. Journal of arid environments,2010,74(2):193-207.
    [69]Dong Z B, Luo W Y, Qian G Q, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and forest meteorology,2007,146(1-2):82-93.
    [70]Barcala M A, Meseguer J. Visualization study of the influence of parapets on the flow around a train vehicle under cross winds:WIT Transactions on the Built Environment, Toledo, Spain, 2008[C].
    [71]Kozmar H, Procino L, Borsani A, et al. Sheltering efficiency of wind barriers on bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012(107-108):274-284.
    [72]Lazzarin P, Grun J, Mutignani F, et al. Fatigue behaviour of bonded anchors subjected to tensile loads:Advanced Computational Engineering and Experimenting, P.O. Box 101161, Weinheim, D-69451, Germany,2010[C]. Wiley-VCH Verlag.
    [73]刘贤万,崔志刚.大风区铁路挡风墙风洞实验研究[J].铁道工程学报,1994,6(2):108-111.
    [74]刘贤万,崔志刚.特大风区防翻车挡风墙工程设计的风洞实验研究[J].中国沙漠,1994,14(3):38-46.
    [75]张健.铁路防风栅抗风性能风洞试验研究与分析[J].铁道科学与工程学报,2007,4(1):13-17.
    [76]刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究[J].铁道学报,2008,30(1):82-88.
    [77]迪尔比耶,汉森.,薛素铎李雄彦.译.结构风荷载作用[M].中国建筑工业出版社,2006.
    [78]董香婷.风障对桥面风环境影响的数值模拟研究[D].浙江大学,2007.
    [79]罗晓瑜,陈艾荣,王达磊.杭州湾跨海大桥风障造型美学思考,中国重庆,2006[C].
    [80]李永乐,陈宁,蔡宪棠,等.桥塔遮风效应对风-车-桥耦合振动的影响[J].西南交通大学学报,2010,45(6):875-881.
    [81]Charuvisit S, Kimura K, Fujino Y. Experimental and semi-analytical studies on the aerodynamic forces acting on a vehicle passing through the wake of a bridge tower in cross wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(9):749-780.
    [82]张文明,杨昕,葛耀君,等.风障对大跨度悬索桥抗风性能的影响[J].武汉理工大学学报,2008,30(11):113-116.
    [83]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响[J].中国铁道科学,2006,27(2):66-70.
    [84]许志峰.挡风墙的疏透度对列车运行安全的影响研究[D].兰州大学,2010.
    [85]黄林.列车风与自然风联合作用下的车—桥耦合振动分析[D].西南交通大学,2007.
    [86]唐煜.桥梁挡风屏对强侧风条件下列车运营安全性的影响[D].成都:西南交通大学,2010.
    [87]Watanabe S, Fumoto K. Aerodynamic study of slotted box girder using computational fluid dynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10-11):1885-1894.
    [88]Wilson J D. Deposition of particles to a thin windbreak:The effect of a gap[J]. Atmospheric environment,2005,39(30):5525-5531.
    [89]Wilson J D. Numerial studies of flow through a windbreak[J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,21 (2):119-154.
    [90]董香婷,党向鹏.风障对侧风作用下列车行车安全影响的数值模拟研究[J].铁道学报,2008,30(5):36-40.
    [91]权晓亮.铁路大风区桥梁挡风屏抗风性能研究[D].西南交通大学,2012.
    [92]De Dios Sanz Bobi J, Suarez B, Nunez J G, et al. Protection high speed trains against lateral wind effects:ASME International Mechanical Engineering Congress and Exposition, Proceedings, Lake Buena Vista, FL, United states,2010[C].
    [93]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响[J].中南大学学报(自然科学版),2006,37(1):176-182.
    [94]张洁,刘堂红.新疆单线铁路土堤式挡风墙坡角优化研究[J].中国铁道科学,2012,33(2):28-32.
    [95]刘珍,张健,杨明智,等.兰新铁路现有土堤式挡风墙局部加高优化[J].铁道科学与工程学报,2012,9(1):101-106.
    [96]高广军,段丽丽.单线路堤上挡风墙高度研究[J].中南大学学报(自然科学版),2011,42(1):254-259.
    [97]黄尊地,常宁.兰新高速铁路挡风墙合理高度研究[J].五邑大学学报(自然科学版),2012,26(2):63-68.
    [98]黄林,廖海黎,李永乐.横向风与列车风联合作用下车桥系统绕流分析[J].铁道科学与工程学报,2006,3(6):61-65.
    [99]黄林,廖海黎.横向风作用下高速铁路车桥系统绕流特性分析[J].西南交通大学学报,2005,40(5):585-590.
    [100]李田,张继业,张卫华.横风下高速列车通过挡风墙动力学性能[J].铁道学报,2012,34(7):30-35.
    [101]周奇,朱乐东,郭震山.曲线风障对桥面风环境影响的数值模拟[J].武汉理工大学学报,2010,32(10):38-44.
    [102]高亮,刘健新,张丹.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(1):52-56.
    [103]郭震山,朱乐东,周志勇.桥梁风障优化选型及其对桥梁气动性能的影响,中国北京,2009[C].中国土木工程学会桥梁与结构工程分会风工程委员会.
    [104]龙丽平,赵丽滨,刘立东.列车致声屏障结构的空气脉动力研究[J].工程力学,2010,27(3):246-250.
    [105]胡喆.武广铁路客运专线列车脉动力对声屏障的影响研究[J].铁道标准设计,2010(1):123-126.
    [106]戚振宕,李人宪.高速铁路声屏障气动特性仿真分析[J].路基工程,2011,157(4):9-12.
    [107]吕坚品,张继文,廖建州,等.既有铁路桥梁声屏障的高速列车脉动风致响应[J].西南交通大学学报,2009,44(4):547-551.
    [108]邓跞,施洲,刘兆丰.高速铁路声屏障动力特性研究[J].铁道建筑,2009(11):101-104.
    [109]赵丽滨,龙丽平,蔡庆云.列车风致脉动力下声屏障的动力学性能[J].北京航空航天大学学报,2009,35(4):505-508.
    [110]Iwnicki S. Handbook of railway vehicle dynamics[M]. Taylor & Francis:CRC Press,2006.
    [111]Smith B W, Barker C P. Design of wind screens to bridges experience and applications on major bridges:LARSEN A.Bridge Aerodynamics, Rotterdam,1998[C].
    [112]李永乐,廖海黎.线状多体系统定常气动力节段模型风洞测试[J].流体力学实验与测量,2004,18(2):91-94.
    [113]Laws E M, Livesey J L. Flow through screens[J]. Annual Review of Fluid Mechanics, 1978,10:247-266.
    [114]李燕飞,田红旗,刘辉.高速铁路开孔式挡风墙外形优化研究[J].中南大学学报(自然科学版),2011,42(10):3207-3212.
    [115]陈晓冬.大跨桥梁侧风行车安全分析[D].同济大学,2007.
    [116]段振亚,石文梅,郑文娟,等.防风网抑尘机理研究及工程应用进展[J].石油化工设备,2010,39(3):41-44.
    [117]陈凯华,宋存义,邱露,等.挡风抑尘墙多孔介质模型分析与数值模拟[J].烧结球团,2008,33(3):23-28.
    [118]Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers Part I:Foundation and fluid mechanics[J]. Numerical Heat Transfer, 1998,33(8):799-816.
    [119]Patankar N A, Hu H H. Finite Reynolds number effect on the rheology of a dilute suspension of neutrally buoyant circular particles in a Newtonian fluid[J]. International Journal of Multiphase Flow, 2002,28(3):409-425.
    [120]Richards P J, Norris S E. Appropriate boundary conditions for computational wind engineering models revisitedfJ]. Journal of Wind Engineering and Industrial Aerodynamics,2011,99(4):257-266.
    [121]Bourdin P, Wilson J D. Windbreak aerodynamics:Is computational fluid dynamics reliable?[J]. Boundary-Layer Meteorology,2008,126(2):181-208.
    [122]ANSYS-Fluent. FLUENT 6.3 Documentation[Z].
    [123]Green D W, Perry R H. Perry's Chemical Engineers Handbook (8th Edition)[M]. McGraw-Hill, 2008.
    [124]唐煜,任建丹,郑史雄.利用多孔介质模型模拟挡风屏计算列车风载:第一届全国结构风工程研究生论坛,杭州,2011[C].
    [125]李永乐.风—车—桥系统非线性空间耦合振动研究[D].西南交通大学,2003.
    [126]希缪 埃米尔.,斯坎伦罗伯特.H.风对结构的作用—风工程导论[M].刘尚培,项海帆,谢霁明,译.同济大学出版社,1992.
    [127]程厚梅.风洞实验干扰与修正[G].北京:国防工业出版社,2003.
    [128]中国人民解放军总装备部军事训练教材编辑工作委员会.低速风洞试验[G].北京:国防工业出版社,2002.
    [129]恽起麟.风洞实验数据的误差与修正[G].北京:国防工业出版社,1996.
    [130]陈克城.流体力学实验技术[M].北京:机械工业出版社,1983.
    [131]徐有恒,穆晟.基础流体实验[M].上海:复旦大学出版社,1990.
    [132]陈德华,赵协和.战术导弹零升阻力雷诺数效应及修正方法[J].流体力学实验与测量,1999,13(1):93-97.
    [133]Li Y L, Qiang S Z, Liao H L, et al. Dynamics of wind-rail/vehicle-bridge systems[J]. J.of Wind Engineering and Industrial Aerodynamic,2006,93(6):483-507.
    [134]Li Y L, Liao H, Qiang S. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges[J]. Computers and Structures,2004,82(20-21):1591-1598.
    [135]Baker C J. The determination of topographical exposure factors for railway[J]. Journal of Wind Engineering and Industrial Aerodynamics,1985(21):89-99.
    [136]Schober M, Weise M, Orellano A, et al. Wind tunnel investigation of an ICE 3 endcar on three standard ground scenarios[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010,98(6-7):345-352.
    [137]Peters J L. Bestimmung des aerodynamischen Widerstandes des ICE/V im Tunnel und auf freier Strecke durch Auslaufversuche[J]. Eisenbahntech Rundschau,1990,9(39):559-564.
    [138]郗艳红,毛军,张念.强风中高速列车安全性研究[J].中国安全科学学报,2010,20(5):39-45.
    [139]Schetz J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001,33:371-414.
    [140]李永乐,汪斌,徐幼麟,等.侧风作用下静动态车-桥系统气动特性数值模拟研究[J].土木工程学报,2011,44(S1):87-94.
    [141]陆冠东.高速列车的空气动力学问题[J].铁道车辆,2006,44(10):1-3.
    [142]马启文,张松.准高速列车气动性能试验研究[J].西南交通大学学报,1997,6(3):34-38.
    [143]Christina R, Thomas R, Don W. Computational modelling of cross-wind stability of high speed trains:European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla,2004[C].
    [144]Hemida H, Krajnovic S, Davidson L. Large-Eddy Simulation of the Flow Around a Simplid High: 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario Canada,2005[C].
    [145]Diedrichs B, Sima M, Orellano A, et al. Crosswind stability of a high-speed train on a high embankment:Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2007 [C].
    [146]Schulte-Werning B, Heine C, Matschke G. Unsteady Wake Flow Characteristics of High-Speed Trains:PAMM Proceedings Applied Maths and Mechanics,2003[C].
    [147]Chiu T W, Squire L C. An experimental study of the flow over a train in a crosswind at large yaw angles up to 90°[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992(45):47-74.
    [148]田红旗.列车空气动力学[M].北京:中国铁道出版社,2007.
    [149]郑史雄,王林明.铁路声屏障风荷载体型系数研究[J].中国铁道科学,2009,30(4):46-50.
    [150]邓跞,施洲,勾红叶.380km/h高速列车脉动风荷载仿真分析[J].铁道建筑,2011(9):133-136.
    [151]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2007.
    [152]杨咏漪.大跨度桥梁风致抖振疲劳研究[D].西南交通大学,2008.
    [153]Suresh S.材料的疲劳[M].王中光等,译.北京:国防工业出版社,1999.
    [154]钱冬生.钢桥疲劳设计[G].成都:西南交通大学出版社,1986.
    [155]铁道第三勘察设计院集团有限公司.时速350km/h客运专线铁路—桥梁插板式金属声屏障[S].北京:铁道部经济规划研究院,2009.
    [156]吴炎,杜栋,庞庆华.现代综合评价方法与案例精选[G].北京:清华大学出版社,2008.
    [157]王军.5807次旅客列车颠覆重大事故分析[R].中国铁道出版社,2008.
    [158]李永乐,向活跃,臧瑜,等.双车交会过程中风—车—桥系统耦合振动性能研究[J].土木工程学报,2011,44(12):73-78.
    [159]符韦苇,靳文舟.基于DEA模型的城市公交系统模糊综合评价[J].武汉理工大学学报,2010,32(18):156-160.
    [160]Korhonen P, Stenfors S, Syrjanen M. Multiple Objective Approach as an Alternative to Radial Projection in DEA[J]. Journal of Productivity Analysis,2002(3):1-17.
    [161]Bogetoft P. DEA and Activity Planning under Asymmetric Information[J]. Journal of Productivity Analysis,2000,13(1):7-48.
    [162]郝海龙,踪家峰.系统分析与评价方法[M].经济科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700