马尾松种质资源分子评价与体胚发育技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana Lamb.)是中国南方亚热带地区分布最广的针叶造林树种,其耐干旱瘠薄、适应性强、生长速度快,广泛用于制浆造纸、建筑、松香等人工林建设。然而马尾松良种选育周期长、良种供应不足、无性繁殖困难,极大地制约着马尾松高效人工林的发展,本论文采用ISSR分子标记技术,对湖南城步马尾松种子园117个优良无性系亲本材料,进行群体遗传结构和遗传关系分析,种质遗传异质性鉴定;并对影响马尾松幼胚体胚发育的几个关键因素进行了系统研究,建立了马尾松体胚发育技术体系,以期为发展马尾松短周期育种策略提供技术支撑,主要研究内容及成果如下:
     1)在117个无性系中ISSR标记检测到丰富的遗传多样性。不同种源群体由于受到种质起源时遗传基础宽窄的影响以及湖南地理气候的选择作用,表现出遗传多样性的差异性。10个ISSR引物共检测到的210个多态位点,位点出现频率在0.0044~0.9744之间,平均为0.4174;10个引物的香农熵值分布在4.657~6.160之间,平均为5.283;不同种源间P值分布在77.98%~90.37%范围内,总的多态位点百分率P值为96.33%,;6个种源群体内期望杂合度(He)分布在0.3598~0.4252之间,平均为0.3887;种源群体遗传分化固定指数Fst值分布在0.3176-0.3414之间,平均为0.3276;种源群体的平均遗传异质性指数M DIST为0.3306~0.3414之间,平均为0.3352;从以上种源群体遗传多样性数值分析表明,现湖南选育的广西种源群体无性系遗传基础较窄,遗传异质性高。
     2)以Structure2.3.4对117个无性系聚类可分为最优3组,分组群体间遗传变异占总变异的11.32%,高于种源模型(2.60%)、地理气候区模型(2.77%)和省份模型(2.72%)的AMOVA分析的群体间变异量比例,相应的Structure2.3.4模拟分组的群体内变异为88.68%,这样Structure2.3.4的模拟分组分析,提高了不同分组群体间的遗传变异比例,有利于在不同分组群体内选择杂交亲本,提高马尾松种子园的杂种优势。种源群体间的遗传变异比例小于地理气候分区群体间遗传变异比例的结果表明,各个激素影响因素的主次排序为6-BA>KT>NAA>2,4-D,诱导培养基激素组成优方案推荐为:LP+2,4-D2.Omg/L+6-BA1.5mg/L+NAA0.5mg/L+KT1.0mg/L;对胚性愈伤组织诱导质量而言,激素因素主次排序为KT>NAA>2,4-D>6-BA,提高愈伤诱导质量的优方案推荐为:LP+2,4-D0.5mg/L+6-BA1.5mg/L+NAA0.3mg/L+KT0.5mg/L。低浓度的2,4-D有利于马尾松胚性愈伤组织的质量提高。
     7)马尾松胚性愈伤增殖培养中,胚性愈伤继代培养的次数有限,这与胚性胚柄细胞团内胚性细胞所处的发育阶段以及发育阶段的不同步密切相关。随着继代次数的增加,胚性愈伤外观形态表现上趋于老化,在显微细胞学水平观察,表现胞质浓厚的胚头细胞数量增多、液泡化胚柄细胞体积增大,数量增多,胚性愈伤的整体发育状态由PEM Ⅰ逐步向PEM Ⅱ、PEMⅢ和EM的方向发展;但同一时期的胚性愈伤中同时存在处于PEM Ⅰ、PEM Ⅱ、PEMⅢ发育阶段胚性细胞,甚至有早期体细胞胚SE的出现。
Masson pine(Pinus massoniana Lamb.) is a native subtropical coniferous tree that is widely planted in southern China. The plant is also tolerance to drought and arid conditions,growing fast and adaptability. It is an important plantation species for timber plantation, resin production, and pollen pini in China. However, the insufficient supply of seed, long breeding cycle and the difficulty of vegetative propagation which has greatly restricted the efficiency plantation of masson pine. The objective of this thesis was to assess the genetic diversity, structure, association and distinctiveness of117elite clones in Chengbu masson pine seed orchard at Hunan province using ISSR markers and to set up an efficient regeneration system via somatic embryogenesis in masson pine. Several key factors on somatic embryogenesis were also discussed. It is our hope that this effort can provide a set of baseline information for the establishment of short cycle breeding programme of masson pine. The main research contents and results were as follows:
     1) Large ISSR variation was detected in these assayed117masson pine clones. There was different patterns in genetic diversity in different populations according to the origin and the selection of climate in Hunan on populations. The10ISSR primers generated a total of210polymorphic bands. The frequencies of the210polymorphic alleles ranged from0.0044to0.9744with an average of0.4174. Values of Shannon's entropy for each marker ranged from6.160to4.657with an average of5.283. Population-specific ISSR variation (P values) ranged from77.98%to90.37%and with a total of96.33%. The expected heterozygosity (He) of6populations was ranged from0.3598to0.4252and averaged0.3887. The population-specific Fst values ranged from0.3176to0.3414and averaged0.3276. The average dissimilarity (AD) of a population ranged from0.3306to0.3414with the mean AD of0.3352and Guangxi population were identified as genetically distinct populations with narrow genetics among this assayed clones.
     2) Clustering117clones with Structure2.3.4resulted in three major clusters. There was a highter ISSR variation of11.32%resided among these clusters, compared to2.60%among6populations,2.77%among4geographic region and2.72%among3provinces with AMOVA analysis, relatively a lower variation of88.68%was presented within the3clusters simulated with Structure2.3.4. This simulated clusters by Structure2.3.4increased the differentiation on different clusters and it would be beneficial to improve the efficiency of parents selection on the heterosis in masson pine orchard. The result of which there was a highter ISSR variation of2.77%harbored among4groups originated from geographic regions compared to2.60%6harbored among populations meaned that there are more effect of geographic regions on the formation of ecotype in masson pine than populations.
     3) There was different patterns on genetic differentiations between populations in significant difference evaluation and which provided a set of baseline information for the selection of parents in masson pine hybridization and germplasm utilization. The genetic differentiations at the population level showed that there was an extramarked difference between Guangxi and those from Guizhou or Hunan population (p<0.001),also there was an extramarked difference between Guizhou and those from Guangxi,Chengbu or Linwu population. There was a significant difference between Guizhou and those from Suining or Zixing population(p<0.005). There are no difference between Chengbu and Suining population(p>0.05), and the same as Zixing and Linwu population(p>0.05).There was an extramarked difference among groups from4geographic regions(p<0.001). there was the largest variation harbored within the clones from Guizhou geographic regions and the lowest variation presented from Guangxi. The largest pairwise regions FST value was obtained between clones from Guizhou and Guangxi. The lowest pairwise regions FST value was obtained between clones from Xuefeng and Nanling.
     4) Clustering117clones revealed that these assayed clones were largely grouped into optimal three clusters according to their originated populations with a few exceptions. Each of the three optimal clusters has a considerable proportion of mixed memberships sharing between clusters. To set up a core subset of masson pine germplasm with more genetic diversity, some clones with high similiarity should be filtered out of the breeding population according to the assessment of the genetic associations of117clones using PAUP4.0, Arlequin3.5, STRUCTURE2.3.4and NTSYS-PC PCA softwares. The most genetically distinct clones and populations were identified according to the AD and mean AD. The variation patterns revealed here should share some general baseline information useful for the evaluation and establishment of specific core subsets by determining the weighting or representation for each polulations
     5) An efficient regeneration system in masson pine for megagametophytes containing immature zygotic embryos via somatic embryogenesis have been developed. The cone collection date in the middle of July was appropriated with the initiation rates arranged from9.66%to22.59%. The induction medium containing2,4-D,6-BA, NAA and KT, and a scope of different concentration hormone level in experiment was benefit to callus induction and proliferation. The somatic embryos with complete structure were achieved with5.0mg/L ABA in the LP maturation medium; After transplanting the embryos to germination medium with no hormone and followed environmental regulation, the embryos could continue to elongation and then form radicle, hypocotyl and cotyledon. A lot of normal somatic embryo seedlings germinated.
     6) There was some difficult in the induction of masson pine embryonic callus. Hormone6-BA and KT were the key factors which influenced embryonic callus induction rate and callus quality respectively. In appropriate concentration design level for induction rate, the primary and followed influence factors of the four kinds of hormone was6-BA followed by KT, NAA,and2,4-D in order; The optimal desi-gn proposed on induction medium was:LP+2,4-D2.0mg/L+6-BA1.5mg/L+NAA0.5mg/L+KT1.0mg/L; Also the primary and followed influence factors of four hormones which influenced the quality of embryonic callus induction was KT, followed by NAA,2,4-D and6-BA in order; The optimal design proposed on enhancing the quality of callus induction medium was: LP+2,4-D0.5mg/L+6-BA1.5mg/L+NAA0.3mg/L+KT0.5mg/L; Low concentration of2,4-D is beneficial to qualify embryonic callus.
     7) There was some difficulty in masson pine embryogenic tissue proliferation with limited subculture times, which had an impact on the efficiency of specific SE stages with non synchronous patterns in the proembryogenic mass development. The ageing phenomenon in embryogenic tissue was accompanied by the increasing times of subculture, and at the same time, the cytology microscopic observation on it showed that the compact clump of densely cytoplasmic cells expanded and the primary vacuolated elongated cell increased, with volume size and numbers. The proembryogenic masses(PEMs) which pass through a series of three characteristic stages of PEM Ⅰ、PEM Ⅱ、PEMⅢ and EM as a whole, but the three stages of PEM Ⅰ、PEM Ⅱ、PEMⅢ and EM would be exited in the same time in embryogenic tissue
引文
艾畅,徐立安,赖焕林,等.马尾松种子园的遗传多样性与父本分析[J].林业科学,2006,42(11):146-150.
    蔡邦平,梁一池.马尾松高世代遗传改良方案探讨[J].福建林业科技,1998,25(1)20-25.
    曾令文,陈雪姣,杨宗琦.城步县马尾松良种基地建设现状与发展思路[J].湖南林业科技,2009,36(5):57-59.
    崔凯荣,邢更生,周功克等.植物激素对体细胞胚发生的诱导与调节[J].遗传,2000,22(5):349-354.
    丁贵杰,周志春,王章荣等著.马尾松纸浆用材林培育与利用[M].北京:中国林业出版社,2006,1-10.
    冯富娟,随心,张冬东.不同种源红松遗传多样性的研究[J].林业科技,2008,33(1):1-4.
    福建林学院林学系种源试验小组.马尾松种源试验阶段报告[J].林业科学.1978,14(1):4-13
    高燕,席梦利,王桂凤,等.马尾松体细胞胚胎发生相关基因PmSERK1的克隆与表达分析[J].分子植物育种,2010,8(1):53-58.
    葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学1988,24(4):399-409.
    葛永奇,邱英雄,丁炳扬,等.子遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性2003,11(4):276-287
    郝玉金,邓秀新.逆境处理和DNA甲基化影响柑橘体细胞胚发生[J].植物学报(英文版),2002,44(6):673-677.
    洪永辉,林文奖,黄以法.12年生马尾松种子园半同胞家系生长性状变异分析与优良家系选择[J].南京林业大学学报(自然科学版),2010,34(4):26-30.
    胡集瑞.马尾松种子园建园亲本性状遗传变异及优质速生无性系选育[J].福建林业科技.2008,35(2):21-33.
    黄楚光.马尾松优良种质资源基因库营建策略分析[J].福建林业科技,2007,34(3):145-149.
    黄健秋,卫志明,许智宏.马尾松成熟合子胚的体细胞胚胎发生和植株再生[J].植物学报,1995,37(4):289-294.
    黄健秋,卫志明,许智宏.云南松成熟胚的体细胞胚胎的发生研究[J].实验生物学报,1995,28(4):371-379.
    季孔庶,樊民亮,徐立安.马尾松无性系种子园半同胞子代变异分析和家系选择[J].林业科学,2005,41(6):43-49
    季孔庶,王章荣,陈天华,等.马尾松扦插繁殖年龄效应及继代扦插复壮效果[J].浙江林学院,1999,16(4):341-345.
    贾彩凤,李悦,瞿超.木本植物体细胞胚胎发生技术[J].中国生物工程杂志,2004,24(3):26-29
    靳小翠,李志辉,杨模华,等.马尾松幼胚培养胚性愈伤组织诱导研究[J].中南林业科技大学学报,2010,30(4):80-84.
    李炟,季孔庶.马尾松SSR引物开发[D].中国南京,南京林业大学硕士论文,2007.
    李丹,彭少麟.三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J].生态学报,2001,21(3):415-421.
    李乃伟,束晓春,何树兰,等.南方红豆杉的ISSR遗传多样性分析[J].西北植物学报,2010,30(12):2536-2541.
    李艳,鲁顺保,刘晓燕,等.江西三清山华东黄杉种群遗传多样性研究[J].江西农业大学学报,2009,31(4):685-689.
    梁一池,邢建宏,刘希华,等.25年生马尾松种源遗传变异及选择研究[J].三明学院学报,2007,24(2):121-126.
    刘艳,沈海龙.不同取材时期水曲柳合子胚DNA甲基化及体胚发生状态[D].东北林业大学硕士学位论文,中国,哈尔滨,东北林业大学图书馆,2011.1-10.
    龙光生,李午平,葛宜和,等.马尾松半同胞优良家系选择研究[J].中南林学院学报,2002,22(1):17-22.
    罗建勋,顾万春,陈少瑜.云杉天然群体遗传多样性的等位酶变异[J].植物生态学报,2006,30(1)165-173.
    齐力旺.华北落叶松体细胞胚胎发生与遗传转化系统建立的研究[D].中国林业科学研究院博十学位论文,北京,2000.
    泰国峰,周志春,李光荣,等.马尾松造纸材最优产地的确定[J].林业科学研究,1995,8(3):266-271.
    中晓辉,蒋湘宁,Park YS,等.红松体细胞胚胎培养技术体系的建立[J].成都大学学报,2005,2(10):11-14.
    沈熙环.森林遗传育种资源的保存策略[J].林业科技开发,2007,21(3):1-4.
    施季森.迎接21世纪现代林木生物技术育种的挑战[J].南京林业大学学报,2000,24(1):1-6.
    宋松泉,程红焱,姜孝成.种子生物学[M].北京:科学出版社,2008,85~88.
    汤玉喜,刘志祥,吴敏,等.1XL-90等美洲黑杨杂交子代ISSR分子鉴别[J].中国农学通报,2011,27(2):1-6.
    唐巍,欧阳藩,郭仲琛.湿地松体细胞胚胎发生和植株再生[J].植物资源与环境,1997,6(2):8-1 1.
    唐巍,欧阳藩,郭仲琛.火炬松成熟合子胚培养直接体细胞胚胎发生和植株再生[J].应用与环境生物学报,1998,4(2):101-106.
    万爱华,徐有明,管兰华,等.马尾松无性系种子园遗传结构的RAPD分析[J].东北林业大学学报,2008,36(1):18-19.
    万爱华,徐有明,管兰华等.马尾松种子园无性系遗传结构的地理变异[J].东北林业大学学报,2006,34(4):12-14.
    汪小雄,卢龙斗,郝怀庆,等.松杉类植物体细胞胚胎发育机理的研究进展[J].西北植物学报,2006,26(9):1965-1972.
    王玲,卓丽环,杨传平等.兴安落叶松等位酶水平的遗传多样性[J].林业科学,2009,(8):170-1 74.
    王文国,李锐,朱珈仪,等.水稻愈伤组织形成过程中甲基化对OsMAPK2的表达调控[J].遗传,2010,32(12):1275-1280.
    王章荣,陈天华,周志春,等.马尾松制浆造纸性能的群体变异及适应性试验[J].林业化学与工业.1999,19(1):64-68.
    魏华丽,吴涛,杨文华,等.落叶松体细胞胚胎发生过程中DNA甲基化模式变化分析[J].东北林业大学学报,2011,39(2):33-37.
    魏令波,唐谦,郑先武,等.马尾松随机扩增多态性DNA标记的分离研究[J].林业科学,1 996,32(5):476-480.
    魏丕伟,施季森.杂交鹅掌楸体细胞胚胎发生标志基因克隆与表达分析[D].南京林业大学博士学位论文,2009.6.
    魏润鹏.如何管理林木长期育种项目中的遗传多样性[J].世界林业研究,1995,8(3):13-20.
    吴丽君.长叶松优良家系的体胚发生研究[J].福建林学院学报,2008,28(1):42-47.
    熊国胜,李家洋,王永红.植物激素调控研究进展[J].科学通报,2009,54:2718-2733.
    徐刚标.植物群体遗传学[M].北京,科学出版社,2009,144-149.
    闫女,王丹,高亚卉,等.七里峪不同海拔茶条槭种群的遗传多样性[J].林业科学,2010,46(10):50-56.
    杨模华,张冬林,李志辉,等.马尾松嫩茎愈伤组织诱导与增殖[J].华中农业大学学报,2009,28(5):631-636.
    杨艳,李志辉,丁贵杰,等.马尾松幼胚培养愈伤组织诱导的初步研究[J].湖南环境生物职业技术学院学报,2007,13(1):6-9.
    杨章旗.马尾松种子园优良家系生长性状选择[J].福建林学院学报.2006,26(1):45-48.
    杨宗武,郑仁华,傅忠华,等.马尾松工业用材优良家系选择的研究[J].林业科学,2003,39(1):74-80.
    尹佟明,黄敏仁,王明庥.利用RAPD标记和单株树大配子体构建马尾松的分子标记连锁图谱[J].植物学报,1997,39(7):607-612.
    余能健,游为贵,陈明武,等.马尾松扦插繁殖技术的研究[J].福建林学院学报,1992,1.
    张党权,田华,谢耀坚,等.桉树4个种遗传多样性的ISSR分析[J].中南林业科技大学学报,2010,30(1):12-17.
    张杰,吴迪,汗春蕾,等.应用ISSR-PCR分析蒙古栎种群的遗传多样性[J].生物多样性,2007,15(3):292-299.
    张蕾,齐力旺,韩素英.落叶松体细胞胚成熟阶段差异表达的基因及部分基因的表达谱分析[J].遗传,2009,31(5):540-545.
    张全仁,方程,周盛,等.马尾松扦插繁殖技术的研究[J].中南林学院学报,1993,1.
    张任好.马尾松第二代种子园建园无无性系系选育及应用[J].福建林业科技,2008,35(1):1-5.
    张守攻,齐力旺,尹刚强.速生高抗林木新品种高效培育技术体系与产业化[J].中国农业科技导报,2010,12(3):1-7.
    张薇,龚佳,季孔庶.马尾松实生种子园遗传多样性分析[J].分子植物育种,2008,6(4):717-723.
    张一,储德裕,金国庆,等.马尾松1代育种群体遗传多样性的ISSR分析[J].林业科学研究,2009,22(6):772-778.
    张一,谭小梅,周志春,等.马尾松二代育种群体亲本主要生长性状和ISSR遗传变异[J].分子植物育种,2010,8(3):501-510.
    张宇,卫志明,席梦利,等.马尾松高效再生体系的建立(简报)[J].分子细胞生物学报,2006,39(3):271-275.
    郑仁华,施季森,杨宗武,等.马尾松纸浆材优良家系的选择[J].南京林业大学学报,2002,26(5):1-6.
    郑仁华,杨宗武,蔡天贵,等.马尾松优树子代测定及速生优良家系选择的研究[J].福建林业科技,1998,25(3):11-16.
    周全连,杨章旗,覃开展.马尾松自由授粉子代测定及优良家系选择[J].广西科学,2001,8(1):63-65.
    周志春,傅玉狮,吴天林.马尾松生长和材性的地理遗传变异及最优种源区的划定[J].林业科学研究,1993,6(5):556-564.
    朱必凤,陈德学,陈虞禄,等.广东韶关马尾松种子园遗传多样性分析[J].福建林业科技,2007,34(3):1-5.
    朱大保.生物多样性与林木育种[J].生物多样性,1994,2(3):157-161.
    Arzate Fernandez, AM, Mejia Gonzalez CO, et al. Isozyme electrophoretic characterization of 29 related cultivars of lily(Lilium spp.)[J]. Plant Breeding,2005,124:71-78.
    Beaulieu J. Breeding program and strategy for white spruce in Quebec[C] 1996. Inform. Rep. LAU-X-117E, Nat. Res. Can., Can. For. Serv. Quebec, Sainte-Foy, Quebec.25.
    Becwar MR, Krueger SA.Recovering cryopreserved conifer embryogenic cultures [P].US Patent:2004.
    Becwar MR, Nagmani R, Wann SR. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda)[J]. Canadian Journal of Forest Research,1990,20:810-817.
    Becwar MR,Blush TD,Brown DW,et al.Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds[J].Plant Cell, Tissue and Organ Culture,1991,26:37-44.
    Berdasco M, Alcazar R, Garcia-Ortiz MV. Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells[J].PLoS One,2008, 3(10):1-10.
    Berg EE, Hamrick JL,Quantification of genetic diversity at allozyme loci[J]. Can.J.For.Res.1997,27:415-424.
    Bishop-Hurley SL, Gardner RC,Walter C.Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata[J].Plant Cell Tissue Organ Cult,2003,74:267-281.
    Bonga JM, Klimaszewska KK, Aderkas PV et al.Recalcitrance in clonal Propagation, in particular of conifers[J]. Plant Cell Tiss Organ Cult,2010,100:211-254.
    Bonga JM, Park YS,Cameron SI, et al. Application of in vitro techniques in the preservation of conifer germplasm and in conifer tree improvement. Conservation of Genetic Resources in vitro[M]. Science Publishers Inc, Enfield, New Hampshire.1997,1:107-122.
    Borralho NMG, Dutkowski W.Comparison of rolling front and discrete generation breeding strategies for trees[J]. Can. J. For. Res,1998,28:987-993.
    Breton D, Harvengt L,Trontin JF,et al. High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in Maritime pine[J]. In Vitro Cellular and Developmental Biology Plant,2005, 41:494-504.
    Breton D, Harvengt L,Trontin JF,et al.Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine[J].Plant Cell,2006,87:95-108.
    Bridgwater FE, Woodbridge WC, Mahalovich MF. Computer modeling of a sublining breeding system[C]. Proc.21st South. For. Tree Improv. Conf.1993,327-333.
    Carneros E, Celestino C, Klimaszewska K, et al.Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis [J]. Plant Cell Tiss Org Cult,2009, 98:165-178.
    Chalupa V. Somatic embryogenesis and plantlet regeneration from immature and mature embryos of Picea abies (L.) Karst[J]. Comm. Inst. For. Czech,1985, 14:57-63.
    Charrie're F, Sotta B. Miginiac E,et al..Induction of adventitious or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus:Variation of endogenous hormone levels[J].Plant Physiol. Biochem,1999,37:751-757.
    Chen K, Arora R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination and seedling establishment in Spinach (Spinacia oleracea) [J].Plant Science,2011,180:212-220.
    Choudhury H, Kumaria S, Tandon P.Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.)[J]. Current Science,2008,95(10):1433-1438.
    Coke JE.Basal nutrient medium for in vitro cultures of loblolly pines[P].US Patent: 5534433,1996.
    Coterill P, Dean C, Cameron J,et al.Nucleus breeding:A new strategy for rapid improvement under clonal forestry[A].In:Breeding tropical trees:population structure and genetic improvement strategies in clonal and seedling forestry[C]. Thailand:Pataya,1988.39-51.
    Danell O.Survey of past, current and future Swedish forest tree breeding[J].Silva Fennica,1991,25:241-247.
    Danell O.1993a. Breeding programmes in Sweden.1. General approach. In Progeny testing and breeding strategies:Proceedings of the Nordic Group of Tree Breeders, Edinburgh,6-10 Oct 1993. Edited by S. J. Lee. Forestry Authority, Scotland.128 (ⅰ-ⅴ).
    Das R, Pandey GK. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling[J]. Curr Genomics,2010,11:2-13.
    Dempfle L.A note on increasing the limit of selection through selection within families[J]. Genet. Res.,1975,24:127-135.
    Dempfle L.Conservation, creation, and utilization of genetic variation[J]. Dairy Sci, 1990,73:2593-2600.
    Dong JZ,Dunstan DI.Cloning and characterization of six embryogenesis-associated cDNAs from somatic embryos of Picea glauca and their comparative expression during zygotic embryogenesis[J].Plant Mol. Biol.,1999,39:859-864.
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics,131,479-491.
    Excoffier L, Lischer HEL.Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J].Molecular Ecology Resources,2010,10:564-567.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol. Ecol,2005,14: 2611-2620.
    Falush D, Stephens M,Pritchard JK.Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies[J]. Genetics,2003,164:1567-1587.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:dominant markers and null alleles[J]. Mol. Ecol. Notes,2007,7:574-578.
    Falconer DS,Mackay TFC. Introduction to quantitative genetics[M]4th Edition. London and New York:Longman,1996.464.
    Fehe'r A,Pasternak TP,Dudits D.Transition of somatic plant cells to an embryogenic state[J].Plant Cell Tissue Organ Cult,2003,74:201-228.
    Fehe'r A.The initiation phase of somatic embryogenesis:what we know and what we don't [J].Acta Biol Szeged,2008,52:53-56.
    Fu YB, Namkoong G and Carlson JE. Comparison of breeding strategies for purging inbreeding depression via simulation[J]. Conservation-Biology,1998,12: 856-864.
    Fu YB, Peterson GW, Richards KW,et al. Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers[J]. American Journal of Potato Research,2009,86:38-48.
    Fu YB. Genetic structure in a core subset of cultivated barley germplasm. [J]Crop sci,2011,52(3):1195-1208.
    Fu YB, Peterson GW, Williams D, et al. Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm[J]. Theoretical and Applied Genetics, 2005.111:530-539
    Fu YB. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity[J].Plant Genetic Resources,2006,4:117-124.
    Garin E, Isabel N, Plourde A.Screening of large numbers of seed families of Pinus strobus L.for somatic embryogenesis from immature and mature zygotic embryos[J].Plant Cell Reports,1998,18:37-43.
    Gea LD,Lindgren D,Shelbourne CJA,et al.Complementing inbreeding coefficient information with status number:implications for structuring breeding populations[J].N.Z.J. For. Sci.,1997,27:225-271.
    Gupta PK, Durzan DJ.Shoot multiplication from mature trees of Douglas-fir [Pseudotsuga menziesii) and sugar pine(Pinus lambertiana)[J].Plant Cell Reports,1985,4:117-179.
    Gupta PK, Durzan DJ.Somatic polyembryogenesis from callus of mature sugar pine embryos[J].Bio Technology,1986,4:643-645.
    Gupta PK,Durzan DJ.Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine[J].Bio Technology,1987,5:147-151.
    Hogberg KA, Ekberg I, Norell L, et al. Integration of somatic embryogenesis in a tree breeding programme:a case study with Picea abies[J]. Can. J. For. Res.1998,28(10):1536-1545.
    Haggman H,Jokela A,Krajnakova J,et al.Somatic embryogenesis of Scots pine:cold treatment and characteristics of explants affecting induction[J].EXp Bot,1999,50(341):1769-1778.
    Hakman I, Arnold S.Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce) [J]. Journal of plant physiology,1985,121:149-158.
    Hamrick MA, Godt JL, MJ, et al.Factors influencing levels of genetic diversity in woody plant species [J].New Forests,1992,6:95-124.
    Handley LW.Method for regeneration of coniferous plants by somatic embryogenesis [P].US Patent:5731203,1998.
    Handley LW.Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid [P].US Patent:5677185,1997.
    Hargreaves CL, Grace LJ,Holden DG.Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines[J].Plant Cell Reports,2002,21:40-45.
    Hubisz MJ, Falush D, Stephens M, et al. Inferring weak population structure with the assistance of sample group information[J]. Molecular Ecology Resources,2009, 9:1322-1332.
    Ishii K, Hosoi Y,Maruyama E,et al. Micropropagation of an endangered species Pinus armandii var. amamiana[J]. Ann. For. Res.2008,51:5-10.
    Jimenez VM, Bangerth F.Hormonal. Status of maize initial explants and of the embryogenic and non-embryogenic calcultures derived from them as related to morphogenesis in vitro [J].Plant Sci,2001,160:247-257.
    Jones C.What is somatic embryogenesis in a conifer[C].The International Plant Propagators' Combined Proceedings,1990,40:350-353.
    Jones NB, van Staden J.Plantlet production from somatic embryos of Pinus patula [J]. Plant Physiology,1995,145:519-525.
    Kang H, Nienstaedt H. Managing long-term tree breeding stock[J].Silvae Genet, 1987,36:30-39.
    Kang H.Recurrent selection, mating design, and effective population siz[A].In: Proceedings 21st Southern Forest Tree Improvement Conference[C]. Knoxville: 1991.129-143.
    Karami O, Aghavaisi B, Pour AM. Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol,2009,2:177-190.
    Karami O, Saidi A.The molecular basis for stress-induced acquisition of somatic embryogenesis[J].Mol Biol Rep,2010,37:2493-2507.
    Kartha KK, Fowke LC, Leung NL,et al.Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce(Picea abies)[J]. Plant Physiology,1988,132,529-539.
    Kim YW,Moon HK.Regeneration of plant by somatic embryogenesis in Pinus rigida ×P. taeda[J].In Vitro Cellular and Developmental Biology-Plant,2007,43(4): 335-342.
    King JN, Johnson GR. Monte Carlo. Simulation models of breeding-population advancement[J].Silvae Genet,1993,42:68-78.
    Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress responses in plants[J].Plan; Signal Behav,2011,6(2):204-209.
    Klein JA. Plan for advanced-generation breeding of Jack Pine[J].Silvae Genet.,1998,5:73-83.
    Klimaszewska K, Overton C,Stewart D,et al. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process[J].Planta,2011,233:635-647.
    Klimaszewska K, Trontin JF, Becwar MR et al. Recent progress in somatic embryogenesis of four Pinus spp.[J].Tree and Forestry Science and Biotechnology,2007,1:11-25.
    Klimaszewska K,Bernier-Cardou M,Cyr DR,et al.Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L[J].In Vitro Cell Dev Biol Plant,2000,36:219-286.
    Klimaszewska K,Morency F,Jones-Overton C,et al.Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments[J]. Physiologia Plantarum,2004,121:682-690.
    Klimaszewska K,Noceda C,Pelletier G,et al.Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.)[J]. In Vitro Cellular and Developmental Biology Plant,2009,45(1):20-33.
    Klimaszewska K,Park YS,Overton C,et al.Optimized somatic embryogenesis in Pinus strobus L[J].In Vitro Cellular and Developmental Biology Plant,2001,37: 392-399.
    Kulik A, Wawer I, Krzywinska E, et al. SnRK2 protein kinases--key regulators of plant response to abiotic stresses[J].OMICS A Journal of Integrative Biology,2011,15(12):859-872.
    Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J].Molecular Biology and Evolution,2011,28:2731-2739.
    Laine E, David A.Somatic embryogenesis in immature embryos and protoplasts of Pinus caribaea[J].Plant Sci,1990,69:215-224.
    Leljak-Levanic D, Naana B,Jelaska MS.Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L[J].Plant Cell Rep,2004,23:120-127.
    Lelu-Walter MA, Bastien C, Drugeault A,et al.Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators[J].Physiologia Plantarum,1999,105:719-728.
    Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K et al.Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris L. through somatic embryogenesis[J].Plant Cell Tiss Org Cult,2008,92:31-45.
    Lelu-Walter MA,Bernier-Cardou M, Klimaszewska K et al.Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster[J].Plant Cell Reports,2006,25:767-776.
    Li BL, Wyckoff GW. Breeding strategies for Larix decidua, L leptolepis and their hybrids in the United States. Forest Genetics,1994,1 (2):65-72.
    Litvay JD,Verma DC,Johnson MA.Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot(Daucus carota L.)[J].Plant Cell Reports,1985,4:325-328.
    MacKay JJ,Becwar MR,Park YS,et al.Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding[J].Tree Genetics and Genomes,2006,2:1-9.
    Mahalovich MF.Modelling positive assortative mating and elite populations in recurrent selection programs for general combining ability.[D]. Raleigh,NC:North Carolina State University,1990,104.
    Malabadi RB, Choudhury H, Tandon P.Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and gellan gum[J].Scientia Horticulturae,2004, 102:449-459.
    Malabadi RB, Nataraja K.Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg.Trees [J].In vitro Cell. Dev. Biol. Plant.,2006,42:152-159.
    Malabadi RB, Nataraja K.. Plant Regeneration via Somatic Embryogenesis Using Secondary Needles of Mature Trees of Pinus roxburghii Sarg[J]. International Journal of Botany,2007,3(1):40-47.
    Malabadi RB, Nataraja K. Putrescine Influences Somatic Embryogenesis and Plant Regeneration in Pinus gerardiana Wall [J].American Journal of Plant Physiology,2007,2:107-114.
    Mantiri FR, Kurdyukov S, Lohar DP, et al. The transcription factor MtSERFl of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula[J]. Plant Physiol,2008,146:1622-1636.
    Maruyama E, Hosoi Y, Ishii K.Somatic embryogenesis and plant regeneration in yakutanegoyou, Pinus armandii Franch.var.amamiana(Koidz.)Hatusima,an endemic and endangered species in Japan [J]. In vitro Cell. Dev. Biol.Plant, 2007,43:28-34.
    Maruyama E, Hosoi Y, Ishii K.Somatic embryo production and plant regeneration of Japanese black pine (Pinus thunbergii)[J]. Journal of Forest Research,2005,10, (5):403-407.
    McKeand SE, Bridgwater FE. A strategy for the third breeding cycle of loblolly pine in southern U.S. Silvae Genet,1998,47:223-234.
    Merkle SA, Montello PM, Xia X, et al. Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiology,2005,26,187-194.
    Miguel C, Goncalves S, Tereso S, et al. Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine[J]. Plant Cell, 2004,76:121-130.
    Moritz C, Hillis DM.Molecular systematics context and controversies in Hillis DM and Moritz C (eds.)[M]. Molecular Systematics,1990:1-11.
    Mosseler A, Egger KN, Hughes GA. Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers[J]. Canadian Journal of Forest Research,1992,22:1332-1337.
    Murashige T, Skoog F.A revised medium for rapid growth and bioassays with tobacco cultures[J].Physiologia Plantarum,1962,15:473-497.
    Nagaoka T,Ogihafa Y.Applicablity of inter-simple seqence repeat ploymorphisms in wheat for use as DNA marker in comparison to RFLP and RADP marker?[J].Theor.Appl.,1997,94:597-602.
    Nagmani R, Diner AM,Sharma GC.Somatic embryogenesis in longleaf pine (Pinus palustris)[J].Canadian Journal of Forest Research,1993,23:873-876.
    Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis [J]. Plant Cell Tissue Organ Cult,2007,90:1-8.
    Namkoong G.Choosing strategies for future [J].Unasulva,1987,31:38-41.
    Niskanen AM,Lu J,Seitz S,et al.Effect of parent genotype on somatic embryogenesis in Scots pine (Pinus sylvestris)[J]. Tree Physiol,2004,24:1259-1265.
    Noceda C, Salaj T,Perez M,et al.DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture[J]. Trees-Structure and function,2009,23:1285-1293.
    Nolan K.E, Saeed NA,Rose RJ.The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis[J].Plant Cell Rep,2006, 25:711-722.
    Odong TL, van Heerwaarden J, Jansen J,et al. Determination of genetic structure of germplasm collections:are traditional hierarchical clustering methods appropriate for molecular marker data?[J].Theor Appl Genet,2011,123: 195-205.
    Palovaara J, Hakman I.Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis[J].Plant Mol Biol,2008,66:533-549.
    Park YS, Barrett JD, Bonga JM.Application of somatic embryogenesis in high-value clonal forestry:Deployment, genetic control, and stability of cryopreserved clones[J].In Vitro Cellular and Developmental Biology Plant,1998,34:231-239.
    Park YS.Commercial implementation of multi-varietal forestry using conifer somatic embryogenesis [A].In:Proc. IUFRO joint Conf. of Div.2 Forest Genetics and Tree breeding in the Age of Genomics[C]. Charleston, SC:Progress and future,2004,1-5,139.
    Park YS, El-Kassaby YA.New breeding and deployment strategy using conifer somatic embryogenesis and pedigree reconstruction[A].In:Low Input Breeding and Conservation[C],Antalya,Turkey:Forest Genetic Resources,2006.194-195.
    Park YS, Pond SE, Bonga JM.Initiation of somatic embryogenesis in white spruce (Picea glauca):genetic control, culture treatment effects, and implications for tree breeding [J].Theor Appl Genet,1993,86:427-436.
    Park YS,Lelu-Walter MA,Harvengt L,et al.Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France[J].Plant Cell,2006,86:87-101.
    Park YS. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations[J].Annals of Forest Sciences,2002,59:651-656.
    Percy RE,Klimaszewska K,Cyr DR.Evaluation of somatic embryogenesis for clonal propagation of western white pine[J]. Canadian Journal of Forest Research,2000,30:1867-1876.
    Petit RJ,Duminil J,Fineschi S,et al. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations[J].Molecular Ecology,2005,14:689-701.
    Pritchard JK, Stephens M, Donnelly PJ.Interence of population structure using multilocus genotype data [J].Genetics,2000,15(2):945-959.
    Pullman GS, Johnson S,van Tassel S,et al.Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii):improving culture initiation and growth with MES pH buffer, biotin, and folic acid[J].Plant Cell,80:91-103.
    Pullman GS, Johnson S.Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates[J].Annals of Forest Science,2002, 59:663-668.
    Pullman GS, Skryabina A.Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers [J].Plant Cell Reports,2007,26:873-887.
    Pullman GS, Zhang Y, Phan BH. Brassinolide improves embryogenic tissue initiation in conifers and rice [J].Plant Cell Reports,2003,22:96-104.
    Pullman GS,Buchanan M.Identification and quantitative analysis of stage-specific organic acids in loblolly pine (Pinus taeda L.) zygotic embryo and female gametophyte[J].Plant Science,2006,170:634-647.
    Pullman GS,Chopra R,Chase KM. Loblolly pine (Pinus taeda L.) somatic embryogenesis:Improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E[J].Plant Science,2006,170:648-658.
    Pullman GS,Johnson S,Peter G,et al.Improving loblolly pine somatic embryo maturation:comparison of somatic and zygotic embryo morphology, germination, and gene expression[J].Plant Cell Reports,2003,21:747-758.
    Purvis A, Hector A.Getting the measure of biodiversity [J].Nature,2000,405:212-9.
    Rai MK, Shekhawat NS, Harish,et al.The role of abscisic acid in plant tissue culture:a review of recent progress [J].Plant Cell Tiss Org Cult,2011, 106(2):179-190.
    Ramarosandratana A,Harvengt L,Bouvet A,et al.Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos[J].In Vitro Cellular and Developmental Biology Plant,2001,37:29-34
    Ramarosandratana A,Harvengt L,Bouvet A.Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos[J].Plant Science,2001,160:473-479.
    Raymond M., Rousset F.GENEPOP (version 1.2):population genetics software for exact tests and ecumenicism[J].Heredity,1995,86:248-249.
    Reeves PA, Richards CM. Distinguishing terminal monophyletic groups from reticulate taxa:performance of phenetic, tree-based, and network procedures[J]. Syst Biol,2007,56:302-320.
    Reddy MP, Sarla N, Siddiq EA. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding[J]. Euphytica,2002,128:9-17.
    Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants[J].Annu Rev Plant Biol,2010,61,621-649.
    Rohlf FJ. NTSYS-pc 2.1. Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York, USA,1997,16-29.
    Russell JR, Hosein F, Johnson E, Waugh R, et al. Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Mol. Ecol, 1993,2:89-97.
    Santos MO, Araga FJ. Role of SERK genes in plant environmental response. Plant Signaling and Behavior.2009,4(12):1111-1113.
    Santner A,Calderon-Villalobos LIA, Estelle M. Plant hormones are versatile chemical regulators of plant growth[J]. Nat Chem Biol,2009,5:301-307.
    Salajova T.Salaj J,Kormutak A.Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn[J].Plant Sci,1999,145:33-40.
    SAS Institute Inc.The SAS System for Windows V9.2. SAS Institute Incorporated, Cary.2008.
    Semagn K, Bj(?)rnstad A, Ndjiondjop MN. An overview of molecular marker methods for plants [J]. African Journal of Biotechnology,2006,25 (5):2540-2568.
    Sedjo RA. Biotechnology in Forestry:Considering the Costs and Benefits. Resources, 2001,145:10-12.
    Shelbourne CJA, Carson MJ, Wilcox MD.New techniques in the genetic improvement of radiata pine[J].Commonwealth Forest Review,1989,68(3):192-201.
    Shriner D, Vaughan LK, Padilla MA, et al. Problems with genome-wide association studies. [J] Science,2007,316:1840-1842.
    Smith DR,Singh AP,Wilton L.Zygotic embryos of Pinus radiata in vivo and in vitro[A].In:Smith DR (Ed). Proceedings International Conifer Tissue Culture Work Group[C].New Zealand:Forest Research Institute,1985.21.
    Smith DR.Growth medium [P].US patent:5565355,1996.
    Sokal RR,Michener CD. A Statistical method for evaluating systematic relationships[J].The University of Kansas Scientific Bulletin,1958,38: 1409-1438.
    Soon FF,Ng LM,Zhou XE,et al.Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases[J].Science,2012,335:85-88.
    Stasolla C,Kong L,Yeung EC,et al.Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology[J].In Vitro Cell Dev Biol Plant,2002,38:93-105.
    Stasolla C, Bozhkov PV, Chu TM, et al. Variation in transcript abundance during somatic embryogenesis in gymnosperms[J].Tree Physiol,2004,24:1073-1085.
    Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4.0. Sinauer Associates, Sunderland, Massachusetts.1998.
    Tamura K,Peterson D,Peterson N,et al.Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance and Maximum Parsimony Methods[J].Molecular Biology and Evolution,2011,28:2731-2739.
    Tanaka H, Dhonukshe P, Brewer PB, et al. Spatiotemporal asymmetric auxin distribution:a means to coordinate plant development[J]. Cell Mol Life Sci,2006,63:2738-2754.
    Tang W, Newton RJ. Loblolly pine (Pinus taeda) [M]. In:Jain SM, Gupta PK (Eds) Protocols for Somatic Embryogenesis in Woody Plants, Springer-Verlag, New York,2005,95-106.
    Tang W.Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos[J]. In Vitro Cellular and Developmental Biology Plant,2000,36:488-491.
    Tang W.Somatic embryogenesis and peroxidase activity of desiccation tolerant mature somatic embryos of loblolly pine[J].Forest Research,2000,12:147-152.
    Thomas C, Jimenez, Victor M. Mode of action of plant hormones and plant growth regulators during induction of somatic embryogenesis:molecular aspects [A].In: MUJIB A, SAMAJ J. Somatic Embryogenesis[C]. Berlin:Plant Cell Monographs, 2005, (2):157-175.
    Trontin JF, Walter C, Klimaszewska K, et al. Recent progress in genetic transformation of four Pinus spp[J].Transgenic Plant Journal,2007,1:314-329.
    Uysal H, Fu YB, Kurt O, et al. Genetic diversity of pale and cultivated flax as revealed by ISSR markers[J]. Genetic Resources and Crop Evolution,2010.57: 1109-1119
    van Buijtenen JP,Lowe WJ.Incorporation of biotechnology into tree improvement programs[J]. Proc.South. For.1989,20:60-67.
    van Winkle SC,Pullman GS. Achieving desired plant growth regulator levels in liquid plant tissue culture media that include activated carbon [J].Plant Cell Reports,2005,24:201-208.
    von Aderkas P,Label P,Lelu MA.Charcoal effects on early developmental and hormonal levels of somatic embryos of hybrid larch[J].Tree Physiology, 2002,22:431-434.
    Walter C,Find JI,Grace LJ.Somatic embryogenesis and genetic transformation in Pinus radiata[A].In:SM Jain, PK Gupta (Eds).Protocol for Somatic Embryogenesis in Woody Plants[C].The Netherlands:Springer,2005.11-24.
    Wayn R.K., Morin P.A..Conservation genetics in the new molecular age [J].Frontiers in Ecology and the Environment,2004,2(2):89-97.
    Wei RP, Hansen, CR., et al. Genetic gain with desired status number in breeding programs:a study on selection effects [J].Can.J.For. Res.,1998,28:1861-1869.
    Weir BS, Cockerham CC.Estimating F-statistics for the analysis of population structure [J].Evolution,1984,38(6):1358-1370.
    White TL, Hodge G.R, Powell GL. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genet,1993,42: 359-371.
    Williams CG, Savolainen O. Inbreeding depression in conifers [J]. For.Sci.,1996, 41(2):1-20.
    Wolters H,Jurgens G. Survival of the flexible:Hormonal growth control and adaptation in plant development[J].Nat Rev Genet,2009,10:305-317.
    Wright JW. Introduction to forest genetics [M].New York:Academic Press,1976.
    Xiong LM,Schumaker KS,Zhu JK. Cell signaling during cold,drought, and salt stress[J]. Plant Cell,2002,14:165-183.
    Xie CY, Ying CC.Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp.latifolia) in Canada [J]. Can. J. For. Res.,1995,25: 2010-2021.
    Yeh FC, Boyle TJB.Population genetic analysis of codominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany,1997,129:157
    Yeung EC.Structural and developmental patterns in somatic embryogenesis [A].In: Thorpe TA (ed) In Vitro Embryogenesis in Plants[C]. Dordrecht:Kluwer Academic Publishers,1995,205-248.
    Zavattieri MA, Frederico AM, Lima M, et al.Induction of somatic embryogenesis as an example of stress-related plant reactions [J]. Electronic Biotech,2010,13:1-9.
    Zeng F, Zhang X, Cheng L, et al.A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis [J]. Genomics, 2007,90(5):620-628.
    Zhao Z, Andersen SU, Ljung K, et al. Hormonal control of the shoot stem cell niche. Nature,2010,465:1089-1092.
    Zhu LH, Wu XQ, Qu HY, et al.Micropropagation of Pinus massoniana and mycorrhiza formation in vitro[J].Plant Cell Tiss Organ Cult,2010,102:121-128.
    Zietkiewiez E, Rafalski A, Labuda D. Genome fingerp rinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J].Gewomics, 1994,20(2):176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700