绒螯蟹的分子遗传变异与进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹(Eriocheir sinensis)、日本绒螯蟹(Eriocheir japonica),合浦绒螯蟹(Eriocheir hepuensis)是绒螯蟹属的重要经济种类,分布范围广,其中中华绒螯蟹已移居至欧洲的广大地区及北美等。本论文应用微卫星标记,从核基因组对中华绒螯蟹、日本绒螯蟹、合浦绒螯蟹的分子遗传变异和进化进行研究分析,具体研究内容如下:
     1、日本绒螯蟹、合浦绒螯蟹的微卫星标记开发
     合浦绒螯蟹分布于我国南部水域,是一种濒临灭绝的淡水蟹。在本论文中我们利用磁珠富集法开发了合浦绒螯蟹的15对微卫星引物,并应用于1998年和2008年合浦绒螯蟹样本的效果评估。结果发现:每个引物的等位基因数为6.3~8.4,观测杂合度为0.725~0.817,期望杂合度为0.756~0.780,多态信息含量为0.699~0.756。近十年来(1998-2008),合浦绒螯蟹出现了显著的遗传分化现象。微卫星标记为合浦绒螯蟹的群体结构和遗传渐渗等方面的研究提供了工具。日本绒螯蟹是东亚所特有的一种产卵顺流而下的物种,它是绒螯蟹属中分布最广的绒螯蟹。目前,关于日本绒螯蟹的微卫星引物还未有报道。本论文中,开发了20对具有较高多态性的日本绒螯蟹微卫星标记,并在中华绒螯蟹长江群体与黄河群体中进行了验证,结果发现4对微卫星引物偏离了哈迪-温伯格平衡,中华绒螯蟹长江群体与黄河群体中等位基因数、等位基因丰富度、基因多样性等数值相近。这些微卫星引物可成功地应用于中华绒螯蟹群体等绒螯蟹属的遗传变异及群体结构研究。
     2、中华绒螯蟹国内土著群体与海外移居群体的分子遗传变异与适应性进化
     中华绒螯蟹是中国特有的土著种类,现在已经广泛分布于欧洲和北美地区。本研究利用20对微卫星标记对中华绒螯蟹国内土著种群(长江和黄河)和国外移居群体(德国易北河,荷兰莱茵河,英国泰晤士河和美国旧金山湾)的遗传变异和多样性进行了分析。结果显示,中华绒螯蟹国内、外群体在遗传多样性指标上(如等位基因丰富度、多态信息含量和杂合度等)略高于国外移居群体,国内、外群体间,以及国外不同群体间存在显著的遗传分化;贝叶斯聚类分析显示国内土著群体、欧洲移居群体和美国移居群体分成明显的三个遗传聚类;主成分分析(PCA)也表明了国外移居群体已产生了明显的遗传岐化;荷兰莱茵河群体检测到显著的遗传瓶颈效应。结合海外移居群体中特有的等位基因,表明中华绒螯蟹在海外的入侵过程中已发出了明显的适应性进化。
     3、中华绒螯蟹与合浦绒螯蟹的遗传变异与渐渗研究
     中华绒螯蟹与合浦绒螯蟹存在不同的分布域,中华绒螯蟹主要集中在我国长江及以北的水域中,合浦绒螯蟹主要分布于南部水域(珠江、南流江),而瓯江与闽江则是中华绒螯蟹与合浦绒螯蟹的混杂地带。本研究利用6对具有较高多态性的微卫星引物对大陆沿海6个绒螯蟹群体(辽河、黄河、长江、瓯江、闽江和珠江)进行遗传变异与渐渗研究。结果显示中国大陆沿海绒螯蟹群体中,长江中华绒螯蟹群体具有最高的多态性,而珠江绒螯蟹群体的多态性最低,瓯江与闽江群体的多态性基本差不多;除黄河群体和辽河群体之间不存在显著的遗传分化(P=0.351),其他各群体之间遗传分化都显著,在N-J聚类中我们也可以看到黄河群体与辽河群体的遗传距离最近(2.856),最先聚为一支。贝叶斯遗传重排分析显示,浙江瓯江群体与福建闽江群体的绒螯蟹可能存在中华绒螯蟹与合浦绒螯蟹的杂交种,可能存在杂交和遗传渐渗现象。
The Chinese mitten crab (Eriocheir sinensis), the Japanese mitten crab (Eriocheir japonica) and the Hepu mitten crab (Eriocheir hepuensis) are important economical species in the mitten crab which have wide distribution in the East Asian. The Chinese mitten crab has been introduced to Europe and North America. In this study, we used microsatellite locus to detect the Genetic variation and adaptive evolution in the Chinese mitten crab、Hepu mitten crab and Japanese mitten crab.
     1、Microsatellite markers development in the Hepu mitten crab and Japanese mitten crab
     The Hepu mitten crab (Eriocheir hepuensis) is an endangered freshwater crab found in the southern part of China. In this study, 15 polymorphic microsatellite loci were isolated and population genetic parameters were evaluated in three populations of E. hepuensis sampled in 1998 and 2008. The average number of alleles per locus ranged from 6.3 to 8.4, while the average observed (HO) and expected (HE) heterozygosities were from 0.725 to 0.817 and from 0.756 to 0.780, respectively. The average polymorphism information content (PIC) ranged from 0.699 to 0.756. Significant genetic differentiation was observed for E. hepuensis in the current decade (from 1998 to 2008). This suite of microsatellite loci will facilitate future studies on population structure and genetic introgression of the endangered E. hepuensis.
     The Japanese mitten crab (Eriocheir japonica) is a catadromous species endemic to East Asia with the widest distribution of all species in the mitten crab taxonomy. To date, no novel microsatellite loci for this species have been reported. Twenty polymorphic microsatellite loci were isolated, and cross-amplification was conducted in the Yangtze and Yellow River populations of Chinese mitten crab (Eriocheir sinensis). Four loci were found to deviate significantly from the Hardy-Weinberg equilibrium. Similar numbers of alleles, mean observed (HO) and expected (HE) heterozygosities, mean gene diversity, and inbreeding coefficients (FIS) were detected in the two populations of E. sinensis. We concluded that this suite of microsatellite loci was successful for cross-amplification in E. sinensis and might be useful for the assessment of population structure of the mitten crab.
     2、Genetic variation and adaptive evolution between the native and invasive Chinese mitten crab
     The Chinese mitten crab (Eriocheir sinensis), a native species in China, has been introduced to Europe and North America and has posed great influences on invaded ecosystems because of its rapid expansion. In this study, genetic variation and diversity of the Chinese mitten crab between its native habitats (The Yangtze and Yellow Rivers in China) and the invade rivers (the Elbe River in Germany, Rhine River in Netherlands, Thames River in UK and the San Francisco Bay in USA) were investigated using twenty microsatellites loci. The results found the native populations possess higher genetic diversity than the introduced populations, and significant genetic differentiation between the native and invasive populations, and among the invasive populations. Bayesian clustering analysis showed significant genetic cluster of the invasive population from the native rages, and also significant genetic variation between the North American and European populations. Principal component analysis (PCA) indicated the high level of genetic differentiation in invasive populations from the native populations. However, only the Rhine River was detected significant bottleneck sign. A number of private alleles observed in the invasive populations suggested adaptive evolution occurred in colonized process.
     3、Genetic variation and introgression between the Chinese mitten crab and the Hepu mitten crab
     The Chinese mitten crab and the Hepu mitten crab have the different distribution areas, the Chinese mitten crab mainly distributes in the northern part of the Changjiang river (including in Changjiang river), and the Hepu mitten crab distributes in the Zhujiang and Nanliujiang Rivers, while the Oujiang and Minjiang are the dilution zone of the Chinese mitten crab and Hepu mitten crab. In this study, genetic variation and introgression between the Chinese mitten crab and the Hepu mitten crab (Zhujiang) were investigated using six microsatellites loci. The results found the Chinese mitten crab in the Yangtze River had the highest polymorphism information content, while the Hepu mitten crab (ZJ) were the lowest; there were significant genetic differentiation between the pair population comparison with the exception of the Yellow (YR) and Liaohe (LH) Rivers (P=0.351). There was a closest genetic distance between the YR and LH(2.856) based on the NJ tree; Bayesian genetic alignment results indicated that the OJ population and MJ population may have crossed and made genetic introgression between them.
引文
[1]赵乃刚,堵南山,包祥生,等.中华绒螯蟹的人工繁殖与增养殖[M].合肥:安徽科学技术出版社,1988:75-77
    [2]戴爱云. 1991.绒螯蟹属亚种分化的研究(十足目:短尾派).系统进化动物学重点实验室论文集, 1:61-71
    [3] Wang, C.H., Li, C.H. & Li, S.F. (2008c) Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China. Molecular Ecology, 17, 3515-3527
    [4]李思发,邹曙明.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螫蟹)群体亲缘关系:RAPD指纹标记[J].水产学报,1999,23(4):325—330
    [5]赵金良,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析[J].水产学报,1999,23(4):331-33
    [6]李晨虹,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系的形态判别[J].水产学报,1999,23(4):337-342
    [7]孙红英,周开亚,陆健健,等.中国大陆绒螯蟹线粒体16SDNA序列变异与分子鉴定标记.自然科学进展, 2002,12(5):485-490
    [8] H?nfling B, Weetman D (2003) Characterization of microsatellite loci for the Chinese mitten crab, Eriocheir sinensis. Molecular Ecology Notes 3:15–17
    [9] Chang, Y.M., Liang, L.Q., Li, S.W., Ma, H.T., He, J.G. & Sun, X.W. (2006) A set of new microsatellite loci isolated from Chinese mitten crab, Eriocheir sinensis. Molecular Ecology Notes, 6, 1237-1239
    [10] Zhu, Z.Y., Shi, Y.H. & Le, G.W. (2006) Isolation and characterization of polymorphic microsatellites from Chinese mitten crab, Eriocheir sinensis. Molecular Ecology Notes, 6, 838-839
    [11] Ng, N.K., Guo, J.Y. & Ng, P.K.L. (1999) Generic Affinities of Eriocheir leptognathus and E. formosa with Description of a New Genus (Brachyura: Grapsidae: Varuninae). Journal of Crustacean Biology, 19, 154-170
    [12] Guo, J.Y., Ng, N.K., Dai, A. & Ng, P.K.L. (1997) The taxonomy of three commercially important species of mitten crabs of the genus Eriocheir de Hann, 1835 (Crustacea: Decapod: Brachyura: Grapsidae). Raffles Bulletin of Zoology, 45, 445-476.
    [13] Xu, J. (2005) Population genetics of mitten crabs in Eriocheir, sensu stricto. In Biology, pp. 120. The Chinese University of Hong Kong, Hong kong
    [14] Tang, B., Zhou, K., Song, D., Yang, G. & Dai, A. (2003) Molecular systematics of the Asian mitten crabs, genus Eriocheir (Crustacea: Brachyura). Mol Phylogenet Evol, 29, 309-316
    [15] Wang, C., Li, C. & Li, S. (2008b) Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China. Mol Ecol
    [16] Xu, J.W., Chan, T.Y., Tsang, L.M. & Chu, K.H. (2009) Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact. Molecular Phylogenetics and Evolution, 52, 45-56.
    [17] Yamasaki I, Yoshizaki G, Yokota M, Strussmann CA, Watanabe S (2006) Mitochondrial DNA variation and population structure of the Japanese mitten crab Eriocheir japonica. Fisheries Science 72:299-309
    [18]胡波.微卫星DNA的研究概况[ J ].国外医学:临床生物化学与检验学分册, 2000, 21 (2) : 88~90
    [19] Lu, G.Q., Li, S.F. & Bernatchez, L. (1997) Mitochondrial DNA diversity, population structure and conservation genetics of four native carps within the Yangtze River, China. Canadian Journal of Fisheries and Aquatic Sciences, 54, 47-58
    [20] Wang, C., Chen, Q., Lu, G., Xu, J., Yang, Q. & Li, S. (2008a) Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae. Gene, 424, 96-101
    [21] Sambrook, J. & Russell, D.W. (2001) Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press
    [22] Yeh F C, Yang R C, Boyle, T J B, et al. POPGENE, the user-friendly shareware for population genetic analysis[M]. Molecular Biology and Biotechnology Centre, University of Alberta, Canada, 1997
    [23] Botstein D,White R L, Skolnick M , et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics, 1980, 32: 314 - 331
    [24] Goudet (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Heredity, 86, 485-486
    [25] Weir & Cockerham (1984) Estimating F-Statistics for the analysis of population structure. Evolution, 38, 1358-1370
    [26] Raymond M. Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248-249
    [27] Dlugosh, K.M. & Parker, I.M. (2008) Foundering events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 17, 431-449
    [28] Yeh, F.C., Boyle, T., Rongcai, Y., Ye, Z. & Xian, J.M. (1999) POPGENE version 1.32
    [29] Excoffier, L., Laval, G. & Schneider, S. (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50
    [30] Peakall, R. & P.E., S. (2006) GENALEX 6: genetic analysis in Excel. Popualtion genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295
    [31] Rosenberg, N. (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138
    [32] Piry, S., Luikart, G. & Cornuet, J.M. (1999) BOTTLENECK: A computer program for detecting recent reducions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503
    [33] Shriver M D, Jin L, Chakraborty R, et al. VNTR Allele Frequency Distributions Under the Stepwise Mutation Model: A Computer Simulation Approach. Genetics, 1993, 134(3): 983-993
    [34] Valdes A M, Slatkin M, Freimer N B. Allele Frequencies at Microsatellite Loci: The Stepwise Mutation Model Revisited. Genetics, 1993, 133(3): 737-749
    [35] Luikart G, Allendorf F, Cornuet J-M, et al. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered, 1998, 89(3): 238-247
    [36] Luikart G, Sherwin W B, Steele B M, et al. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Molecular Ecology, 1998, 7(8): 963-974
    [37] Di Rienzo A, Peterson A C, Garza J C, et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U S A, 1994, 91 3166-3170
    [38] Cornuet J M, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996, 144: 2001-2014
    [39] Luikart G, Cornuet J M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol, 1998, 12: 228-237
    [40]李康明.中华绒螯蟹在美国. 2002(6):45-54
    [41]李思发,邹曙明.欧美中华绒螯蟹源于中国长江水系中国绒螯蟹的证据[J].水产学报2002,26(6):493-497
    [42] Stepien, C.A., Taylor, C.D. & Dabrowska, K.A. (2002) Genetic variability and phylogeographic patterns of a nonindigenous species invasion: a comparsion of exotic versus native zebra and quagga mussel populations. Journal of Evoloutionary Biology, 15, 314-328
    [43] Wang, C.H., Li, S.F., Fu, C.Z., Gong, X.L., Huang, L., Song, X. & Zhao, Y. (2009) Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biological Invasion, 11, 389-399
    [44] Ciosi, M., Miller, N.J., Kim, K.S., Giordano, R., Estoup, A. & Guillemaud, T. (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology, 17, 3614-3627
    [45] Henry, P., Lay, G.L., Goudet, J., Guisan, A., Jahodova, S. & Besnard, G. (2009) Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Molecular Ecology, 18, 2819-2831
    [46] Williamson M. Biological Invasions. New York: Chapman and Hall, 1996: 1-235
    [47] Stepien C A, Taylor C D, Dabrowska K A. Genetic variability and phylogeographic patterns of a nonindigenous species invasion: a comparsion of exotic versus native zebra and quagga mussel populations. Journal of Evoloutionary Biology, 2002, 15: 314-328
    [48] Piccinali R V, Mascord L J, Barker J S F, et al. Molecular population genetics of theα-Esterase5 gene locus in original andcolonized populations of Drosophila buzzatii and its sibling Drosophila koepferae. Molecular Evolution, 2007, 64: 158-170
    [49] Austerlitz F, Mariette S, Machon N, et al. Effects of colonizaitn processes on genetic diversity: differences between annual plants and tree species. Genetics, 2000, 154: 1309-1321
    [50] Wang C H, Li S F, Fu C Z, et al. Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biological Invasion, 2009, 11: 389-399
    [51] Ingle RW, Andrews MJ. (1976) Chinese crab reappears in Britain, Nature, 263:638
    [52] Dlugosh K M, Parker I M. Foundering events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology, 2008, 17: 431-449
    [53] Prentis P J, Wilson J R U, Dormontt E E, et al. Adaptive evolution in invasive species. Trends in Plant Science, 2008, 13: 288-294
    [54] Barrett R D H, Schulter D. Adaptation from standing genetic variation. Trends in Ecology and Evolution, 2007, 23: 38-44
    [55] Sneed K E, The history of introduction and distribution of grass carp in the United States. Bureau Sport Fish and Wildlife Mimeograph, 1972: 5
    [56] Lavergne S, Molofsky J. Increased genetic variation and evolutionary potential drive the sucess of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 3883-3888
    [57] Zenger K R, Richardson B J, Vachot-Griffin A M. A rapid population expansion retains genetic diversity within European rabbits in Australia. Molecular Ecology, 2003, 12: 789-794
    [58] Sui, L. Y., F. M. Zhang, et al. (2009). "Genetic diversity and population structure of the Chinese mitten crab Eriocheir sinensis in its native range." Marine Biology 156(8): 1573-1583
    [59] Tamura K, Dudley J, Nei M. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol, 2007, 24, 1596-1599
    [60] Piry S, Alapetite A, Cornuet J M, et al. GENECLASS2: A software for Genetic assignment and First-Generation Migrant Detection [J]. J Hered, 2004, 95:536-539
    [61]王武.鱼类增养殖学.中国农业出版社.
    [62]屈中,刘志国.分子生物学实验技术.化学工业出版社.
    [63]胡鹏飞,王茜,戴伟,等.长江水系中华绒螯蟹线粒体DNA的遗传多样性[J].水产学杂志,2006, 19(1):1—5
    [64]邱涛,陆仁后,项超美,等.RAPD方法对中华绒螯蟹长江、辽河、瓯江三群体的遗传多样性分析.淡水渔业, 1997,27(5)
    [65]王进科,周刚,曹文明,等.用小卫星探针33.6对中华绒鳌蟹遗传多态性的DNA指纹图谱研究.大连水产学院学报, 2001, 16(2)
    [66]黄雷,王成辉,李思发.中华绒螯蟹长江天然群体遗传差异的AFLP初步分析.上海水产大学学报, 2008, 17(4)
    [67]潘建林,牟大凯,郝莎,等.中华绒螯蟹Eriochei r sinensis两个地理种群的微卫星DNA多态性分析.南京大学学报(自然科学), 2006, 43(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700