效应物对中华绒螯蟹(Eriocheir sinensis)N-乙酰-β-D-氨基葡萄糖苷酶的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以中华绒螯蟹(Eriocheir sinensis)内脏为材料,通过0.01mol·L~(-1) Tris-HCI缓冲液(pH 7.5含0.2mol·L~(-1) NaCl,5%乙醇)抽提处理,硫酸铵分级盐析、DEAE-Cellulose(DEAE-32)离子交换柱、Sephadex G-100分子筛、第二次DEAE-32离子交换柱3次层析纯化,获得比活力为4490.79U/mg的电泳单一纯N-乙酰-β-D-氨基葡萄糖苷酶(NAGase,EC3.2.1.52)。该酶亚基分子量分别为121.21、98.63和73.48 kD,等电点为4.5。以对-硝基苯-N-乙酰-β-D-氨基葡萄糖苷(pNP-NAG)为底物,测得该酶在0.2mol·L~(-1)磷酸缓冲液(pH5.6)中催化水解pNP-NAG的最适pH为5.5,最适温度为45℃;该酶在低于45℃,pH 4.9-9.3范围内稳定。在pH5.6的条件下,酶水解pNP-NAG的米氏常数K_m为0.357mmol·L~(-1),最大反应速度V_(max)为10.409umol·L~(-1)·min~(-1),反应的活化能为76.50KJ/mol。
     研究几种有机溶剂对该酶活力的影响。结果表明:甲醇和乙醇对酶有先扬后抑作用,正丙醇、异丙醇、甲醛、丙酮、苯酚和二甲亚砜对酶的活性均有不同程度的抑制作用。甲醇、乙醇和异丙醇对酶的抑制类型都为可逆竞争性抑制类型,它们对酶的抑制常数K_I分别为3.66mol·L~(-1)、0.36mol·L~(-1)和0.48mmol·L~(-1)。甲醛、苯酚和二甲亚砜对酶的抑制类型属于可逆非竞争性抑制类型,它们对酶的抑制常数K_I分别为0.288mol·L~(-1)、0.268mmol·L~(-1)和0.276 mol·L~(-1)。正丙醇、丙酮对酶的抑制类型为可逆混合型抑制类型,正丙醇对酶的抑制常数K_I与K_(IS)分别为3.14mmol·L~(-1)和9.35mmol·L~(-1),丙酮对酶的抑制常数K_I与K_(IS)分别为0.195mol·L~(-1)和0.620 mol·L~(-1)。戊二醛对酶活力没有影响。
     研究金属离子对该酶的影响,结果表明:Na~+对酶有激活作用,Ba~(2+)、Ag~+对酶活力有先扬后抑作用。Li~+和K~+对酶有微弱的抑制作用,Mg~(2+)、Cu~(2+)、pb~(2+)、Zn~(2+)、Mn~(2+)和Al~(3+)对酶活力有不同程度的抑制作用。Mg~(2+)、Cu~(2+)和Zn~(2+)对酶的抑制均表现为可逆非竞争性抑制类型,它们对酶的抑制常数K_I分别为0.704mol·L~(-1)、1.25mmol·L~(-1)和8.10mmol·L~(-1)。Ag~+对酶的抑制作用为可逆反竞争性抑制类型,Ag~+对结合酶(ES)的抑制常数K_I为204.508mmol·L~(-1)。pb~(2+)对酶的抑制表现为可逆混合型抑制,pb~(2+)对酶的抑制常数K_I与K_(IS)分别为10.44mmol·L~(-1)和2.217mol·L~(-1)。Ca~(2+)对酶活力没有显著影响。
     研究12种氨基酸对该酶的影响。结果表明:在特定浓度范围内,L-Gly、L-Val、L-Thr、L-Ala、L-Phe和L-Ser等氨基酸对酶活力没有显著影响,而L-Gln、L-Met、L-Pro、L-Arg、L-His和L-Lys对河蟹NAGase有不同程度的抑制作用。L-Pro对酶的抑制表现为可逆非竞争性类型,L-Pro对酶的抑制常数K_I为702.87mmol·L~(-1)。L-Arg、L-His和L-Lys对酶的抑制均表现为可逆反竞争性类型,它们对酶的抑制分别为1.682mmol·L~(-1)、85.81mmol·L~(-1)和1.517mmol·L~(-1)。
     水体中的富营养化产生的SO_3~(2-)对该酶活力有抑制作用,抑制类型为可逆反竞争性类型,50_3~(2-)对酶的抑制常数K_I为253.995mmol·L~(-1)。NO_2~-在0-10mmol·L~(-1)范围内对酶活力有激活作用。
     研究过氧化氢对该酶的影响,结果表明,过氧化氢对酶有抑制作用,抑制类型为可逆反竞争性类型,过氧化氢对结合酶(Es)的抑制常数K_I为136.78mmol·L~(-1)。
     研究尿素对酶的影响,结果表明,尿素对酶活力有抑制作用,尿素对酶的抑制属于可逆混合型抑制类型,尿素对酶的抑制常数K_I与K_(IS)分别为379.02mmol·L~_(-1)和1.182mol·L~(-1)。
N-Acetyl-β-D-glucosaminidase(NAGase,EC3.2.1.52) was purified from rivercrab (Eriocheir sinensis), by extraction with 0.01mol·L~(-1) Tris-HCl buffer (pH7.5) containing 0.2 mol·L~(-1) NaCl and 5 percent ethanol, then ammonium sulfate fraction,and then chromatography on DEAE-cellulose (DEAE-32) , Sephades G-100 andDEAE-32.The purified enzyme was a single band on polyacrylamide gelelectrophoresis with specific activity to be 4490.79U/mg. The subunit molecularweight were determined to be 121.21, 98.63 and 73.48 kD. The pI value wasdetermined to be 4.5 by isoelectric focusing.The optimum pH and optimumtemperature of the enzyme for the hydrolysis of p-Nitrophenyl-N-Acetyl-β-D-gluco-saminide (pNP-NAG) were investigated to be at pH5.5 and at 45℃, respectively.The result of the stability showed that the enzyme was stable at the pH range from 4.9to 9.3 and at the temperature below 45℃. The kinetic behavior of the enzyme in thehydrolysis of pNP-NAG followed Michaelis-Menten kinetics with K_m of0.357mmol·L and V_m of 10.409umol·L~(-1)·min~(-1) at pH5.6 and 37℃, and theactivation energy was determined to be 76.50KJ/mol.
     The effects of different organic solwents on activity of the enzyme wereinvestigated. The results indicated that methanol and alcohol activated the enzymeat low concentrations, but they inhibited it at high concentration. Propanal,isopropanal, formaldehyde, acetone, phenol and SMOS inhibited the enzyme in varydegree. Methanol, alcohol and isopropanal were reversible competitive inhibitors.Theinhibition constants of free enzyme(K_1) of methanol, alcohol and isopropanal were0.288mol·L~(-1) , 0.36mol·L~(-1) and 0.48mmol·L~(-1) , respectively. Formaldehyde, phenoland SMOS were reversible non-competitive inhibitors. The inhibition constants offree enzyme (K_1) of formaldehyde, phenol and SMOS were 0.288mol·L~(-1) ,0.268mmol·L~(-1) and 0.288mol·L~(-1) , respectively. Propanal and acetone werereversible mixed-type inhibitors. The inhibition constants of free enzyme(K_1) andenzyme-substrate complex(K_(IS)) of propanal were determined to be 3.14mmol·L~(-1) and 9.35mmol·L~(-1),respectively. The inhibition constants of free enzyme (K_1) andenzyme-substrate complex(K_(IS)) of acetone were determined to be 0.195 mol·L~(-1) and0.620 mol·L~(-1) , respectively. Glutaraldehyde had no influence on the activity of theenzyme.
     The effects of metal ions on the enzyme were studied.The results showed thatNa~+ activated the enzyme activity. Ba~(2+) and Ag~+ activated the enzyme at low concentrations, but they inhibited it at high concentrations. Li~+ and K~+ ions inhibitedthe enzyme slightly. Mg~(2+), Cu~(2+), Pb~(2+), Zn~(2+), Mn~(2+) and Al~(3+) inhibited the enzyme.Mg~(2+), Cu~(2+) and Zn~(2+) were reversible non-competitive inhibitors. The inhibitionconstants of free enzyme (K_1) of Mg~(2+), Cu~(2+) and Zn~(2+) were 0.704 mol·L~(-1) , 1.25mmol·L~(-1) and 8.10mmol·L~(-1) , respectively. Ag~+ was reversible un-competitiveinhibitor. The inhibition constants(K_1) was 204.508mmol·L~(-1) . Pb~(2+) was reversiblemixed-type inhibition.The inhibition constants of free enzyme(K_1) andenzyme-substrate complex(K_(IS)) of Pb~(2+) were determined to be 10.44mmol·L~(-1) and 2.217mmol·L~(-1) , respectively. Ca~(2+) had no influence on the activityof the enzyme.
     The effects of 12 kinds of amino acids on the enzyme were studied. L-Gly,L-Val, L-Thr, L-Ala, L-Phe and L-Ser had no influence on the activity of theenzyme in range of the certain concentrations. L-Gln, L-Met, L-Pro, L-Arg, L-Hisand L-Lys inhibited the enzyme in vary degree. L-Pro was reversible non-competitiveinhibitor. The inhibition constants of free enzyme (K_1) of L-Pro was 702.87mmol·L~(-1) .L-Arg, L-His and L-Lys were reversible un-competitive inhibitors. The inhibitionconstants of free enzyme (K_1) of L-Arg, L-His and L-Lys were 1.682mmol·L~(-1) ,85.81mmol·L~(-1) and 1.517 mmol·L~(-1) , respectively.
     The SO-3~(2-) which was brought because of the eutrophication could inhibit theenzyme activity obviously.lt was reversible un-competitive inhibitor. The inhibitionconstants of free enzyme(K_1) of SO_3~(2-) was 253.995mmol·L~(-1) . The NO_2~-activatedthe enzyme activity when its concentration was in the range from 0 mmol·L~(-1) to10mmol·L~(-1) .
     The effect of hydrogen peroxide on the enzyme was studied.The inhibitionmechanism of hydrogen peroxide was reversible un-competitive mechanism.Theinhibition constants of free enzyme(K_1) of hydrogen peroxide was determined to be136.78mmol·L~(-1) .
     Urea was reversible mixed-type inhibitor. The inhibition constants of freeenzyme(K_1) and enzyme-substrate complex(K_(IS)) of urea were determined to be379.02mmol·L~(-1) and 1.182 mol·L~(-1) , respectively.
引文
[1] 李应森,何文辉.河蟹养殖新技术[M].上海科学技术出版社,2002
    [2] 李林思.河蟹人工育苗与病害防治[M].科学技术文献出版社,2001
    [3] 徐在宽,何群益.河蟹无公害养殖重点、难点与实例(M].科学技术文献出版社,2005
    [4] 林乐峰.河蟹养殖与经营大全[M].中国农业出版社,1999
    [5] 张家国,饶光慈,王志忠,等.河蟹蚤状幼体对蛋白质、脂肪、复合矿物盐及维生素的适宜需求量研究[J].浙江海洋学院学报(自然科学版),2001,20 (sup):66-70
    [6] 张耀红,崔青曼,刘学军,等.三种饲料对河蟹饲养效果的比较试验[J].河北渔业,2000,(5):34-35+38
    [7] 周刚,朱清顺,周建立,等.优化河蟹饲料营养成分的实验研究[J].淡水渔业,2005,35(3):20-25
    [8] 堵南山,陈炳良,赖伟,等.中华绒螯蟹幼体消化系统发育的研究[J].海洋与湖沼,1992,23(1):81-84+116
    [9] 潘鲁青,王克行.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究[J].中国水产科学,1997,4(2):13-20
    [10] 田华梅,王群,赵云龙,等.中华绒螯蟹胚胎发育过程中的消化酶活力及氨基酸组成[J].中国水产科学,2003,4(5):53-57
    [11] 钱国英,朱秋华.饲料中的钙磷含量与河蟹生长的关系[J].浙江海洋学院学报:自然科学版,1999,18(3):209-214
    [12] 魏薇,魏华.水环境中的Ca~(2+)浓度对中华绒螯蟹早熟和存活的影响[J].淡水渔业,2005,35(3):10-12
    [13] 臧维玲,江敏,戴习林,等.中华绒螯蟹育苗用水中Mg~(2+)与Ca~(2+)含量及Mg~(2+)/Ca~(2+)对出苗率的影响[J].水产学报,1998,22(2):16-21
    [14] 张树林,邢克智,杨超,等.(Mg~(2+))·(Ca~(2+))对中华绒螫蟹大眼幼体育成Ⅲ期仔蟹成活率和生长的影响[J].安徽农业科学,2006,34(17):124-126
    [15] 陈立侨,堵南山,赖伟,等.水体和配合饲料中钙、磷含量对河蟹生长的影响[J].淡水渔业,1994,24(1):13-15
    [16] 臧维玲,江敏,戴习林,等.盐度对中华绒螯蟹幼体发育的影响[J].上海水产大学学报,1999,8(2):174-178
    [17] 赵晓红,金送笛等.低温、降盐度及pH对中华绒螯蟹幼体变态的影响[J].大连水产学院学报,2001,16(4):249-256
    [18] 顾晓英.盐度对河蟹性早熟影响的初步研究[J].海洋渔业2002,(1):22-24
    [19] 赵云龙,堵南山,赖伟,等.同水温对中华绒螯蟹胚胎发育的影响[J].动物学研究,1993,14(1):51-55
    [20] 孙金生,刘安西,贺秉军,等.河蟹眼柄神经分泌细胞钾离子通道的种类和特征[J].动物学报,2001,47(sup):87-91
    [21] 孙金生,刘安西,贺秉军,等.不同甾醇类物质对河蟹眼柄神经分泌细胞ICa的影响[J].海洋与湖沼,2001,32(6):627-634
    [22] 宋霞,周开亚,马长艳,等.中华绒螯蟹蜕皮抑制激素1(Ers-MIH1)基因组DNA的分子克隆和序列分析[J].动物学报,2004,50(1):85-92
    [23] 王在照,相建海,崔朝霞,等.编码中华绒螯蟹蜕皮抑制激素基因的cDNA片段克隆和序列分析[J].海洋与湖沼,2002,33(4):432-438
    [24] 薛鲁征,堵南山,赖伟,等.中华绒螯蟹雌性生殖系统的组织学研究[J].华东师范大学学报(自然科学版),1987(3):92-101
    [25] 堵南山,薛鲁征,赖伟,等.中华绒螯蟹雄性生殖系统的组织学研究[J].动物学报,1988,34(4):35-39+95-96
    [26] 赵金良,李思发.中华绒螯蟹基因组研究概述[J].集美大学学报(自然科学版),2003,8(4):311-316
    [27] 潘建林,牟大凯,郝莎,等.中华绒螯蟹两个地理种群的微卫星DNA多态性分析[J].南京大学学报(自然科学版),2006,42(5):24-29
    [28] 高志千,周开亚.中华绒螯蟹遗传变异的RAPD分析[J].生物多样性,1998,6(3):26-30
    [29] 席玉英,王兰,杨秀清,等.汞在中华绒螯蟹主要组织器官中的积累[J].动物学报,2001,47(sup):92-95
    [30] 王兰,杨秀清,王茜,等.镉在河蟹五种组织器官的积累及对酯酶同工酶的影响[J].动物学报,2001,47(sup):96-100
    [31] 于丰军.铅和镉两种重金属对中华绒螯蟹的毒性效应研究[D].上海:华东师范大学,2005
    [32] 彭永兴,阎斌伦,李士虎.碘伏对河蟹蚤状幼体和大眼幼体的毒性试验[J].水利渔业,2002(2):44-46
    [33] 彭永兴,阎斌伦,丁成曙.新洁尔灭对河蟹蚤状幼体的毒性试验[J].淮海工学院学报,2001(sup):17-18+29
    [34] 徐海圣,舒妙安.中华绒螯蟹疾病研究进展[J].渔业现代化,2000(4):12-14
    [35] 徐欣,吕晓民,孙丽敏,等.中华绒螫蟹细菌性疾病感染途径的研究[J].水产科学,2003,22(04):18-20
    [36] 薛仁宇,曹广力,魏育红,等.中华绒螯蟹呼肠孤病毒病组织病理学观察[J].苏州大学学报(自然科学版),2005,21(1):84-87
    [37] 杨鸢劼,陈辉,吴小琴.中华绒螯蟹的致病菌及抗菌药物的筛选[J].水利渔业,2004,24(3):62-64
    [38] 徐兴川.中华绒螯蟹步足溃疡病的发现与治疗[J].水产科技情报,1990(1):16-17
    [39] 李廷友,谢标.中药添加剂对中华绒鳌蟹扣蟹非特异性免疫力影响的研究[J].淡水渔业,2005,35(1):3-6
    [40] 黎巧临.中草药在渔业生产中的应用[J].科学养鱼,2002(7):47
    [41] Fuzessery, Z M and J J Childress,Comparative chemosensitivity to amino acids and their role in the feeding activity of bathypelagic and littoral crustaceans. The Biological Bulletin,1975, 149:522 -538
    [42] 赵晓琴,李冠.几丁质酶研究进展[J].新疆大学学报(自然科学版),2003,20(4):422-425
    [43] D avis B.Chitin,chitosanand relaed enzymes.Orlando:AcademicPress,1984: 161-179
    [44] 黄小红,陈清西,王君,等.苏云金芽胞杆菌几丁质酶的分离纯化及酶学性质[J].应用于环境生物学报,2004,10(6):771-773
    [45] 张世宏,李多川,魏毅,等.粉红聚端孢菌胞外几丁质酶纯化、特性及抗菌活性[J].植物病理学报,2001,32(3):262-266
    [46] 张世宏,李多川,刘开启,等.哈茨木霉S30胞外几丁质酶的纯化及特性[J].中国生物防治,2000,16(3):107-110
    [47] 陈述.黄蓝状菌几丁质酶纯化、特性及抗菌活性[D].泰安:山东农业大学,2001
    [48] 杨虹琦,罗泽民.菜豆种子几丁质酶的分离纯化及性质测定[J].湖南农业大学学报,1998,24(3):194-198
    [49] 于汉寿,张益民,陈永萱,等.油菜几丁质酶的纯化及其在抗菌核病中的作用[J].南京农业大学学报,1999,22(3):41-44
    [50] 李友宾.罗氏沼虾肝胰腺几丁质酶研究[J].重庆师范学院学报(自然科学版),2002,19(3):54-56
    [51] 李江,胡学军等.水稻几丁质酶基因的克隆及序列测序[J].农业生物技术学报,1998,6(4):382-388
    [52] Grison R et al. Field tolerance to fungal pathogens of Brassica napus contitutively expressing a chim eric chitinase gene. Nature Biotechnology, 1996,14:643-646
    [53] Marchant R etal.Expression of a chitinase in rose (Rose hybrid a L) reduces development of blackspot disease(Dip loca rpon rosae Wolf).Molecular Breeding, 1998, (4):187-194
    [54] 欧阳石文,赵开军.植物中几丁质酶的作用[J].生物学通报,2002,37(6):13-14
    [55] 欧阳石文,刘江良等.昆虫几丁质酶的研究与应用[J].山地农业生物学报,2001,20(2):147-153
    [56] 赵和.几丁质酶与植物抗病[J].河北农业科学,2004,8(2):78-84
    [57] 沙莉,苏争先等.微生物几丁质酶的分子生物学研究及其应用[J].农业生物技术学报,2003,11(6):642-647
    [58] 黄小红,陈清西等.棉铃虫N-乙酰-β-D-氨基葡萄糖苷酶的分离纯化及酶学性质[J].昆虫学报,2005,48(4):498-502
    [59] 黄小红,陈清西,王君,等.有机溶剂对棉铃虫N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].福建农林大学学报,2005,34(1):527-530
    [60] 潘小芳,辛碧芬,谢晓兰,等.几种单糖对黄粉虫NAGase活力的影响[J].泉州师范学院学报,2006,24(6):105-109
    [61] 潘小芳,谢晓兰,徐海金,等.有机溶剂对黄粉虫N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].宁德师专学报(自然科学版),2006,18(4):352-356
    [62] 谢进金,陈丽娟.二甲亚砜对黄粉虫NAGase活力的影响[J].泉州师范学院学报,2006,24(4):96-100
    [63] 谢晓兰,潘小芳,刘小强,等.巯基乙醇对黄粉虫NAGase活力的影响[J].泉州师范学院学报,2006,24(4):102-106
    [64] Koga D, Hoshika H, Matsushita A, Ide A, Kono M. Purification and characterization of β-N-Acetyl-D-glucosaminidase from the liver of a prown,Penaeus japonicus[J].Bioscience Biotechenology and Biochemistry,1996,60(20): 194-199
    [65] 黄小红,王寿昆,黄一帆,等.日本沼虾N-乙酰-β-D-氨基葡萄糖苷酶初步纯化及部分性质[J].应用与环境生物学报,2006,12(6):804-808
    [66] 张继平.锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶的性质及活力调控的研究[D].厦门:厦门大学,2006
    [67] 杨学敏,谢进金,张继平,等.金属离子对锯缘青蟹NAGase活力的影响[J].台湾海峡,2006,25(3):343-347
    [68] 林建成,谢进金,张继平,等.氨基酸对锯缘青蟹N-乙酰氨基葡萄糖苷酶 的效应[J].厦门大学学报(自然科学版),2006,45(2):122-125
    [69] 谢晓兰.南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶的研究[D].厦门:厦门大学,2005
    [70] 谢晓兰,王勤,陈清西,等.产物类似物对南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].厦门大学学报(自然科学版),2004,43(Sup):24-27
    [71] Leaback,D H and Walker, P G Pig epididymal N-Acetyl-β-D-glucosaminidase. Biochem. J.. 1967,104:70
    [72] Bernard Weissmann,et al,Oligosaccharase Activity of β-N-Acetyl-D-glucosaminidase of beef liver. Biological Chemistry. 1964, 239(1): 59-63
    [73] Jacob A.Vehpoorte. Purification of Two β-N-Acetyl-D-glucosaminidase from Beef Spleen. Biological Chemistry. 1972, 247 (15): 4781-4793.
    [74] Jan J. W. Lisman,et al, Endo-N-acetyl-β-D-glucosaminidase activity in rat liver. Biochem. J.. 1985, 229:379-385
    [75] 李卫真,邹思湘.猪初乳中免疫细胞计数和N-乙酰-β-D-氨基葡萄糖苷酶活性的观察[J].畜牧与兽医,1999,(31):16-17
    [76] 杨九斌.N-乙酰-β-D-氨基葡萄糖苷酶(NAG)及临床意义[J].齐鲁医学检验,2004,15(2):62
    [77] 傅青岚,孙册,沈昭文,等.猪精子中N-乙酰-β-葡萄糖苷酶的分离纯化和性质研究[J].生物化学与生物物理学报,1991,23(2):126-132
    [78] Lowry O H,Rosebrough NJ, Farr A L et al.protein measurement with the Folin phenol reagent.J.Biol.Chem., 1951,193:365-269
    [79] Peters G, Saborowski R, Mentlein R, Buchholz E Isoforms of an N-Acetyl -β-D-glucosaminidase from the Antarctic krill, Euphausia superba: purification and antibody production[J].Comparative Biochemistry and Physiology, 1998, 120 (4): 743-751
    [80] 王悦,谢晓兰,王勤,等.乙醇对南美白对虾N-乙酰-β-D-氨基葡萄糖苷酶活力与构象的影响[J].厦门大学学报:自然科学版,2004,43(S1):28-31
    [81] 林建城,谢晓兰,龚敏,等.有机溶剂对南美白对虾N-乙酰-β-D氨基葡萄糖苷酶活力的影响[J].厦门大学学报(自然科学版),2005,44(5):693-696.
    [82] 林建城,王悦,谢晓兰,等.金属离子对凡纳滨对虾N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].台湾海峡,2005,24(1):78-82
    [83] 谢晓兰,王悦,陈清西,等.氨基酸对凡纳滨对虾N-乙酰-β-D-氨基葡萄糖 苷酶活力的影响[J].海洋科学,2006,30(3):46-50
    [84] 黄翔鹄,李长玲,郑莲,等.亚硝酸盐氮对凡纳滨对虾毒性和抗病相关因子影响[J].水生生物学报,2006,30(4):466-471
    [85] 罗华明,程岩雄,李利卫,等.养殖水质中亚硝酸盐、氨氮、硫化氢、pH值过高形成的原因、危害及处理办法[J].渔业致富指南,2005(14):34
    [86] XIE X L, SHI Y, HUANG Q S. Nactivation Kinetics of β-N-Acetyl-D-Glucosaminidase from Prawn (Penaeus vannamei) by Formaldehyde Marine Science Bulletin, 2006, 18 (1): 34-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700