水平轴风力机风轮气动数值模拟及性能计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风能利用在我国的深入推广,风力机风轮气动性能的预测研究越来越受到重视。为了能比较精确的预测风力机风轮的气动性能,本文利用CFD作为工具,通过求解基于压力修正方法的不可压缩N-S方程来研究水平轴风力机风轮在不同风速及不同转速下气动特性的变化规律。所作的工作及主要结论如下所述:
     首先,介绍了我国风电产业和风力发电机组的现状和发展趋势,简述了风力机气动性能的研究方法。
     其次,介绍了风力机相关的一些基本理论,如动量理论、叶素理论、动量-叶素理论并重点介绍了CFD数值模拟方法,包括流动控制方程、湍流模型和控制方程离散求解。
     然后,选择某上风向水平轴风力机风轮为研究对象进行数值模拟。建立了三维实体模型,确定了计算区域并对计算区域进行了网格划分,应用有限体积法和基于压力修正的simplec方法,采用三种湍流模型计算了不同来流风速情况下风力机风轮的流动性能,并与实验数据进行比较,得到其中模拟精度最高的为k-ωsst湍流模型。数值模拟结果表明本文数值模拟具有一定的可靠性。
     最后,对风力机叶片展向不同截面内和整个叶片范围内的绕流进行流动分析,研究表明:三维旋转效应引起的失速延迟现象对风力机叶片绕流的影响较大;对风力机分别处于58rpm、72rpm和90rpm转速下的轴功率和功率系数随风速变化的情况进行研究,结果表明:在本文选择的六种风速下,90rpm转速时可以使风力机获得比较令人满意的轴功率和功率系数。
With the wide spread of wind power utilization in our country, aerodynamic performance prediction of wind turbine rotor becomes more and more important. In order to accurately predict HAWT rotor performance, aerodynamic characteristics of a horizontal axis wind turbine rotor at different wind speeds and different rotating speeds have been studied in present dissertation by CFD. An incompressible Reynolds Averaged Navier-Stokes solver was used, which bases on pressure correction approach. The main contents and conclusions are as following:
     Firstly, the current situation of wind power industry and wind turbines in our country was described and a brief description about the methods of wind turbine aerodynamic performance study was presented.
     Secondly, basic theories about wind turbine were introduced, such as momentum theory, blade element theory and BEM theory. CFD theory was introduced in detail, including flow control equations, turbulent models and the theories on discrete equations.
     Then, an upwind HAWT rotor was seleted as investigation objective of numerical simulation. A three-dimensional geometry model was built and the computation domain was meshed. Numerical model used in present dissertation bases on finite volume method and simplec algorithm. Three turbulent models were compared, of which k-ωsst turbulent model is the best one. Flow characteristics at different wind speeds were analyzed and compared with experimental data. Good agreement was achieved between the k-ωsst turbulent model simulation and the experimental result.
     Finally, the flow on whole blade and different spanwise sections were analyzed. Simulation result shows that flow charateristic is influenced seriously by 3D rotational effect, which can result in stall delay. Power and efficiency characteristics of this wind turbine vs wind speed were studied at rotating speeds of 58rpm, 72rpm and 90rpm. The result shows that higher aerodynamic performance can be achieved at the rotating speed of 90rpm for six wind speeds studied in present dissertation.
引文
[1]聂晶.小型风力机叶片的设计[D].内蒙古:内蒙古工业大学,2005:1.
    [2]田德.国内外风力发电技术的现状与发展趋势[J].新能源产业,2007,(1):51.
    [3]邱兴克.风力发电机三维建模与分析[D].新疆:新疆大学,2006:1-2.
    [4]刘万琨,张志英,李银凤,赵萍.风能与风力发电技术[M].北京:化学工业出版社,2007:175,178.
    [5]中国可再生能源学会风能专业委员会(中国风能协会).中国风电产业现状及发展[EB/OL].www.cwea.org.cn,2005-5-16/2008-3-16.
    [6]贺德馨.风能技术发展中的几个问题[J].世界科技研究与发展,2003,25(4):46-48.
    [7]Lee Jay Fingersh,Dave Simms,Maureen Hand,Dave Jager,Jason Cotrell,Mike Robinson,Scott Schreck,Scott Larwood.WIND TUNNEL TESTING OF NREL'S UNSTEADY AERODYNAMICS EXPERIMENT.AIAA-2001-0035.
    [8]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006:236,186.
    [9]贺德馨.我国风工程研究现状与展望[J].力学与实践,2002,24(4):16.
    [10]Stylianos D.Pesmajoglou,J.M.R.Graham.Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence.Journal of Wind Engineering and Industrial Aerodynamics,ELSEVIER.86(2000).
    [11]Guanpeng Xu,Lakshmi N.Sankar.Computational Study of Horizontal Axis Wind Turbines.Journal of Solar Energy Engineering,ASME.Vol.122,FEBRUARY 2000.
    [12]F.Bertagnolio,N.N.Sφrensen,F.Rasmussen.New Insight Into the Flow Around a Wind Turbine Airfoil Section.Journal of Solar Energy Engineering,ASME.Vol.127,MAY 2005.
    [13]Chanin Tongchitpakdee,Sarun Benjanirat,Lakshmi N.Sankar.Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions.Journal of Solar Energy Engineering,ASME.Vol.127,NOVEMBER 2005.
    [14]袁新,徐利军,叶枝全,叶大均.水平轴风力机翼型大攻角分离流动的数值模拟[J].太阳能学报,1997,18(1):35-40.
    [15]袁新,江学忠.翼型大攻角低速分离流动的数值模拟[J].工程热物理学报,1999,20(2):161-165.
    [16]钱炜祺,符松,蔡金狮.翼型动态失速的数值研究[J].空气动力学学报,2001,19(4):427-433.
    [17]陈旭,郝辉,田杰,杜朝辉.水平轴风力机翼型动态失速特性的数值研究[J].太阳能学报,2003,24(6):735-740.
    [18]徐燕飞,席德科,田彬,孙刚.风力机设计与数值模拟分析[J].机械设计与制造,2006,(7):18-20.
    [19]招启军,徐国华.基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法 [J].空气动力学学报,2006,24(1):15-21.
    [20]胡丹梅,杜朝晖,朱春建.水平轴风力机静态失速特性[J].太阳能学报.2006,27(3):218-222.
    [21]Tony Burton等.风能技术[M].北京:科学出版社,2007:119-120.
    [22]张兆顺,崔挂香.流体力学[M].北京:清华大学出版社,1998:251-252.
    [23]王福军.计算流体动力学分析—CFD软件原理及应用[M].北京:清华大学出版社,2004:31.
    [24]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:207.
    [25]M.M.Hand,D.A.Simms,L.J.Fingersh,D.W.Jager,J.R.Cotrell,S.Schreck,S.M.Larwood.Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurations and Available Data Campaigns.NREL/TP-500-29955.December 2001.
    [26]NaN.Sφrensen,J.A.Michelsen,S.Schreck.Navier-Stokes predictions of the NREL Phase Ⅵ rotor in the NASA Ames 80-by-120 wind tunnel.2002 American Institute of Aeronautics &Astronautics.
    [27]D.Simms,S.Schreck,M.Hand,L.J.Fingersh.NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel:A Comparison of Predictions to Measurements.NREL/TP-500-29494.June 2001.
    [28]杜朝辉.水平轴风力机的几个关键气动问题探讨[J].上海汽轮机,2002,(1):32-33.
    [29]贺德馨等.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [30]Earl P.N.Duque.NAVIER-STOKES SIMULATIONS OF THE NREL COMBINED EXPERIMENT PHASE Ⅱ ROTOR.AIAA-99-0037.
    [31]Earl P.N.Duque,Michael D.Burldund,Wayne Johnson.Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase Ⅵ Experiment.Journal of Solar Energy Engineering,ASME.Vol.125,NOVEMBER 2003.
    [32]程永卓,李宇红,霍福鹏,陈佐一.振荡扰流提高风力机翼型气动性能的研究[J].太阳能学报,2003,24(1).
    [33]汪建文,贾瑞博,吴克启,王军.小翼对风力机叶片表面压力分布的影响[J].工程热物理学报,2006,27(5).
    [34]张玉良.水平轴大功率高速风力机风轮空气动力学计算[D].兰州:兰州理工大学,2006.
    [35]唐进.提高风力机叶型气动性能的研究[D].北京:清华大学,2004.
    [36]贾瑞博.风力机叶尖加小翼动力放大的数值模拟研究[D].内蒙古:内蒙古工业大学,2005.
    [37]叶枝全,黄继雄,陈严,包能胜,霍福鹏.适用于风力机的新翼型气动性能的实验研究[J].太阳能学报,2003,24(4).
    [38]叶枝全,黄继雄,陈严,曹人靖.风力机新系列翼型气动性能研究[J].太阳能学报,2002,23(2).
    [39]张宏武,江学忠,袁新,叶大均.二维翼型襟翼增升的数值模拟[J].清华大学学报(自然科学版),2000,40(11).
    [40]黄继雄.风力机专用新翼型及其气动特性研究[D].汕头:汕头大学,2001.
    [41]刘翠.风力机叶片的优化设计及其动力学特性分析[D].吉林:吉林大学,2005.
    [42]伍艳.风力机叶片的非定常空气动力特性计算[[)].南京:南京航空航天大学,2005.
    [43]P.K.Chaviaropoulos,M.O.L.Hansen.Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3D Navier-Stokes Solver.Journal of Fluids Engineering,ASME.Vol.122,NOVEMBER 2003.
    [44]Michael S.Selig,Bryan D.McGranahan.Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines.Journal of Solar Energy Engineering,ASME.Vol.126,NOVEMBER 2004.
    [45]K.J.Standish,C.P.van Dam.Aerodynamic Analysis of Blunt Trailing Edge Airfoils.Journal of Solar Energy Engineering,ASME.Vol.125,NOVEMBER 2003.
    [46]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [47]李庆宜.小型风力机设计[M].北京:机械工业出版社,1985.
    [48]D.勒古里雷斯.风力机的理论与设计[M].北京:机械工业出版社,1987.
    [49]陈雷,刑作霞,潘建,钟明舫.大型风力发电机组技术发展趋势[J].可再生能源,2003,(1).
    [50]郭新生.风能利用技术[M].北京:化学工业出版社,2007.
    [51]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700