基于复杂系统理论的金融市场动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济贸易的日益频繁,金融市场正发挥着越来越重要的作用,对金融市场的研究也引起了各领域的关注。另一方面,复杂系统理论研究了当相互之间存在复杂非线性相互作用的个体自组织形成一个整体时所涌现出的宏观规律,特别地,当个体具有智能体的特性时,该复杂系统将呈现各种有趣的性质,这样的系统有金融市场、生物学系统等。利用复杂系统理论、统计物理、应用数学、非线性科学以及理论物理等手段来研究金融市场中的物理规律正发展成为一门新兴研究热点,被称为金融物理学。
     本研究采用复杂系统以及统计物理等理论,根据研究方法从以下三个方面研究了金融市场的动力学演化特性:
     1.采用湍流理论中的SL层次结构模型研究股票价格序列的层次结构和多重分形特性。
     SL层次结构理论最初用于解释湍流中发现的非线性标度律,其优点在于仅用间歇参数β、最奇异标度指数h0、余维数C三个参数就能够较好地描述和解释多重分形非线性标度行为。由于湍流和金融时间序列的描述存在相似之处,我们用SL层次结构理论对股票价格序列进行分析后发现,金融时间序列不仅具有多重分形性,而且存在SL层次结构。用三个参数分别对发达和新兴的金融市场中的非线性标度行为进行量化后比较得出,证券市场的多重分形程度与经济发展水平和地理位置等因素有关,且层次结构会随着市场的演化而变化。本文的研究成果能够帮助我们更好地理解金融市场的多重分形性质,且可以利用湍流中与SL层次结构相关联的多变量级联过程来解释金融市场中的动态演化。
     2.将金融市场看作一个由多个交易者和投资产品所组成的复杂网络,利用复杂网络的理论对证券市场的资产回报序列进行建模,研究网络的静态拓扑结构和动态演化。
     采用阈值和滑动窗技术,我们分别构造了基于动态阈值和静态阈值的动态全局金融网络,并进一步计算了网络的三个全局特征参数平均度、最短路径长度和平均聚类系数分别随时间演化的曲线,从而研究网络拓扑结构的动态变化规律及其与历史上所发生的金融事件之间的联系。我们发现,三个参数都在金融风暴发生期间出现了异常的波动。该研究结果表明,金融危机与证券市场价格走势的统计性质之间存在着因果关系,因而研究动态的金融网络有助于我们更深入地理解经济危机的发生和传播机制。
     3.构建一个包含投资者和投资产品的人工金融市场,考察市场的动态演化过程。我们提出的市场生态学模型不仅考虑投资者的动力学演化,而且考虑投资产品的动力学行为,在该模型中,投资者根据投资策略的不同分为两种类型:主动投资者掌握较多的市场信息,投资策略更为优化,因而选择优良资产的能力较强;被动投资者由于只能获取少量信息因而投资能力弱于主动投资者。这与实际市场的情况相符合,因为现实中每个投资者都只能掌握市场的部分信息。另一方面,投资产品根据它们的品质可以分为优良资产和劣质资产,优良资产的品质高于劣质资产,更能吸引投资者进行投资,但是优质产品的成本要高于劣质产品。模拟结果发现,在没有任何外界调控的情况下,系统依靠投资者的投资策略和与投资产品的相互作用,运行到足够长时间能够自组织地到达一个准静态,在准静态系统的交易者和投资产品的数量都维持着一个动态的平衡,且不同的影响因素能够带来不同的准静态性质,这与生态系统有着类似的性质,对实际金融市场的动态演化和金融危机的发生和恢复有一定的指导意义。
The influence of financial markets is becoming prominent since a continually-growing amount of economic activities trading all over the global, and different fields of scientists have been engaged on the study of financial markets besides economists. On the other hand, the theory of complex systems, investigate the macroscopic laws emerged when numerous individuals self-organize to an ensemble through non-linear interactions between them. Financial market is a typical complex system. Therefore, it is available to study financial markets based on the theory of complex systems, statistical physics, applied mathematics, etc, and this research field has blossomed into a branch of learning, called econophysics. In this study, we aim our research on the dynamic properties of financial markets using theory of complex systems and statistical physics. It consists of three aspects:
     1. We study the stock price fluctuations of7developed and emerging financial markets, adopting the measurement of She-Leveque (SL) hierarchy from turbulence.
     The SL hierarchy, which was projected to characterize the anomalous scaling law in velocity fluctuations in fluid turbulence, provides a concise measurement to describe multi-fractality and nonlinear scaling law, with only three parameters:the intermittent parameter β, the most high intensity scaling exponent ho and the codimension C. Since the financial market and turbulence have been broadly compared on account of the same quantitative methods and several common stylized facts they share, the SL hierarchical structures model is applied here to study and quantify the hierarchical structure of stock price fluctuations. Several interesting results are observed:(i) The hierarchical structure related to multifractal scaling generally presents in all the7stock price fluctuations;(ii) The quantitatively statistical parameters that describe SL hierarchy are different between developed financial markets and emerging markets, distinctively;(iii) For the high-frequency stock price fluctuation, the hierarchical structure varies with different time periods. These results increase the analogies between the turbulence and financial market dynamics, and provide a profound understanding beyond the phenomenological description of multifractal scaling in stock price fluctuations, and thus may help us to better model the dynamic evolution of financial markets based on multiple cascade processes.
     2. Regarding the financial markets as a complex network, in which the nodes represent the stocks and corresponding companies, we study the static topological structure and dynamical evolution of the networks to obtain the relationship between the stock price fluctuations and financial crisis. A series of dynamic correlation-based financial networks are constructed by winner-take-all approach and sliding window technology, with both dynamic and static threshold values. By analyzing the three global parameters, average degree, average shortest path length, and average cluster coefficient evolving in a14-year period, we find that the financial networks show a robust small-world property. Furthermore, the irregularities of curves indicating the dynamic evolution of financial network highly associate with the economic crashes. These results may provide a novel view of complex network science to deeply understand the origin of financial crisis.
     3. To study the dynamic process and the statistical properties of financial markets, we build up a simplified artificial financial markets model including investors and investments. In our model, the investors, according to their selection capabilities, are regarded as active or passive, considering the fact that every investor can only perceive partial information to make right decisions. Meanwhile, the investments can be good or bad defined by their qualities. The good investments have a larger probability to attract investors, with higher cost yet. An interesting result is derived that without any external influence, the system can self-organized evolve to a quasi-stationary stable by the interaction between investors and investments according to their own strategies. Moreover, the partial information asymmetry of financial market and various qualities of investments commonly result in a diversity of investors'and investments'dynamic behaviors. This study verifies that the dynamics of a stock market is comparable with that of an evolutionary ecology such as the population of biological species, and that the financial market can be referred to as the ecological system, thus may give vital clues to investigate the financial market ecology.
引文
范冬萍.2011.复杂系统突变论:复杂性科学与哲学的视野[M].北京:人民出版社.
    方先明.2010.金融危机解析:基于非线性经济学[M].南京:南京大学出版社.
    郝柏林.1999.复杂性的刻画与“复杂性科学”[J].科学,51(3).
    何大韧,刘宗华,汪秉宏.2009.复杂系统与复杂网络[M].北京:高等教育出版社.
    刘秉正.2004.非线性动力学[M].北京:高等教育出版社.
    刘兴堂.2008.复杂系统建模理论、方法与技术[M].北京:科学出版社.
    欧阳颀.2010.非线性科学与斑图动力学导论[M].北京:北京大学出版社.
    欧阳莹之.2002.复杂系统理论基础[M].田保国等,译.上海:上海科学技术出版社.
    Peters Edgar E2004.复杂性、风险与金融市场[M].宋学锋,译.北京:中国人民大学出版社.
    汪小帆,李翔,陈关荣.2012.网络科学导论[M].北京:高等教育出版社.
    杨展如.2007.量子统计物理学[M].北京:高等教育出版社.
    周炜星.2007.金融物理学导论[M].上海:上海财经大学出版社.
    Allen F, Gale D.2010.理解金融危机[M].张健康等,译.北京:中国人民大学出版社.
    Andersen J V, Sornette D.2003. The $-game [J]. European Physical Journal B 31:141-145.
    Arthur W B.1994. Inductive reasoning and bounded rationality [J]. American Economic Review 84:406-411.
    Bachelier L.1990. Theorie la Speculation. Ph.D. thesis. [Ph.D.] Paris:University of Paris.
    Bak P, Paczuski M, Shubik M.1997. Price variations in a stock market with many agents [J]. Physica A 246:430-453.
    Bak P.2001大自然如何工作[M].李炜,蔡勖,译.武汉:华中师范大学出版社.
    Barabasi A-L, Albert R.1999a. Emergence of scaling in random networks [J]. Science 286(5439): 509-512.
    Barabasi A-L, Albert R, Jeong H.1999b. Mean-field theory for scale-free random networks [J]. Physica A 272:173-187.
    Bartolozzi M, Dozdz S, Leinweber D, et al.2005. Self-similar log-periodic structures in Western stock markets from 2000 [J]. International Journal of Modern Physics C 16:1347-1361.
    Benzi R, Ciliberto S, et al.1993. Extended self-similarity in turbulent flows [J]. Phys. Rev. E 48, R29-R32.
    Benzi R, Biferale L, Ciliberto S, et al.1995. On the intermittent energy transfer at viscous scales in turbulent flows [J]. Europhys. Lett.32,709-713.
    Benzi R, Ciliberto S, Baudet C, Chavarria G R.1995. On the scaling of three-dimensional homogeneous and isotropic turbulence [J]. Physica D 80,385-398.
    Benzi R, Biferale L, et al.1996. Generalized scaling in fully developed turbulence [J]. Physica D 96,162-181.
    Bertalanffy L V.1968. General System theory:Foundations, Development, Applications [M]. New York:George Braziller.
    Black F.1976. Studies of stock price volatility changes. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Section,177-181. Chicago.
    Boginski V, Butenko S, Pardalos P.2005. Statistical analysis of financial networks [J]. Computational Statistics and Data Analysis 48:431-443.
    Bollobas B.2001. Random graphs [M]. New York:Academic Press,2nd ed.
    Bonanno G, Vandewalle N, Mantegna RN.2000. Taxonomy of stock market indices [J]. Physical Review E 62, R7615.
    Bornholdt S.2001. Expectation bubbles in a spin model of markets:intermittency from frustration across scales [J]. International Journal of Modern Physics C 12(5):667-674.
    Bouchaud J P, Matacz A, Potters M.2001a. Leverage effect in financial markets:The retarded volatility model [J]. Physical Review Letters 87:228701.
    Bouchaud J P, Potters M.2001b. More stylized facts of financial markets:Leverage effect and downside correlations [J]. Physica A 299:60-70.
    Brada J, Ernst H, Tassel J van.1966. The distribution of stock price differences:Gaussian after all? [J] Operations Research 14(2):334-340.
    Cai SM, et al.2010. Hierarchical organization and disassortative mixing of correlation-based weighted financial networks [J]. International Journal of Modern Physics C(3)21:433-441.
    Cant R, Bouchaud J-P.2000. Herd behavior and aggregate fluctuations in financial markets [J]. Macroeconomic Dynamics 4:170-196.
    Challet D, Marsili M, Zhang Y C.2005. Minority games:Interacting agents in financial markets [M]. Oxford:Oxford University.
    Chavez M, Hwang D-U, Amann A, et al.2006. Synchronization is enhanced in weighted complex networks [J]. Phys. Rev. Lett.94,218701.
    Ching E S C, She Z-S, Su W-D, Zou Z-P.2002. Extended self-similarity and hierarchical structure in turbulence [J]. Phys. Rev. E 65,066303.
    Ching E S C, Lin D C, Zhang C.2004. Hierarchical structure in healthy and diseased human heart rate variability [J]. Phys. Rev. E 69,051919.
    Clauset A, Newman M E J, Moore C.2004. Finding community structure in very large networks [J]. Phys. Rev. E 70(6):66111.
    Csanyi G, Szenddroi, B.2004. Structure of a large social network [J]. Phys. Rev. E 69, 036131-1-5.
    Demetrius L, Manke T.2005. Robustness and network evolution—an entropic principle [J]. Physica A 346:682-696.
    Dyson F J.1963. The threefold way:algebraic structures of symmetry groups and ensembles in quantum mechanics [J]. J.Math. Phys.3,1199-1215.
    Edelman A, Rao N Raj.2005. Random matrix theory [J]. Acta Numerica 14:233-297.
    Eguiluz V M, Zimmermann M G.2000. Transmission of information and herd behavior:An application to financial markets [J]. Phys. Rev. Lett.85:5659-5662.
    Emmert-Streib F, Dehmer M.2010. Influence of the time scale on the construction of financial networks. PLoS ONE 5(9):E12884.
    Erdos P, Renyi A.1959. On random graphs [J]. Publ. Math. Debrecen 6:290-297.
    Erdos P, Renyi A.1960. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci. 5,17-60.
    Fama E F.1965a. The behavior of stock market prices [J]. Journal of Business 38(1):34-105.
    Fama E F.1965b. Random walks in stock market prices [J]. Financial Analysts Journal 21(5):55.
    Fama E F.1969. The adjustment of stock prices to new information [J]. International Economic Review 10.
    Farmer J D.1998. Market force, ecology, and evolution [J]. Industrial and Corporate Change 11(5): 898-953.
    Fiedler M.1973. Algebraic connectivity of graphs [J]. Czech. Math. J.23:298.
    Freeman L C.1977. A set of measures of centrality based on betweenness [J]. Sociometry 40(1): 35-41.
    Gabaix X, Plerou V, Gopikrishnan P, Amaral L A N, Stanley H E.2001. Price fluctuations, market activity and trading volume [J]. Quantitative Finance 1(2):262-269.
    Garas A, Prgyrakis P, Havlin S.2008. The structural role of weak and strong links in a financial market network[J]. The European Physical Journal B 63:265-271.
    Ghashghaie S, et al.1996. Turbulent cascades in foreign exchange markets [J]. Nature 381, 767-770.
    Girvan M, Newman M E J.2002. Community structure in social and biological networks [J]. PNAS 99(6):7821-7826.
    Goh K I, Oh E, Jeong H, et al.2002. Classification of scale-free networks [J]. Proc. Natl. Acad. Sci. USA 99:12583-12588.
    Gopikrishnan P, Meyer M, Amaral L A N, Stanley H E.1998. Inverse cubic law for the probability distribution of stock price variations [J]. European Journal of Physics B 3,139-140.
    Gopikrishnan P, Plerou V, Amaral L A N, Meyer M, Stanley H E.1999. Scaling of the distribution of fluctuations of financial market indices [J]. Phys. Rev. E 60:5305-5316.
    Gopikrishnan P, Plerou V, Gabaix X, Stanley H E.2000. Statistical properties of share volume traded in financial markets [J]. Phys. Rev. E 62:R4493-R4496.
    Granovetter M.1973. The strength of weak ties [J]. Amer. J. Sociology 78(6):1360-1380.
    Hagerman R L.1978. More evidence on the distribution of security returns [J]. Journal of Finance33(4):1213-1221.
    Haken Hermann.2001.协同学:大自然构成的奥秘[M].凌复华,译.上海:上海译文出版社.
    Holland J.1974. Genetic algorithms and the optimal allocation of trials [J]. SIAM J. Comput,2, 88-105.
    Holland J.1995. Hidden Order:How Adaptation Builds Complexity [M]. MA:Addision-Wesley Publishing Company, Inc.
    Holme P, et al.2002. Attack vulnerability of complex networks [J]. Phys. Rev. E 65:056109.
    Hurst H E.1951. Long-term storage capacity of reservoirs [J]. Transactions of the American Society of Civil Engineers 116:770-808.
    Ide K, Sornette D.2002. Oscillatory finite-time singularities in finance, population and rupture [J]. Physica A 307:63-106.
    Iori G.1999. Avalanche dynamics and trading friction effects on stock market returns [J]. International Journal of Modern Physics C10:1149-1162.
    Johansen A, Sornette D.1999. Financial "anti-bubbles":log-periodicity in Gold and Nikkei collapses [J]. Physica A 330:543-583.
    Johansen A, Ledoit O, Somette D.2000. Crashes as critical points [J]. International Journal of Theoretical and Applied Finance 3(2):219-255.
    Kantelhardt J W, et al.2002. Multifractal detrended fluctuation analysis of nonstationary time series [J]. Physica A 316,87-114.
    Kenett DY, Tumminello M, Mantegna RN, et al.2010. Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market [J]. Plos ONE 5(12):e15032.
    Kenett DY, Shapira Y, Madi A, et al.2011. Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002 [J]. PlosONE 6(4):e19378.
    Kernighan B W, Lin S.1970. An efficient heuristic procedure for partitioning graphs [J]. Bell System Technical Journal 49:291-307.
    Khintchine A Ya, Levy P.1936. Sur les loi stables [J]. C. R.Acad. Sci. Paris.202,374-376.
    Kim D-H, Jeong H.2005. Systematic analysis of group identification in stock markets [J]. Phys. Rev. E 72,046133.
    Kim H J, Kim I M.2002a. Scale-free network in stock market [J]. Journal of Korean Physical Society 40(6):1105-1108.
    Kim H J, Lee Y, Kahng B.2002b. Weighted scale-free networks in financial correlations [J]. Journal of the Physical Society of Japan 71(9):2133-2136.
    Kindleberger C P, Aliber R Z.2011疯狂、惊恐和崩溃——金融危机史[M].朱隽等,译.第5版.北京:中国金融出版社.
    Kiyono Ken, Struzik Z R, Yamanoto Yoshiharu.2006. Criticality and phase transition in stock-price fluctuations [J]. Phys. Rev. Lett.96,068701.
    Kolmogorov A N.1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number [J].
    Koponen I.1995. Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic Process [J]. Phys. Rev. E 52,1197-1199.
    Kullmann L, Kertesz J, Mantegna R N.2000. Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions [J]. Physica A 287:412-419.
    Kullmann L, Kertesz J, Kaski K.2002. Time-dependent cross-correlations between different stock returns:A directed network of influence. Phys. Rev. E 66,026125.
    Ilachinski A.2001. Cellular Automata:A discrete universe [M]. Singapore:World Scientific.
    Laloux Laurent, Cizeau P, Bouchaud J P, Potters M.1999. Noise dressing of financial correlation matrices [J]. Phys. Rev. Lett.83,1467-1470.
    Lee I W C, Fapojuwo A O.2005. Stochastic processes for computer network traffic modeling [J]. Computer Communications 29:1-23.
    Leibon G, Pauls S, Rockmore D, Savell R.2008. Topological structures in the equities market network [J]. PNAS 105(52):20589-20594.
    Levy P,1925. Calcul des probabilities [M]. Gauthier-Villars. Paris.
    Lux T.1997. Time variation of second moments from a noise trader/infection model [J]. Journal of Economic Dynamics and Control 22:1-38.
    Lux T.1998. The socio-economic dynamics of speculative markets:interacting agents, chaos, and the fat tails of return distributions [J]. Journal of Economic Behavior & Organization 33: 143-165.
    Lux T, Marchesi Michele.1999. Scaling and criticality in a stochastic multi-agent model of a financial market [J]. Nature 397:498-500.
    Lux T.2007. Applications of statistical physics in finance and economics. Working papers wp07-09, Warwick Business School, Financial Econometrics Research Centre.
    Mandelbrot B B.1963a. New methods in statistical economics [J]. Journal of Political Economy 71:421-440.
    Mandelbrot B B.1963b. The variation of certain speculative prices [J]. Journal of Business 36:394-419.
    Mandelbrot B B, Ness J W Van.1968. Fractional Brownian motions [J], fractional noises and applications. SIAM Review 10(4),422-437.
    Mandelbrot B B.1974. Intermittent turbulence in self-similar cascade:Divergence of high moments and dimension of carrier [J]. Journal of Fluid Mechanics 62:331-358.
    Mandelbrot B B.1977. The fractal geometry of nature [M]. New York:W. H. Freeman and company.
    Mandelbrot B B.1999a.分形对象—形、机遇和维数[M].文志英,苏虹,译.北京:世界图书出版公司北京公司.
    Mandelbrot B B.1999b. A multifractal walk down wall street [J]. Scientific American 280(2), 70-73.
    Mantagna R N, Stanley H E.1994. Stochastic process with ultraslow convergence to a Gaussian: The truncated Levy flight [J]. Phys. Rev. Lett.73:2946-2949.
    Mantagna R N, Stanley H E.1995. Scaling behaviour in the dynamics of an economic index [J]. Nature 376,46-49.
    Mantegna R N, Stanley H E.1996a. An introduction to econophysics - correlations and complexity in finance [M]. Cambridge, UK:Cambridge University Press.
    Mantegna R N, Stanley H E.1996b. Turbulence and financial markets [J]. Nature 383,587-588.
    Mantegna R N.1999. Hierarchical structure in financial markets [J]. Eur. Phys. J. B 11:193-197.
    Marsili M.2001. Market mechanism and expectations in minority and majority games [J]. Physica A 299:93-103.
    McCulloch W, Pitts W.1943. A logical calculus of the ideas immanent in nervous activity [J]. Bulletin of Mathematical Biophysics.7:115-133.
    McFarland J, Pettit R, Sung S.1982. The distribution of foreign exchange price changes:Trading day effects and risk measurement [J]. Journal of Finance 37(3):693-715.
    Mehta M.1991. Random Matrices [M]. New York:Academic press.
    Newman M.2010. Networks [M]. Cambridge:Cambridge University Press.
    Newman M E J, Watts D J.1999. Renormalization group analysis of the small-world network model [J]. Phys. Lett. A 263:341-346.
    Newman M E J.2001. Scientific collaboration networks:Ⅱ. Shortest paths, weighted networks, and centrality [J]. Phys. Rev. E 64:016132.
    Newman M E J.2002. Assortative mixing in networks [J]. Phys. Rev. Lett.89:208701.
    Newman M E J.2003. The structure and function of complex networks [J]. SIAM Review 45, 167-256.
    Newman M E J, Girvan M.2004. Finding and evaluating community structure in networks [J]. Phys. Rev. E 69(2):026113.
    Newman M E J.2005. Power laws, Pareto distributions and Zipf's law [J]. arXiv:cond-mat/ 0412004 v2.
    Newman M E J.2010. Networks:An introduction [M]. United States:Oxford University Press Inc., New York.
    Milgram S.1967. The small world problem [J]. Psychology Today 5:60-67.
    Onnela J-P, Chakraborti A, Kaski K, Kertesz J.2002. Dynamic asset trees and portfolio analysis [J]. Eur. Phys. J. B 30,285-288.
    Onnela J-P, Chakraborti A, Kaski K, Kertesz J, Kanto A.2003a. Asset trees and asset graphs in financial markets [J]. Physica Scripta T106,48-54.
    Onnela J-P, Chakraborti A, Kaski K, Kertesz J, Kanto A.2003b. Dynamics of market correlations: Taxonomy and portfolio analysis [J]. Phys. Rev. E 68:056119.
    Onnela J-P, Chakraborti A, Kaski K, Kertesz J.2003c. Dynamic asset trees and Black Monday [J]. Physica A 324:247-242.
    Onnela J-P, Kaski K, Kertesz J.2004. Clustering and information in correlation based financial networks [J]. Eur. Phys. J. B 38:353-362.
    Pareto V.1896. Cours d'economie politique [M]. F.Rouge, Lausanne.
    Peron T K DM, Costa LF, Rodrigues F A.2012. The structure and resilience of financial market networks [J]. Chaos 22,013117.
    Peters E.1991. Chaos and order in the capital markets [M]. New York:Wiley.
    Peters E.1994. Fractal market analysis:applying chaos theory to investment and economics [M]. New York:John Wiley & Son Inc.
    Petersen A M, Stanely H E, et al.2010. Market dynamics immediately before and after financial shocks:Quantifying the Omori, productivity, and Bath laws [J]. Phys. Rev. E 82,036114.
    Plerou V, Gopikrishnan P, et al.1999. Universal and nonuniversal properties of cross correlations in financial time series [J]. Phys. Rev. Lett.83,1471-1474.
    Plerou V, Gopikrishnan P, Stanley H E.2005. Quantifying fluctuations in market liquidity: Analysis of the bid-ask spread [J]. Phys. Rev. E 71:046131.
    Podobnik B, Wang D, Horvatic D, Grosse I, Stanley HE.2010. Time-lag cross-correlations in collective phenomena [J]. EPL 90:68001.
    Pothen A, Simon H, Liou K P.1990. Partitioning sparse matrices with eigenvectors of graphs [J]. SIAM J. Matrix Anal. Appl.11:430.
    Prigogine I, Stengers 1.1984. Order out of Chaos:Man's new dialogue with nature[M]. Flamingo.
    Prigogine 1.1997. The end of certainty [M]. New York:The free press.
    Qiu T, Zheng B, Chen G.2010. Financial networks with static and dynamic thresholds [J]. New Journal of Physics 12,043057.
    Ren F, Zheng B.2003. Generalized persistence probability in a dynamic economic index [J]. Physics Letters A313:312-315.
    Rosenthal R W.1972. A class of games possessing pure-strategy Nash equilibria [J]. International Journal of game theory 2:65-67.
    Rodgers G J, Zheng D-F.2002. A herding model with preferential attachment and fragmentation [J]. Physica A 308:375-380.
    Samuelson P A.1965. Proof that properly anticipated prices fluctuate randomly [J]. Industrial Management Review 6:41.
    Satorras R P, Vazquez A, Vespignani A.2001. Dynamical and correlation properties of the internet [J]. Phys. Rev. Lett.87,258701.
    Savit R, Manuca R, Riolo R.1999. Adaptive competition, market efficiency, and phase transitions [J]. Physical Review Letters 82:2203-2206.
    She Z-S, Jackson E, Orszag S A.1990. Intermittent vortex structures in homogeneous isotropic turbulence [J]. Nature 344,226-228.
    She Z-S, Leveque E.1994. Universal scaling laws in fully developed turbulence [J]. Phys. Rev. Lett.72,336-339.
    She Z-S, Waymire E C.1995. Quantized energy cascade and log-poisson statistics in fully developed turbulence [J]. Phys. Rev. Lett.74,262-265.
    Slanina F.2001. Mean-field approximation for a limit order driven market model [J]. Physical Review E 64,5,56136.
    Sornette D.1998a. Discrete scale invariance and complex dimensions [J]. Physics Reports 297: 239-270.
    Sornette D, Johansen A.1998b. A hierarchical model of financial crashes [J]. Physica A 261: 581-598.
    Sornette D, Ide K.2003. Theory of self-similar oscillatory finite-time singularities [J]. International Journal of Modern Physics C 14:267-275.
    Tang L H, Tian G S.1999. Reaction-diffusion-branching models of stock price fluctuations [J]. Physica A 264,543-550.
    Tsay R S.2009金融时间序列分析[M].王辉,潘家柱,译.北京:人民邮电出版社.
    Tse C K, Liu J, Lau Francis C M.2010. A network perspective of the stock market [J]. Journal of Empirical Finance 17,659-667.
    Tumminello M, Aste T, Di Matteo, Mantegna R N.2005. A tool for filtering information in complex systems [J]. Proc. Natl. Acad. Sci. USA 102,10421-10426.
    Ugander J, Karrer B, Backstrom L, et al.2011. The anatomy of the Facebook social graph [J]. arXiv.1111.4503 v1.
    Vandewalle N, Boveroux P, Brisbois F.2000. Domino effect for world market fluctuations [J]. The European Physical Journal B 15,547-549.
    Vandewalle N, Brisbois F, Tordoir X.2001. Self-organized critical topology of stock markets [J]. Quantit. Finan.1,372-375.
    Vazquez A, Satorras R P, Vespignani A.2002. Large-scale topological and dynamical properties of the internet [J]. Phys. Rev. E 65,066130.
    von Neumann, Morgenstern O.1944. Theory of Games and Economic Behavior [M]. United States:Princeton University Press.
    von Neumann.1951. The general and logical theory of automata [A]. Jiffries L A, Ed. Cerebral Mechanism in Behavior, The Hixon Symposium [M], New York:Wiley.
    Watts D J, Strogatz S H.1998. Collective dynamics of'small-world'networks [J]. Nature 393(6684):440-442.
    Wiener N.1948. Cybernetics:or Control and Communication in the Animal and the Machine [M]. Oxford, England:John Wiley.
    Wigner E P.1955. Characteristic vectors of bordered matrices with infinite dimensions [J]. Ann. Math.62,548-564.
    Wigner E P.1958. On the distribution of the roots of certain symmetric matrices [J]. Ann. Math. 67,325-327.
    Wilcoxa D, Gebbie T.2004. On the analysis of the cross-correlations in South African market data [J]. Physica A:Statistical Mechanics and its Applications 344:294-298.
    Zheng B, Ren F, Trimper S, Zheng D F.2004. A generalized dynamic herding model with feed-back interactions [J]. Physica A 343:653-661.
    Zheng D-F, Rodgers G J, Hui P-M, Hulst R D.2002. Nonuniversal scaling and dynamical feedback in generalized models of financial markets [J]. Physica A 303:176-184.
    Zhou W-X, Sornette D.2004. Antibubble and prediction of China's stock market and real-estate [J].Physcia A 337:243-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700