无线中继系统中的资源优化分配与合作策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对随时随地进行自由通信的渴望促进了无线网络的迅速发展。Adhoc(自组织网)、mesh(网格网)这类基于中继的无线网络的出现令传统无线网络一直存在的可伸缩性低和健壮性差等诸多问题迎刃而解,关于无线中继系统的研究也因此蓬勃发展起来。近几年出现的合作分集(cooperative diversity)技术便是这一发展趋势下的产物,是提高无线信道容量和可靠性的一种有效手段。为了在有限的资源限制下进一步提高传输速率,从链路层对无线资源进行优化分配有着极其重大的现实意义。不同于传统的单跳网络,无线中继系统的资源优化分配必须结合链路多跳特性对资源在各跳之间进行合理配置。考虑到宽带通信中无线信道的频率选择性衰落特性,正交频分复用(OFDM)技术将被未来的通信系统广泛采用。结合了OFDM技术的无线中继系统中的资源优化分配问题变得更加复杂,需要把子载波和功率资源联合地分配给系统中的各跳节点,以求最大限度地提高系统吞吐量。由于这方面的研究并不成熟,本文将OFDM无线中继系统中的资源优化分配作为挑战和努力的方向之一。
     无线中继系统的多跳传输通过节点之间的相互合作完成,合作策略对系统性能的影响至关重要。合作策略包括合作方式选择与合作伙伴选择,合作方式选择决定了合作条件与合作形式,而合作伙伴选择决定了合作对象。合作策略在设计时需要根据具体应用场景综合考虑节点自身的性能、系统整体性能以及所有节点间的公平性。合作策略的恰当与否将直接影响节点的传输速率乃至整个系统的吞吐量,因此意义重大。结合无线中继系统特性提出有效的合作策略是本文的另一个努力方向。
     本文在无线资源优化分配方面的工作以OFDM无线中继系统为具体研究对象。
     首先,研究了OFDM再生多跳链路的子载波和功率优化分配问题。针对各态历经信道,为了获得更高的传输效率和可靠性,提出了三种基于贪婪算法的资源优化分配策略,从而通过对无线资源的合理配置提高了链路的遍历信道容量。针对非各态历经信道,为了最大化链路的即时传输速率,提出了两种分别适用于正交频分复用-时分多址接入(OFDM-TDMA)和正交频分复用-频分多址接入(OFDM-FDMA)方式的自适应资源优化分配算法。与固定的资源分配策略相比,这两种自适应算法都能够有效地提高链路的吞吐量。其次,研究了有合作分集的OFDM中继链路的最优功率分配和子载波配对问题。根据功率受限方式以及各节点处的信道状态信息获得情况,将上述问题分成四种类型加以讨论。在子载波配对模式确定的前提下,分别针对这四种类型的问题提出了功率最优分配算法。进一步地,将所提出的功率分配算法与匈牙利算法相结合,提出了一种联合的功率分配与子载波配对方案,该方案能够有效地提高链路的即时信道容量。
     本文在合作策略方面的工作以一般的无线中继系统为背景展开。
     首先,研究了基于部分信道状态信息(CSI)的合作中继策略。提出了一种以最小化链路中断概率为目标的选择中继(selection relaying)策略,该策略只需利用节点的地理位置信息,避免了繁琐的信道估计。进一步地,将该策略推广到大规模网络中,提出了一种基于最小-最大(min-max)准则的合作伙伴选择方案,成功实现了最小化网络中所有用户的最大中断概率的优化目标。其次,研究了合作中继策略的博弈论方法。提出了一个由两个用户和一个接入点组成的三节点模型。该模型中每个用户都既是源又是对方的潜在中继,用户地位完全对等。在此基础上,根据合作博弈理论提出了一个基于纳什讨价还价解的合作带宽分配策略。该策略给出了用户之间的合作条件以及合作方式,能够有效地提高用户各自的效用以及系统的总效用。此外,文中针对功率控制和网络实现等问题也进行了一些讨论。
The aspiration of communicating anywhere at any time boosts the evolution of wireless network. The relay based wireless networks, such as ad-hoc, mesh, have solved many problems that exist in the traditional wireless networks, e.g. lack of expansibility and robustness, and thus the researches on these systems become flourishing. Cooperative diversity, as an efficient approach of enhancing channel capacity and reliability, is a newborn technique under this prosperity. To further improve the transmission rate, resource optimization at the data link layer is vital. Different from single-hop networks, resource optimization in relay system must take the speciality of multi-hop into account and assign resources suitably among the hops. In view of the frequency selective fading of wireless channel in broadband systems, Orthogonal Frequency Division Multiplexing (OFDM) will be widely adopted in the future communication systems. The problem of resource optimization becomes more complicated in OFDM based wireless relay system where the subcarrier and power resources are required to be jointly allocated to each hop for the maximization of system throughput. Since researches in this area are not mature, we take the problem of resource optimization in OFDM based wireless relay system as a challenge of this dissertation.
    The transmission of relay system is accomplished by the cooperation among nodes; hence cooperation strategy is crucial to the system performance. Cooperation strategy comprises selection of cooperation mode and cooperative partner; the former one determines the cooperation condition and pattern, and the latter one determines the cooperation object. While designing cooperation strategy, system throughput as well as fairness and performances of nodes are required to be comprehensively considered due to the current application instance. Cooperative strategy is of great significance for its tremendous influence on the link transmission rate and the entire system throughput. Therefore, the other challenge of this dissertation is to propose effective cooperation strategies in wireless relay system.
    OFDM based wireless relay system is the object of our research on wireless
    resource optimization. Firstly, the problem of subcarrier and power allocation in regenerative multi-hop system is studied. In order to heighten transmission rate and reliability, three resource allocation strategies based on greedy algorithm are proposed for ergodic channel, which enhance the link capacity by effectively assigning resources. On non-ergodic channel condition, in order to maximize instantaneous transmission rate, two adaptive resource optimization algorithms are presented for OFDM-TDMA and OFDM-FDMA manners respectively. Both two algorithms improve the link throughput comparing with fixed resource allocation strategy. Secondly, the problems of power allocation and subcarrier pairing are addressed in the relay system with cooperative diversity. The problem is divided into four types according to the power limitation and the channel information knowledge at nodes. Given the subcarrier pairing result, optimal power allocation algorithms are proposed for those four types. Combining Hungary algorithm, a joint power allocation and subcarrier pairing scheme is presented, which boosts the channel capacity effectively.
    The researches on cooperation strategy in this dissertation is based on general wireless cooperative relay system. Firstly, partial channel state information based cooperation-strategy is studied. A selection relaying strategy which aims at minimizing link outage probability is proposed. Since only the geographical information of nodes are required in the proposed strategy, heavy and complicated channel estimation is avoided. Further, this strategy is extended into large-scale networks, we propose a min-max criteria based partner selection scheme that can successfully achieve the goal of minimizing the maximum outage probability among all the nodes. Secondly, the game theory method of cooperation strategy is studied. A system model constructed by two peer to peer users and one access point is presented, in which each node is source as well as potential relay to the other. Then, a cooperative bandwidth allocation strategy based on Nash bargaining solution is proposed, which effectively increases the utility of user and the entire system.
引文
[1] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27(3):379-423, 1948.
    [2] 佟学俭,罗涛.《OFDM移动通信技术原理与应用》.人民邮电出版社,北京,2003.
    [3] J. Chuang and N. Sollenberger. Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment. IEEE Communications Magazines, 38(7):78-87, Jul. 2000.
    [4] W.W. Lu. 4G mobile research in Asia. IEEE Communications Magazines, 41(3):104-106,Mar. 2003.
    [5] P. Zhang and L. Li. Research on beyond 3G mobile communications. In Proceedings of IEEE ICCT'2003, volume 1, pages 28-31, Apr. 2003.
    [6] M. Flamen and et al. An approach to 4th generation wireless infrastructures—scenarios and key research issues. In Proceedings of IEEE VTC'1999, Houston, TX, May, 1999.
    [7] Air Interface for Fixed Broadband Wireless Access Systems. IEEE std. 802.16, 2004.
    [8] A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen. Broadband wireless access with WiMax/802.16: Current performance benchmarks and future potential. IEEE Communications Magazines, 43(2):129-136, Feb. 2005.
    [9] http://www.wimaxforum.org/.
    [10] 彭林等.《第三代移动通信技术》.电子工业出版社,北京,2003年2月.
    [11] J. G. Proakis. Digital communications. McGraw-Hill, 2001.
    [12] M. Vollmer, M. Haardt, and J. Gotze. Schur algorithms for joint detection in td-cdma based mobile radio systems. Annals of Telecommunications (special issue on multi-user detection), 54(7-8), 365-378 1999.
    [13] M. Vollmer, M. Haardt, and J. Gotze. Comparative study of joint-detection techniques for td-cdma based mobile radio systems. IEEE Journal on Selected Areas in Communications, 45(2), 276-278 2001.
    [14] A. Klein, G. Kaleh, and P. Baler. Zero forcing and minimum mean square error equalization for multiuser detection in cdma channels. IEEE Transactions on Vehicular Technology, 19(8), 1461-1475 1996.
    [15] 石璟,张朝阳,仇佩阳.Td-scdma物理传输链路仿真分析.浙江大学学报(工学版),39(11):1756-1760,2005年11月.
    [16] 石璟,张朝阳,储删,来萍,仇佩亮.一种td-scdma载波频偏与信道联合估计算法.电子与信息学报,28(11):2099-2102,2006年11月.
    [17] E.C. Van der Meulen. Transmission of Information in a T-terminal Discrete Memoryless Channel PhD thesis, University of California at Berkeley., 1969.
    
    [18] E.C.V.D. Meulen. Three-Terminal Communication Channels. Advances in Applied Probability, 3(1):120-154,1971.
    
    [19] H. Sato. Information transmission through a channel with relay. The Aloha System, University of Hawaii, Honolulu, Tech. Rep B, 76.
    
    [20] T. Cover and AE Gamal. Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5):572-584,1979.
    
    [21] 仇偑亮。《信息论与编码》.高等教育出版社,北京,2003.
    
    [22] Michael Gastpar, Gerhard Kramer, and Piyush Gupta. The multiple-relay channel:Coding and antenna-clustering capacity. In Proceedings of IEEE International Symposium on Information Theory 2002 (ISIT' 2002), page 136, Lausanne, Switzerland, Jul., 2002.
    
    [23] Michael Gastpar and Martin Vetterli. On the asymptotic capacity of gaussian relay networks. In Proceedings of IEEE International Symposium on Information Theory 2002 (ISIT 2002), page 195, Lausanne, Switzerland, Jul., 2002.
    
    [24] Michael Gastpar and Martin Vetterli. On the capacity of wireless networks: The relay case. In Proceedings of IEEE INFOCOM'2002, New York, NY, Jun. 2002.
    
    [25] Piyush Gupta and P.R. Kumar. Towards and information theory of large networks: An achievable rate region. In Proceedings of IEEE International Symposium on Information Theory 2001 (ISIT'2001), page 150, Washington DC, Jun., 2001.
    
    [26] A. HΦst Madsen and J. Zhang. Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6):2020-2040, Jun. 2005.
    
    [27] B. Wang, J. Zhang, and A. HΦst Madsen. On the capacity of mimo relay channels. IEEE Transactions on Information Theory, 51(1):29-43, Jan. 2005.
    
    [28] A. El Gamal and S. Zahedi. Capacity of a class of relay channels with orthogonal components. IEEE Transactions on Information Theory, 51(5):1815-1817, May 2005.
    
    [29] S. Zahedi M. Mohseni and A. El Gamal. On the capacity of awgn relay channels with linear relaying functions. In Proceedings of IEEE International Symposium on Information Theory 2004 (ISIT'2004), page 399, Chicago, IL, 2004.
    
    [30] A. El Gamal and S. Zahedi. Minimum energy communication over a relay channel. In Proceedings of IEEE International Symposium on Information Theory 2003 (ISIT'2003), page 344, Yokohama, Japan, 2003.
    
    [31] G. Kramer, M. Gastpar, and P. Gupta. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9):3037-3063, Sept. 2005.
    
    [32] G. Kramer. Models and theory for relay channels with receive constraints. In Proceedings of 42nd Annual Allerton Conference on Communication, Control, and Computing, pages 1312-1321, Monticello, IL, 2004.
    [33] B. Smith and S. Vishwanath. Cooperative communications in sensor networks: Relay channels with correlated sources. In Proceedings of 42nd Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2004.
    
    [34] Arogyaswami Paulraj, Rohit Nabar, and Dhananjay Gore. Introduction to Space-Time Wireless Communications. Cambridge University Press, UK, 2003.
    
    [35] 王晓海。《空间编码技术》.机械工业出版社,北京,2004.
    
    [36] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8):1451-1458, Oct. 1998.
    
    [37] G.J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal, 1(2):41-59,1996.
    
    [38] L. Zheng and D. Tse. Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49(5):1073-1096, May 2003.
    
    [39] L. Zheng. Diversity-multiplexing tradeoff: A comprehensive view of multiple antenna systems. PHD thesis, 2002.
    
    [40] Huan Yao and Giegory W. Wornell. Structured space-time block codes with optimal diversity-multiplexing tradeoff and minimum delay. In Proceedings of IEEE GLOBE-COM'2003, volume 4, pages 1941-1945,2003.
    
    [41] Kambiz Ararian, Hesham El Gamal, and Philip Schniter. Achievable diversity-vs- multiplexing tradeoffs in half-duplex cooperative channels. In IEEE Information Theory Workshop 2004, pages 292-297, San Antonio, Texas, 2004.
    
    [42] P. Vijay Kumar, H. Lu, S. Pawar, and P. Elia. On the decoding and diversity- multiplexing gain tradeoff of a recent multilevel construction of space-time codes. In Proceedings of IEEE International Symposium on Information Theory 2004 (ISIT‘2004), page 127, Chicago, USA, 2004.
    
    [43] V. Shashidhar, B. Sundar Rajanl, and P. Vijay Kumar. Stbcs with optimal diversity- multiplexing tradeoff for 2, 3 and 4 transmit antennas. In Proceedings of IEEE International Symposium on Information Theory 2004 (ISIT'2004), page 128, Chicago, USA, 2004.
    
    [44] Sana Sfar, Lin Dai, and Khaled B. Letaief. Optimal diversity-multiplexing tradeoff with group detection for mimo systems. IEEE Transactions on Communications, 53(7):1178- 1190, Jul. 2005.
    
    [45] Saurabha Tavildar and Pramod Viswanath. Permutation codes: Achieving the diversity-multiplexing tradeoff. In Proceedings of IEEE International Symposium on Information Theory 2004 (ISIT'2004), page 97, Chicago, USA, 2004.
    
    [46] Mohamed Oussama Damen and Hesham El Gamal. On the diversity-vs-rate tradeoff in mimo systems. In IEEE Information Theory Workshop 2003, pages 357-360, Paris, France, 2003.
    [47] Mischa Dohler. Virtual Antenna Arrays. PhD thesis, University of London, 2003.
    
    [48] Andrew Sendonaris, Elza Erkip, and Behnaam Aazhang. Increasing uplink capacity via user cooperation diversity. In Proceedings of IEEE International Symposium on Information Theory 1998 (IS1T1998), Cambridge, MA, Aug., 1998.
    
    [49] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity - part i: System description. IEEE Transactions on Communications, 51(11):1927-1938, Nov. 2003.
    
    [50] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity, part ii: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51 (11):1939-1948, Nov. 2003.
    
    [51] J. N. Laneman, G. W. Wornell, and D. N. C. Tse. An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of IEEE International Symposium on Information Theory 2001 (ISIT'2001), Washington, DC, Jun., 2001.
    
    [52] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12):3062-3080, Dec. 2004.
    [53] J.N. Laneman. Cooperative Diversity in Wireless Networks: Algorithms and Architectures. PhD thesis, Massachusetts Institute of Technology, 2002.
    [54] T. E. Hunter and A. Nosratinia. Cooperation diversity through coding. In Proceedings of IEEE International Symposium on Information Theory 2002 (ISIT'2002), volume 1, page 220, Laussane, Switzerland, 2002.
    
    [55] T. E. Hunter and A. Nosratinia. A coded cooperation under slow fading, fast fading, and power control signals. In Conference Record of the Thirty-Sixth Asilomar Conference on Systems and Computers, volume 1, pages 118-122, Laussane, Switzerland, 3-6 Nov. 2002.
    
    [56] T. E. Hunter and A. Nosratinia. Performance analysis of coded cooperation diversity. InProceedings of IEEE International Conference on Communications 2003 (ICC'2003), volume 4, pages 2688-2692, Anchorage, USA, 2003.
    
    [57] A. Nosratinia, T. E. Hunter, and A. Hedayat. Cooperative communication in wireless networks. IEEE Communications Magazines, 42(10):74-80, Oct. 2004.
    
    [58] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia. Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2):362-371, Feb. 2004.
    
    [59] Meng Yu and Jing (Tiffany) Li. Is amplyfy-and-forward practically better than decode- and-forward or vice versa? In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing 2005 (ICASSP'2005), pages 365-368,2005.
    
    [60] Xingkai Bao and Jing Li (Tiffany). Decode-amplify-forward (daf): A new class of for- warding strategy for wireless relay channels. In 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, pages 816-820,2005.
    
    [61] L.-L. Xie and P. R. Kumar. An achievable rate for the multiple level relay channel. IEEE Transactions on Information Theory, 51(4):1348-1358, Apr. 2005.
    
    [62] Z. Liu, V. Stankovic, and Z. Xiong. Wyner-Ziv Coding for the Half-Duplex Relay Channel. volume 5, pages 1113-1116.
    
    [63] Michael Katz and Shlomo Shamai (Shitz). Relaying protocols for two colocated users. IEEE Transactions on Information Theory, 52(6):2329-2344, Jun. 2006.
    
    [64] J. N. Laneman and G. W. Wornell. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49:2415-2525, Oct. 2003.
    
    [65] Michael Gastpar, Gerhard Kramer, and Piyush Gupta. The multiple-relay channel: Coding and antenna-clustering capacity. In Proceedings of IEEE International Symposium on Information Theory 2002 (1SIT2002), page 136, Lausanne, Switzerland, 2002.
    
    [66] Anders HΦst Madsen. Capacity bounds for cooperative diversity. IEEE Transactions on Information Theory, 52(4): 1522-1544, Apr. 2006.
    
    [67] Matthew C. Valenti and Bin Zhao. Hybrid-arq based intra-cluster geographic relaying. In 2004 IEEE Military Communications Conference, pages 805-811,2004.
    
    [68] Bin Zhao and Matthew C. Valenti. Practical relay networks: A generalization of hybrid- arq. IEEE Journal on Selected Areas in Communications, 23(1):7-18, Jan. 2005.
    
    [69] Yu Guanding, Zhang Zhaoyang, and Qiu Peiliang. Cooperative arq protocol for correlated wireless channels. Journal of Electronics (China), 23(4)594-597, Jul. 2006.
    
    [70] Guanding Yu, Zhaoyang Zhang, and Peiliang Qiu. Cooperative arq in wireless networks: Protocols description and performance analysis. In Proceedings of IEEE International Conference on Communications 2006 (ICC'2006), volume 4, Istanbul, Turkey, Jun.,2006.
    
    [71] Guanding Yu, Zhaoyang Zhang, and Peiliang Qiu. Space-time code arq protocol for wireless networks. In Proceedings of IEEE International Conference on Wireless Communications Networking and Mobile Computing 2005 (WCNM'2005), volume 1, pages 453-457, Wuhan, China, Sept., 2005.
    
    [72] M.O. Hasna and M.S Alouini. Optimal power allocation for relayed transmissions over rayleigh-fading channels. IEEE Transactions on wireless communications, 3(6):1999-2004, Nov. 2004.
    [73] Q. Zhang, J. Zhang, and C. Shao et al. Power allocation for regenerative relay channel with rayleigh fading. In Proceedings of IEEE VTC'2004-Spring, pages 1167-1171, May, 2004.
    [74] J. Zhang, Qo Zhang, and C. Shao et al. Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relaying system. In Proceedings oflEEE VTC'2004-Spring, pages 1213-1217, May, 2004.
    [75] Aggelos Bletsas, Andrew Lippman, and David P. Reed. A simple distributed method for relay selection in cooperative diversity wireless networks, based on reciprocity and channel measurements. In Proceedings of IEEE VTC'2005-Spring, volume 3, pages 1484-1488, Wuhan, China, May/Jun., 2005.
    [76] Agglelos Bletsas, Ashish Khisti, David P. Reed, and Andrew Lippman. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3):659-672, Mar. 2006.
    [77] 陈实,仇佩亮.多用户合作分集网络中的合作伙伴选择研究.浙江大学学报(工学版),录用.
    [78] 罗杰A麦凯恩(Roger A.McCain).《博弈论战略分析入门(Game Theory:A Non-Technical Introduction to the Analysisy of Strategy)》.机械工业出版社,北京,2006.
    [79l Eric Rasmusen.《博弈与信息——博弈论概述(第二版)(Games and Information)》.北京大学出版社,北京,2003.
    [80] John Nash. Equilibrium points in n-person games. In Proceedings of the National Academy of Sciences, USA, January 1950.
    [81] John Nash. Non-cooperative games. In Annals of Mathematics, USA, September 1951.
    [82] John Nash. The bargaining problem, econometrica. January 1950.
    [83] Lloyd Shapley. A value for n-person games. In Kuhn and Tucker, 1953.
    [84] Donald Gillies. Locations of solutions. In Report of an Informal Conference on the Theory of n-Person Games, Princeton Mathematics mimeo, 1953.
    [85] Lloyd Shapley. Open questions. In Report of an Informal Conference on the Theory of n-Person Games, Princeton Mathematics mimeo, 1953.
    [86] D. Goodman and N. Mandayam. Power control for wireless data. Personal Communications, IEEE [see also IEEE Wireless Communications], 7(2):48-54, 2000.
    [87] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman. Pricing and power control in a multicell wireless data network. IEEE Journal on Selected Areas in Communications, 19 (10):1883-1892, Oct. 2001.
    [88] J. Zander. Jamming games in slotted aloha packet radio networks. In Proceedings of IEEE Military Communications Conference 1990, volume 2, pages 830-834, Princeton Mathematics mimeo, 1990.
    [89] J. Zander. Jamming in slotted aloha multi hop packet radio networks. IEEE Transactions on Communications, 39(10):1525-1531, Oct. 1991.
    [90] AB MacKenzie and SB Wicker. Selfish users in Aloha: a game-theoretic approach. Proceedings of IEEE VTC'2001, 3:1354-1357,2001.
    
    [91] AB MacKenzie and SB Wicker. Game theory and the design of self-configuring, adaptive wirelessnetworks. IEEE Communications Magazine, 39(11):126-131,2001.
    
    [92] A. B. MacKenzie and S. B. Wicker. Stability of multipacket slotted aloha with selfish users and perfect information. In Proceedings of IEEE INFOCOM'2003, volume 3, pages 1583-1590, Apr., 2003.
    
    [93] A. Urpi, M. Bonuccelli, and S. Giordano. Modeling cooperation in mobile ad hoc networks: A formal description of selfishness. In Proceedings of 1st Workshop Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Mar. 2003.
    
    [94] M. Felegyhazi, J.-P. Hubaux, and L. Buttyan. Nash equilibria of packet forwarding strategies in wireless ad hoc networks. IEEE Transactions on Mobile Computing, 5(5): 463-476, May 2006.
    
    [95] P. Michiardi and R. Molva. Analysis of coalition formation and cooperation strategies in mobile ad hoc networks. Journal of Ad Hoc Networks, 3(2):193-219, Mar. 2005.
    
    [96] V. Srinivasan et al. Cooperation in wireless ad hoc networks. In Proceedings of IEEE INFOCOM'2003, volume 2, pages 808-817, Apr. 2003.
    
    [97] M. Felegyhazi, L. Buttyan, and J.-P. Hubaux. Equilibrium analysis of packet forwarding strategies in wireless ad hoc networks - the dynamic case. In Proceedings of 2nd Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Mar. 2004.
    
    [98] E. Altman et al. Non-cooperative forwarding in ad hoc networks. In Proceedings of 2nd Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pageReport no. 5116, INRIA, Sophia-Antipolis, France, Feb. 2004.
    
    [99] R. Axelrod. The Evolution of Cooperation, Basic Books. reprint edition, New York, 1984.
    
    [100] Vivek Srivastava et al. Using game theory to analyze wireless ad hoc networks. IEEE Communications Surveys and Tutorials, pages 46-56, Fourth Quarter 2005.
    
    [101] L. Buttyan and J. P. Hubaux. Stimulating cooperation in self-organizing ad hoc networks. ACM J. Mobile Networks and Applications (MONET), 8(5):579-92, Oct. 2003.
    
    [102] Jens Zander and Seong-Lyun Kim. Radio Resource Management for Wireless Networks. Artech House, Boston and London, 2001.
    
    [103] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics, 52(1):7-21, 2005.
    
    [104] Jing Shi, Zhaoyang Zhang, Peiliang Qiu, and Guanding Yu. Subcarrier and power allocation for ofdma based regenerative multi-hop links. In Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing 2005 (WCNM'2005), pages 207-210, Wuhan, China, 2005.
    [105] Jing Shi, Guanding Yu, Zhaoyang Zhang, and Peiliang Qiu. Resource allocation in ofdm based multi-hop wireless networks. In Proceedings of IEEE VTC'2006-Spring, pages 319-323, Melbourne, Australia, 2006.
    [106] 石璟,张朝阳,余官定,仇佩亮.多跳ofdm系统中的功率分配研究.中国电子学会信息论分会第十三届学术年会,pages 218-221,2005年10月.
    [107] Jing Shi, Guanding Yu, Zhaoyang Zhang, and Peiliang Qiu. Optimal power allocation and subcarrier paring for non-regenerative ofdm relay channels, submitted to Journal of Zhejiang University (SCIENCE).
    [108] Jing Shi, Guanding Yu, Zhaoyang Zhang, Yan Chen, and Peiliang Qiu. Partial channel state information based cooperative relaying and partner selection. In Proceedings of IEEE Wireless Communications (?) Networking Conference 2007 (WCNC'2007), Hong Kong, 2007.
    [109] 石璟,张朝阳,仇佩亮.合作中继网络中基于纳什讨价还价解的合作带宽分配策略.浙大学报工学版(录用).
    [110] R. Bruno, M. Conti, and E. Gregori. Mesh networks: commodity multihop ad hoc networks. IEEE Communications Magazine, 43:123-131, Mar. 2005.
    [111] R. Prasad. OFDM Wireless Multimedia Communications. Artech House, 2000.
    [112] C.Y. Wong, KS Cheng, KB Lataief, and RD Murch. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10):1747-1758, 1999.
    [113] J. Jang, K. B. Lee, and Y H. Lee. Transmit power and bit allocations for ofdm systems in a fading channel. In Proceedings of IEEE GLOBECOM'2003, pages 858-862, San Francisco, USA, Dec., 2003.
    [114] Q. Zhang, J. Zhang, and C. Shao et al. Power allocation for regenerative relay channel with rayleigh fading. In Proceedings of IEEE VTC'2004-Spring, pages 1167-1171, May,2004.
    [115] J. Zhang, Q. Zhang, and C. Shao et al. Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relaying system. In Proceedings of IEEE VTC'2004-Spring, pages 1213-1217, May, 2004.
    [116] M. Dohler. Resource allocation for fdma-based regenerative multihop links. IEEE Transactions on wireless communications, 3(6):1989-1993, Nov. 2004.
    [117] I. Hammerstrom and A. Wittneben. On the optimal power allocation for nonregenerative ofdm relay links. In IEEE International Conference on Communications 2006 (ICC'2006), Jun., 2006.
    [118] I.E. Telatar. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6):585-595, 1999.
    [119] T. Cover and J.A. Thomas. Elements of Information Theory. New York: Wiley, 1991.
    
    [120] A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6):1986-1992, Nov. 1997.
    
    [121] RU Nabar, H. Bolcskei, and FW Kneubuhler. Fading relay channels: performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22(6): 1099-1109,2004.
    
    [122] J. N. Laneman and G. W. Wornell. Energy-efficient antenna sharing and relaying for wireless networks. In Proceedings of IEEE Wireless Communications & Networking Conference 2000 (WCNC'2000), pages 7-12, Sept., 2000.
    
    [123] L. J. Cimini. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexings. IEEE Transactions on wireless communications, 33:665- 675, Nov./Dec. 1995.
    
    [124] Guanding Yu, Zhaoyang Zhang, Yan Chen, Shi Chen, and Peiliang Qiu. Power allocation for non-regenerative ofdm relaying channels. In Proceedings of IEEE International Conference on Wireless Communications Networking and Mobile Computing 2005 (WCNM'2005), pages 185-188, Sept., 2005.
    
    [125] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
    
    [126] Issam Toufik and Raymond Knopp. Channel allocation algorithms for multi-carrier systems. In Proceedings of IEEE VTC'2004-Fall, pages 1129-1133,2004.
    
    [127] Ahuja, R. K., Magnanti, T. L., Orlin, and J. B. Network Flows. Prentice Hall, 1993.
    
    [128] Omer Ileri, Siun-Chuon Mau, and Narayan B. Mandayam. Pricing for enabling forwarding in self-configuring ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(1):151-162, Jan. 2005.
    
    [129] N. A. Shastry and R. S. Adve. Stimulating cooperative diversity in wireless ad hoc networks through pricing. In IEEE International Conference on Communications 2006 (ICC'2006), Jun., 2006.
    
    [130] D. Grosu, A. T. Chronopoulos, and M.Y. Leung. Load balancing in distributed systems: an approach using cooperative games. In Proceedings of IPDPS'2002, pages 52-61,2002.
    
    [131] Zhu Han, Zhu Ji, and K. J. Ray Liu. Low-complexity ofdma channel allocation with nash bargaining solution fairness. In Proceedings of IEEE GIOBECOM'2004, pages 3726- 3731, 2004.
    
    [132] R. Mazumdar, L.G. Mason, and C. Douligeris. Fairness in network optimal flow control: optimality of product forms. IEEE Transactions on Communications, 39:775-782, Mar. 1991.
    
    [133] Jingping Ji and R. S. Adve. Evaluation of game theoretic approaches to cooperative wireless network design. In Proceedings of 23rd Biennial Symposium on Communications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700